

TIME-TRIGGERED
COMMUNICATION

Embedded Systems

Series Editor

Richard Zurawski
SA Corporation, San Francisco, California, USA

Communication Architectures for Systems-on-Chip, edited by José L. Ayala

Real Time Embedded Systems Design and Analysis with Open-Source Operating
Systems, Ivan Cibrario Bertolotti and Gabriele Manduchi

Time-Triggered Communication, edited by Roman Obermaisser

TIME-TRIGGERED
COMMUNICATION

Edited by

ROMAN OBERMAISSER

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

Version Date: 20110629

International Standard Book Number: 978-1-4398-4661-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable

efforts have been made to publish reliable data and information, but the author and publisher cannot

assume responsibility for the validity of all materials or the consequences of their use. The authors and

publishers have attempted to trace the copyright holders of all material reproduced in this publication

and apologize to copyright holders if permission to publish in this form has not been obtained. If any

copyright material has not been acknowledged please write and let us know so we may rectify in any

future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or

hereafter invented, including photocopying, microfilming, and recording, or in any information stor-

age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-

right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222

Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-

vides licenses and registration for a variety of users. For organizations that have been granted a pho-

tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are

used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
www.copyright.com
http://www.copyright.com

Contents

List of Figures xvii

List of Tables xxiii

Editor xxv

Contributors xxvii

1 Introduction 1
R. Obermaisser
1.1 Scope of the Book . 2

1.2 Structure of the Book . 3

2 Basic Concepts and Principles of Time-Triggered Communication 5
R. Obermaisser and H. Kopetz
2.1 Introduction . 6

2.2 System Structure . 6

2.3 Concepts of Dependability . 9

2.3.1 Dependability Threats – Failure, Error, Fault 10

2.3.2 Fault Containment . 10

2.3.3 Failure Modes . 10

2.3.4 Fault Hypothesis . 11

2.4 Global Time and State . 12

2.4.1 Time and Clocks . 13

2.4.2 Precision and Accuracy . 15

2.4.3 Global Time . 16

2.4.4 Sparse Time . 17

2.4.5 State of a System . 19

2.5 Autonomous Control of Communication Networks 20

2.5.1 Types of Temporal Control Signals 20

2.5.1.1 Event Triggers 20

2.5.1.2 Time Triggers 21

2.5.2 Information Semantics . 21

2.5.3 Temporal Firewall . 21

2.5.4 Transport Protocols . 22

2.5.5 Flow Control . 23

v

vi

3 Properties of Time-Triggered Communication Systems 25
R. Obermaisser and H. Kopetz
3.1 Introduction . 26

3.2 Composability . 27

3.2.1 Component-Based Design 27

3.2.2 Component Interfaces . 28

3.2.2.1 Linking Interface 28

3.2.2.2 Technology Independent Interface (TII) 29

3.2.2.3 Technology Dependent Interface (TDI) 29

3.2.2.4 Local Interface 29

3.2.3 Linking Interface Specification 30

3.2.4 Composition of Nodes . 31

3.2.4.1 Independent Development of Nodes 31

3.2.4.2 Stability of Prior Services 32

3.2.4.3 Non-Interfering Interactions 32

3.2.4.4 Preservation of the Node Abstraction in the Case

of Failures . 32

3.3 Determinism and Predictability 33

3.3.1 The Concept of Determinism 33

3.3.2 Replica Determinism . 34

3.3.2.1 Differing Inputs 35

3.3.2.2 Deviations of Computational Progress Relative to

Real Time . 35

3.3.2.3 Oscillator Drift 35

3.3.2.4 Preemptive Scheduling 36

3.3.2.5 Nondeterministic Language Features 36

3.3.3 Building a Replica Determinate System 36

3.3.3.1 Sparse Time-Base 36

3.3.3.2 Agreement on Input 36

3.3.3.3 Static Control Structure 37

3.3.3.4 Deterministic Algorithms 37

3.3.3.5 Deterministic Communication System 37

3.4 Diagnosability . 37

3.4.1 Detection of Errors and Anomalies 38

3.4.2 Decision Making – Analysis of Diagnostic Information . . . 39

3.4.3 Use of Diagnostic Information and Analysis Results 40

3.5 Certifiability . 41

3.5.1 Safety Case . 41

3.5.2 Modular Certification . 43

3.5.3 Certification in Application Domains 43

3.5.4 Time-Triggered Communication Protocols and Certification 44

3.6 Fault Containment and Error Containment 45

3.6.1 Independent Fault Containment Regions 46

3.6.2 Strict Control on Node Interactions 46

3.6.3 Replica Determinism . 47

vii

3.6.4 Recovery and Repair . 47

3.7 Performance . 48

3.7.1 Periodic, Sporadic and Aperiodic Messages 48

3.7.2 Performance Attributes . 49

4 Core Algorithms 53
M. Paulitsch, W. Steiner, R. Obermaisser and C. El Salloum
4.1 Introduction . 54

4.2 Clock Synchronization . 55

4.2.1 Principle of Operation of Clock Synchronization 56

4.2.1.1 Resynchronization Initiation 57

4.2.1.2 Remote Clock Time Readings 57

4.2.1.3 Convergence Functions 58

4.2.2 Classifications of Clock Synchronization Algorithms 59

4.2.3 Limits in and Performance of Clock Synchronization Algo-

rithms . 61

4.2.4 Related Work on Clock Synchronization Algorithms 61

4.2.5 Time Standards and Sources 65

4.2.5.1 Time Standards 65

4.2.5.2 Time Sources 66

4.2.6 Time Aspects from an Application-Specific View 67

4.3 Startup and Restart . 68

4.3.1 Introduction and Overview 68

4.3.2 Startup . 70

4.3.2.1 Integration . 71

4.3.2.2 Coldstart . 74

4.3.3 Restart . 77

4.3.3.1 Clique Detection Algorithms 78

4.4 Integration of Event-Triggered and Time-Triggered Communication 80

4.4.1 Integration of Event-Triggered and Time-Triggered

Communication at MAC Layer 81

4.4.1.1 Event-Triggered and Time-Triggered

Communication — Contention Avoidance 81

4.4.1.2 Event-Triggered and Time-Triggered

Communication — Contention Detection with

Preemption . 82

4.4.1.3 Event-Triggered and Time-Triggered

Communication — Contention Tolerance 83

4.4.2 Event-Triggered Overlay Networks 83

4.4.3 Generic Event Service . 84

4.4.3.1 Higher Protocols: CORBA Internet Inter-ORB

Protocol . 85

4.4.3.2 Higher Protocols: Controller Area Network

(CAN) . 85

4.5 Diagnostic Services . 88

viii

4.5.1 Error Detection . 88

4.5.1.1 Error Detection by Syntactic Checks 89

4.5.1.2 Error Detection by Semantic Checks 89

4.5.1.3 Error Detection by Active Redundancy 90

4.5.2 Membership Agreement 90

5 Time-Triggered Protocol (TTP/C) 93
R. Obermaisser
5.1 Protocol Overview . 94

5.2 Protocol Services . 95

5.2.1 Communication Services 96

5.2.1.1 Temporal Structuring of Communication 96

5.2.1.2 Timing of a TDMA Slot 97

5.2.1.3 Frame Types and States 98

5.2.2 Clock Synchronization . 99

5.2.3 Restart, Re-Integration, Integration 100

5.2.4 Diagnostic Services . 101

5.2.4.1 Life-Sign . 101

5.2.4.2 Membership Service 102

5.2.4.3 Clique Detection 104

5.2.4.4 Communication System Blackout Detection . . . 104

5.2.5 Fault Isolation . 104

5.2.6 Configuration Services . 106

5.2.6.1 Mode Changes 106

5.2.6.2 Boot Loader . 107

5.3 Protocol Parameterization . 108

5.3.1 Message Descriptor List 108

5.4 Communication Interface . 110

5.4.1 Status Area . 110

5.4.2 Control Area . 113

5.4.2.1 Message Area 114

5.5 Protocol States . 114

5.6 Validation and Verification Efforts 116

5.6.1 Formal Analysis of Clock Synchronization Algorithm . . . 116

5.6.2 Formal Analysis of Fault Isolation and Consistency 117

5.6.3 Formal Analysis of Membership Service and Clique Avoid-

ance . 117

5.6.4 Fault Injection Experiments 118

5.7 Example Configurations and Implementations 119

6 FlexRay 121
C. El Salloum and K. Bilic
6.1 Protocol Overview . 122

6.2 Protocol Services . 122

6.2.1 Communication Services 122

ix

6.2.1.1 Temporal Structuring of Communication 123

6.2.1.2 Frame Format 126

6.2.1.3 Coding and Decoding 129

6.2.2 Protocol Operation Control 130

6.2.3 Clock Synchronization . 132

6.2.3.1 Global and Local Time 132

6.2.3.2 Synchronization Process 132

6.2.4 Wakeup and Startup . 134

6.2.4.1 Wakeup . 134

6.2.4.2 Startup . 135

6.3 Diagnostic Services and Fault Isolation 137

6.3.1 Redundant Communication Channels 137

6.3.2 Bus Guardians . 137

6.3.2.1 Local Bus Guardian 138

6.3.2.2 Central Bus Guardian 139

6.3.3 Checks on the Reception of a Frame 139

6.4 Protocol Parameterization . 140

6.4.1 Cluster Parameters . 140

6.4.2 Node Parameters . 141

6.5 Controller Host Interface . 142

6.5.1 Overview of the E-Ray IP Module 142

6.5.2 Programmers Model . 144

6.5.2.1 Assignment of Message Buffers 144

6.5.2.2 Structure of the Message RAM 145

6.5.2.3 Message Handling 146

6.6 Example Configurations and Implementations 148

6.6.1 Topology and Layout of a FlexRay Network 148

6.6.1.1 Passive Bus Topology 148

6.6.1.2 Active Star Topology 149

6.6.1.3 Hybrid Network 149

7 SAFEbus 153
M. Paulitsch and K. Driscoll
7.1 SAFEbus . 154

7.1.1 Background . 154

7.2 Protocol Overview . 155

7.3 Protocol Services . 157

7.3.1 Communication Services 157

7.3.1.1 Determinism and Partitioning 159

7.3.1.2 Data-Message Structure 160

7.3.1.3 Bus Encoding 161

7.3.1.4 Out-of-Band Signaling Pulses 162

7.3.2 Clock Synchronization . 163

7.3.3 Restart, Re-Integration, Integration 164

7.3.4 Diagnostic Services . 169

x

7.3.4.1 Debugging Mechanisms 169

7.3.5 Fault Isolation . 170

7.3.5.1 Babble Protection 170

7.3.5.2 Byzantine Protection 171

7.3.5.3 Availability vs. Integrity Trade-Off 171

7.3.5.4 Zombie Module Protection 172

7.3.6 Configuration Services . 172

7.3.6.1 Frame Changes 172

7.3.7 Protocol Parameterization 173

7.3.7.1 Table Memory 173

7.3.7.2 Frame Description Language 174

7.3.7.3 Table Versioning 174

7.4 Communication Interface . 176

7.5 Validation and Verification Efforts 178

7.6 Example Configurations and Implementations 178

8 Time-Triggered Ethernet 181
W. Steiner, G. Bauer, B. Hall and M. Paulitsch
8.1 Protocol Overview . 182

8.2 Protocol Services . 184

8.2.1 Communication Services 185

8.2.1.1 Communication Modes 185

8.2.1.2 Frame Formats 187

8.2.1.3 Coding and Decoding 190

8.2.1.4 Media Access Control 190

8.2.1.5 Permanence Function 195

8.2.2 Clock Synchronization . 196

8.2.2.1 Clock Synchronization Overview 196

8.2.2.2 First Step Convergence: Compression Master . . . 197

8.2.2.3 Second Step Convergence: Synchronization Mas-

ter . 200

8.2.3 Startup and Restart . 201

8.2.3.1 Integration . 203

8.2.3.2 Coldstart . 204

8.2.3.3 Restart . 205

8.2.3.4 Clique Detection 205

8.2.4 Diagnostic Services . 206

8.2.5 Fault Isolation . 207

8.2.5.1 Central Guardian 207

8.2.5.2 High-Integrity Design 209

8.2.6 Configuration Services . 210

8.3 Protocol Parameterization . 210

8.3.1 Physical Topology . 210

8.3.2 Protocol-Control Flow Parameterization 211

8.3.3 Dataflow Parameterization 211

xi

8.3.3.1 Time-Triggered Parameters 212

8.3.3.2 Rate-Constrained Parameters 212

8.3.3.3 Best-Effort Parameters 213

8.4 Communication Interface . 213

8.5 Validation and Verification Efforts 214

8.5.1 Formal Verification and Analysis 214

8.5.2 Certified Development Process 215

8.5.3 Model-Based Testing . 215

8.6 Example Configurations and Implementations 216

8.6.1 Configurations . 216

8.6.1.1 Master-Based Configuration 216

8.6.1.2 Dual-Fault Tolerant Configuration 217

8.6.1.3 System-of-Systems Configuration 217

8.6.2 Implementations . 219

9 TTCAN 221
R. Kammerer
9.1 Protocol Overview . 221

9.2 Protocol Services . 222

9.2.1 Communication Services 222

9.2.2 Clock Synchronization . 224

9.2.3 Sending and Receiving Messages in TTCAN 229

9.2.4 Restart, Re-Integration, Integration 230

9.2.5 Diagnostic Services . 232

9.2.6 Error Detection and Fault Isolation 234

9.2.7 Configuration Services . 238

9.3 Protocol Parameterization . 239

9.4 Communication Interface . 241

9.5 Validation and Verification Efforts 242

9.6 Example Configurations and Implementations 243

10 LIN 245
W. Elmenreich
10.1 Protocol Overview . 245

10.2 Protocol Services . 246

10.2.1 Communication Services 246

10.3 LIN 2.x . 247

10.3.1 Clock Synchronization . 248

10.3.2 Restart, Re-Integration, Integration 248

10.3.3 Diagnostic Services . 248

10.3.4 Error Detection and Fault Isolation 249

10.3.5 Configuration Services and Protocol Parameterization . . . 250

10.4 Communication Interface . 252

10.5 Validation and Verification Efforts 253

10.6 Example Configurations and Implementations 253

xii

11 TTP/A 255
W. Elmenreich
11.1 Protocol Overview . 255

11.2 OMG Smart Transducer Standard 256

11.3 Interface File System (IFS) . 256

11.4 Protocol Services . 259

11.4.1 Communication Services 259

11.4.2 Clock Synchronization . 261

11.4.3 Restart, Re-Integration, Integration 262

11.4.4 Diagnostic Services . 262

11.4.5 Fault Isolation . 263

11.4.6 Configuration Services and Protocol Parameterization . . . 263

11.5 Communication Interface . 264

11.6 Validation and Verification Efforts 265

11.7 Example Configurations and Implementations 265

11.7.1 TTP/A Slave Nodes . 265

11.7.2 TTP/A Master . 266

12 BRAIN 269
M. Paulitsch, B. Hall and K.R. Driscoll
12.1 Protocol Overview . 270

12.1.1 Development History and Design Goals 270

12.1.2 Minimal Overhead Replication and Input Agreement 273

12.2 Protocol Mechanisms and Services 274

12.2.1 High-Integrity Data Propagation 274

12.2.1.1 Self-Checking Data Relay 274

12.2.1.2 Independent Path Data Integrity Reconstitution . . 276

12.2.1.3 Self-Checking Processor Pair Broadcast 277

12.2.2 Clock Synchronization, Startup and Clique Resolution . . . 279

12.2.2.1 Self-Checking Master Coordination 281

12.2.2.2 Connectivity Building and Clique Aggregation . . 282

12.2.2.3 Synchronous Mode Clique Aggregation Break-

through . 285

12.3 Fault Isolation . 286

12.3.1 Time-Triggered Sequenced Guardian Roles 286

12.3.1.1 Directional Integrity Exchange 287

12.3.1.2 Skip Guardian Link Forwarding 288

12.3.1.3 Self-Checking Pair Neighbor Guardian 288

12.3.2 Asynchronous Guardian Roles 289

12.3.2.1 Startup Enforcement 289

12.3.2.2 Source Authentication 290

12.3.2.3 Additional Guardian Fault Containment Behavior 291

12.4 Diagnostic and Agreement Services 291

12.4.1 Host Task Set Agreement 291

12.5 Validation and Verification Efforts 292

xiii

12.6 Example Configurations, Implementations and Deployment Consid-

erations . 292

13 ASCB – Avionics Standard Communications Bus 295
M. Paulitsch
13.1 Protocol Overview . 295

13.2 Protocol Services . 296

13.2.1 Communication Services 296

13.2.2 Clock Synchronization, Restart, Re-Integration and Integra-

tion . 296

13.2.3 Diagnostic Services . 299

13.2.4 Fault Isolation . 299

13.2.5 Configuration Services . 300

13.3 Protocol Parameterization . 300

13.4 Communication Interface . 300

13.5 Validation and Verification Efforts 301

13.6 Example Configurations and Implementations 301

14 Industrial Applications 303
M. Paulitsch, E. Schmidt, C. Scherrer and H. Kantz
14.1 Introduction . 304

14.2 Time-Triggered Communication in Aerospace 304

14.2.1 Requirements . 305

14.2.2 A General Discussion of Time-Triggered Communication to

Meet Requirements . 311

14.2.3 Use of Time-Triggered Communication Networks in

Aerospace and Space . 315

14.2.3.1 SAFEbus in Boeing 777 316

14.2.3.2 ASCB in Primus Epic 321

14.2.3.3 Honeywell’s Modular Aerospace Controller . . . 326

14.2.3.4 TTEthernet in Orion 328

14.3 Time-Triggered Communication in Automotive Applications 333

14.3.1 Typical Design of Automotive Applications 337

14.3.2 Migration from CAN to FlexRay 339

14.3.2.1 Event-Triggered Approach – FlexRay as CAN Re-

placement . 340

14.3.2.2 Time-Triggered Approach — FlexRay-

Synchronous Task Execution 342

14.3.2.3 Discussion . 344

14.3.3 Practical Experience with the Time-Triggered Approach in

Automotive Subsystems 345

14.4 Time-Triggered Communication Services in Railway Applications . 346

14.4.1 Railway Applications . 346

14.4.2 Requirements on Railway Applications 348

14.4.3 Requirements on Communication Systems 349

xiv

14.4.4 Generic System Architecture 350

14.4.4.1 TAS Control Platform Redundancy Architecture . 351

14.4.4.2 TAS Control Platform Communication System . . 351

14.4.4.3 TAS Control Platform Fault Tolerance Layer . . . 353

14.4.4.4 Connectivity . 354

14.4.5 Application of Time-Triggered Protocols in the Railway Do-

main . 355

14.4.5.1 Interlocking: Architecture (Components, Ser-

vices, Interactions) 355

14.4.5.2 Field Element Controller 356

14.4.5.3 Availability Concept 357

14.4.6 Safety Concept . 357

14.4.6.1 Timing Requirements 357

14.4.6.2 TTP-Configuration and Schedule 358

14.4.7 Conclusion and Outlook 359

15 Development Tools 361
P. Pop, A. Goller, T. Pop and P. Eles
15.1 Introduction . 363

15.2 Design Tasks . 365

15.3 Schedule Generation . 368

15.3.1 Requirements and Application Model 371

15.3.1.1 Application Model 374

15.3.2 Scheduling Complexity and Scheduling Strategies 374

15.3.2.1 Incremental Scheduling 376

15.3.2.2 Host Multiplexing 378

15.3.2.3 Dynamic Messaging 380

15.3.2.4 Scheduling Strategies in TTPPlan 381

15.3.3 Schedule Visualization . 383

15.3.3.1 The Schedule Browser 384

15.3.3.2 The Schedule Editor 384

15.3.3.3 The Round-Slot Viewer 387

15.3.3.4 Visualization of Message Paths 387

15.4 Holistic Scheduling and Optimization 391

15.4.1 System Model . 392

15.4.2 The FlexRay Communication Protocol 393

15.4.3 Timing Analysis . 396

15.4.3.1 Schedulability Analysis of DYN Messages 397

15.4.3.2 Holistic Schedulability Analysis of FPS Tasks and

DYN Messages 401

15.4.4 Bus Access Optimization 402

15.4.4.1 The Basic Bus Configuration 404

15.4.4.2 Greedy Heuristic 406

15.4.4.3 Simulated Annealing-Based Approach 407

15.4.4.4 Evaluation of Bus Optimization Heuristics 407

xv

15.5 Incremental Design . 408

15.5.1 Preliminaries . 410

15.5.1.1 System Architecture 410

15.5.1.2 Application Mapping and Scheduling 411

15.5.2 Problem Formulation . 414

15.5.3 Characterizing Existing and Future Applications 416

15.5.3.1 Characterizing the Already Running Applications 416

15.5.3.2 Characterizing Future Applications 418

15.5.4 Quality Metrics and Objective Function 419

15.5.4.1 Slack Sizes (the first criterion) 419

15.5.4.2 Distribution of Slacks (the second criterion) . . . 421

15.5.4.3 Objective Function and Exact Problem Formula-

tion . 421

15.5.5 Mapping and Scheduling Strategy 422

15.5.5.1 The Initial Mapping and Scheduling 423

15.5.5.2 Iterative Design Transformations 424

15.5.5.3 Minimizing the Total Modification Cost 427

15.5.6 Experimental Results . 431

15.5.6.1 Evaluation of the IMS Algorithm and the Iterative

Design Transformations 431

15.5.6.2 Evaluation of the Modification Cost Minimization

Heuristics . 435

15.6 Integration of Time-Triggered Communication with Event-Triggered

Tasks . 437

15.6.1 Software Architecture . 437

15.6.2 Optimization Problem . 438

15.6.3 Schedulability Analysis 439

15.6.3.1 Static Single Message Allocation (SM) 440

15.6.3.2 Static Multiple Message Allocation (MM) 442

15.6.3.3 Dynamic Message Allocation (DM) 443

15.6.3.4 Dynamic Packet Allocation (DP) 444

15.6.4 Optimization Strategy . 446

15.6.4.1 Greedy Heuristics 447

15.6.4.2 Simulated Annealing Strategy 450

15.6.5 Experimental Results . 452

15.7 Configuration and Code Generation 455

15.7.1 Communication Configuration 456

15.7.1.1 TTP — Personalized MEDLs 456

15.7.1.2 Monitor MEDL for TTP 457

15.7.1.3 Buffer Configuration for FlexRay 457

15.7.2 Middleware Configuration 458

15.7.2.1 Configuration Format 460

15.7.2.2 FlexRay Interface Configuration 461

15.7.2.3 HS-COM Configuration 466

15.7.3 Code Generation . 468

xvi

15.7.3.1 Feature Configuration 468

15.7.3.2 Implementation 472

15.7.4 Configuration of Third-Party Software 476

15.8 Verification . 477

15.8.1 Process Requirements . 478

15.8.1.1 DO-178B . 479

15.8.1.2 IEC 61508 . 480

15.8.1.3 ISO 26262 . 481

15.8.2 Verification Best Practices 482

15.8.2.1 Reuse of Processes 482

15.8.2.2 Extending Checklists 483

15.8.2.3 Use of COTS Products 483

15.8.2.4 Modular Certification 484

15.8.2.5 Requirements Management 484

15.8.2.6 Test Vectors . 486

15.8.2.7 Test Suite . 486

15.8.3 Verification Tooling Approach 486

15.8.3.1 Output Correctness 486

15.8.3.2 Manual vs. Automated Verification 487

15.8.3.3 Qualification of Verification Tools 488

15.8.3.4 TTPVerify . 489

15.8.3.5 TTPTD-COM-Verify 490

Bibliography 495

Index 523

List of Figures

2.1 Embedded Computer System and Internal Structure of a Node . . 7

2.2 Bus Topology, Star Topology and Cascaded Star (c) 8

2.3 Combination of Star Topology and Bus Topology 9

2.4 Failure Modes of a Physical Clock 14

2.5 Sparse Time-Base . 18

2.6 Data Flow and Control Flow of a Temporal Firewall Interface . . . 22

3.1 Hierarchical Structure of a Safety Case with Subclaims 42

3.2 Incoming Voting . 45

3.3 Phase-Alignment between Request Instant and Send Instant of a

Periodic Message . 49

3.4 Worst-Case Relationship between Request Instant and Send Instant

of a Sporadic Message . 50

4.1 Optimal Representation of Time in Real-Time Systems 67

4.2 The Startup/Restart Triangle: A Time-Triggered Protocol Usually

Distinguishes between the Integration, the Coldstart, and the

Synchronized Phase . 69

4.3 Integration Messages Must Be Periodically Communicated to

Allow Integration; The Integration Messages May Be Sent

in Sequence or in Parallel . 71

4.4 The Determination of the Number of Synchronized Nodes Can Be

Done by “Counting” the Number of Received Integration Messages

or by Checking the Contents of an Integration Message 73

4.5 TTP Coldstart Scenario: Nodes 1 and 2 Produce a Collision, Which

is Resolved by Unique Timeouts 76

4.6 Different Levels of Safe State Violations and Their Recovery

Actions . 78

4.7 Solutions for Integration of Event-Triggered and Time-Triggered

Communication . 80

4.8 Event-Triggered and Time-Triggered Communication Slots 82

4.9 Subdivision of Communication Slots for an Event-Triggered

Overlay Network . 84

4.10 Event-Triggered Overlay Network 85

4.11 Commonly Used Protocol Layers for CORBA 85

4.12 Node with Middleware for CAN Protocol Emulation 86

xvii

xviii

5.1 SAE Network Classes . 94

5.2 TDMA Scheme . 97

5.3 Timing of a TDMA Slot . 98

5.4 Frame Formats . 98

5.5 Acknowledgment Scheme . 102

5.6 Bus Guardian Window and Nodes’ Receive Window 105

5.7 Application Descriptor Blocks 107

5.8 Layout of the Message Descriptor List 108

5.9 Layout of Status Area in the CNI of the TTP Communication

Controller C2 . 111

5.10 Application Data and Status Fields in the Message Area 115

5.11 Protocol States . 116

6.1 FlexRay Timing Hierarchy . 123

6.2 Structure of the Static Segment in FlexRay 124

6.3 Structure of the Dynamic Segment in FlexRay 125

6.4 FlexRay Frame Format . 127

6.5 FlexRay Coding . 130

6.6 FlexRay Protocol Operation Control 131

6.7 Deviation of Local Clocks . 132

6.8 Fault Tolerant Midpoint Algorithm Used in FlexRay 133

6.9 Clock Synchronization in FlexRay 134

6.10 FlexRay Wakeup Pattern . 135

6.11 FlexRay Startup . 136

6.12 Local Bus Guardian . 138

6.13 Inner Structure of a Central Bus Guardian 139

6.14 Block Diagram of the E-Ray Controller 143

6.15 Assignment of Message Buffers in an E-Ray Controller 144

6.16 The Message RAM of an E-Ray Controller 145

6.17 E-Ray Controller: Input Double Buffer 147

6.18 E-Ray Controller: Output Double Buffer 148

6.19 FlexRay Topologies: Passive Bus Topology 149

6.20 FlexRay Topologies: Cascaded Stars 150

6.21 FlexRay Topologies: Single Channel Hybrid Example 151

7.1 SAFEbus Interface Logic . 155

7.2 SAFEbus Nomenclature . 156

7.3 Basic Message Structure . 160

7.4 Master/Shadow Message Structure 161

7.5 Bus Encoding Example . 163

7.6 Short Resync Message . 164

7.7 Resynchronization Pulse Timing 165

7.8 Time Adjustment . 166

7.9 Synchronization State Diagram 167

7.10 Long Resync Message . 168

xix

7.11 Initial Sync Message . 169

7.12 Example Frames and Their Frame Change Transitions 174

7.13 Table Memory Structure . 175

7.14 IMM Buffer Structure . 177

7.15 Data Stream Time Partitioning 178

8.1 An Example TTEthernet Network Consisting of Two Channels and

Five End Systems . 185

8.2 Interaction of Standards . 186

8.3 Ethernet Frame Format . 187

8.4 Contents of a TTEthernet Protocol Control Frame 187

8.5 Ethernet Destination Address is Used to Specify the Virtual Link

Identifier (VL ID) in ARINC 664 Part 7 189

8.6 Example Network Topology and Assigned Schedule for the Differ-

ent Traffic Classes (TT, RC and BE) 191

8.7 Integration Methods for High-Priority (H) and Low-Priority (L)

Traffic . 192

8.8 TTEthernet – Example of Dataflow Integration 194

8.9 The Permanence Function Transforms Network Jitter into Network

Latency . 195

8.10 The Timing Hierarchy in TTEthernet 197

8.11 Compression Function Overview 198

8.12 Protocol State Machine for the SMs: Coldstart Proceeds Clockwise,

Regular Integration Counter-Clockwise 202

8.13 Startup/Restart Example in Presence of a Faulty SM and a Faulty

CM: the CA Frame Resolves an Inconsistent Startup Attempt . . . 205

8.14 Central Guardian Enforcement Actions for Synchronized Time-

Triggered Traffic and Unsynchronized Rate-Constrained Traffic . . 208

8.15 Realization of a High-Integrity Component as a Comman-

der/Monitor (COM/MON) Architecture 209

8.16 Master-Based Configuration with Three Switches Connected in

Multi-Hop Topology . 217

8.17 Dual-Fault Tolerant Configuration with Three Redundant Channels

and Five Synchronization Masters 218

8.18 TTEthernet Systems-of-Systems Configuration Consisting of Two

Subnetworks . 218

8.19 TTEthernet Switches . 220

8.20 TTEthernet FPGA-Based End Systems in Different Form Factors . 220

8.21 TTEthernet Software Stack with and without Operating

Systems Support . 220

9.1 Basic Cycle in TTCAN . 223

9.2 Communication Matrix in TTCAN 223

9.3 Event-Synchronized Basic Cycles in TTCAN 224

9.4 Reference Message in TTCAN Level 1 225

xx

9.5 Reference Message in TTCAN Level 2 226

9.6 Local Time Generation in TTCAN 227

9.7 Cycle Time Generation in TTCAN 227

9.8 Global Time Generation in TTCAN 228

9.9 Master/Slave Relation in TTCAN 231

9.10 Synchronization in TTCAN . 232

9.11 Error Frame in CAN . 233

9.12 Error Handling in CAN . 234

9.13 System Matrix with Mailbox . 236

9.14 Coupled TTCAN Buses . 237

9.15 Tx Trigger for Exclusive Message X 240

10.1 LIN Frame Format . 246

10.2 Example for a LIN Signal Definition 251

10.3 Development Phases in LIN . 252

11.1 Multi-Cluster Architecture with CORBA Gateway 257

11.2 Example for a TTP/A Multipartner Round 259

11.3 TTP/A Master/Slave Round . 260

11.4 Recommended TTP/A Schedule 261

11.5 Tolerance Time in a Slot within a TTP/A Round 261

11.6 Synchronization Pattern from TTP/A Master 262

11.7 Integrated Architecture with Two TTP/C Nodes and

TTP/A Networks . 263

11.8 Smart Transducer Based on Atmel 4433 Microcontroller

with Distance Sensor Attached 265

11.9 PCMCIA Gateway Card in Comparison to Size of 2 Euro Coin . . 267

12.1 BRAIN’s Braided-Ring Basic Architecture 271

12.2 The Two BRAIN Connection Duplex Configurations 272

12.3 Conceptual Brain Operation for Tolerating One Arbitrary Fault . . 275

12.4 Conceptual BRAIN Operation for a Second Benign Failure 277

12.5 Self-Checking Pairs . 278

12.6 Triple-Modular Replication (TMR) Deployed on BRAIN 280

12.7 A Self-Checking Pair Clock Monitoring and Rendezvous 282

12.8 A BRAIN Clique Scenario . 283

12.9 CBCA Link Arbitration Resolves Asynchronous TMDA Clique

Boundaries . 284

12.10 CBCA Clique Aggregation . 284

12.11 Consistent Data Guardian Exchange 287

12.12 Skip Guardian Action Mitigate 288

12.13 Self-Checking Pair Guardian Action 289

12.14 Startup Guardian Action . 290

12.15 Cabling of BRAIN Routed within Neighboring Nodes 294

13.1 ASCB Architecture . 297

xxi

13.2 ASCB Minor Frame Period . 298

13.3 Flow Diagram of ASCB/D Synchronization, Integration and

Startup Algorithm . 299

14.1 Overview of One AIMS Cabinet Modules and Function Allocation 318

14.2 SAFEbus Architecture Overview 319

14.3 Boeing B-777 Avionics Overview 320

14.4 Primus Epic Buses . 323

14.5 Primus Epic Cabinet (MAU) . 323

14.6 Primus Epic Example System Diagram 324

14.7 Concept behind MAC . 326

14.8 Engine Control Architectures . 327

14.9 Sketch of Orion . 329

14.10 Orion and Ares I Interface . 330

14.11 Self-Checking Pair Computer . 331

14.12 TTEthernet Self-Checking Pair End System 333

14.13 Orion Avionics Overview . 334

14.14 Typical Automotive System (CAN-Based) 335

14.15 Typical Automotive System (CAN-Based) 336

14.16 Typical Automotive Application Design (CAN-Based) – Timing of

Software Execution . 338

14.17 New Automotive Subsystems with FlexRay (CAN-to-FlexRay

Migration) . 339

14.18 Typical New Automotive Systems (CAN + FlexRay) 340

14.19 Adapted Automotive Application Design (Event-Triggered

Approach) — Timing of Software Execution 341

14.20 FlexRay Communication Timing (Event-Triggered Approach) —

Transmitter “Asynchronous” to FlexRay — with Lost Messages . . 342

14.21 Practical Measurement Results with an “Asynchronous” Transmit-

ter on FlexRay — with Lost Messages 343

14.22 Rigorous Time-Triggered Automotive Application Design (Time-

Triggered Approach) — Timing of Software Execution 343

14.23 FlexRay Communication Timing (Time-Triggered Approach) —

Transmitter “Synchronous” to FlexRay — without Lost Messages 344

14.24 Smoothly Synchronizing the Local Time to the FlexRay Global

Time (Time-Triggered Approach) 345

14.25 Train Routing and Train Protection 347

14.26 TAS Control Platform Redundancy Architecture 352

14.27 Architecture of the ELEKTRA Interlocking System 355

14.28 TTP/C Network Architecture . 357

15.1 Multiplexed Slots . 379

15.2 The Schedule Browser of TTPPlan 384

15.3 The Schedule Editor of TTPPlan 386

15.4 The Round-Slot Viewer of TTPPlan 388

xxii

15.5 Illustration of Data Traffic on All Full-Duplex Connections of a

TTEthernet Network . 390

15.6 System Architecture Example . 393

15.7 FlexRay Communication Cycle Example 394

15.8 Global Scheduling Algorithm . 396

15.9 Response Time of a DYN Message 398

15.10 Transmission Scenarios for DYN Messages 399

15.11 Optimization of the ST Segment 402

15.12 Optimization of the DYN Segment 403

15.13 Basic Bus Configuration . 404

15.14 Greedy Heuristic . 406

15.15 Evaluation of Bus Optimization Algorithms 408

15.16 Message Passing Mechanism . 410

15.17 Mapping and Scheduling Example 412

15.18 Application A2 Implemented on Top of Ψ and A1 415

15.19 Incremental Design Process . 416

15.20 Characterizing the Set of Already Running Applications 418

15.21 Example for the Second Design Criterion 423

15.22 Mapping and Scheduling Strategy (MS) 424

15.23 Step 1 and Step 2 of the Mapping and Scheduling Strategy in Fig-

ure 15.22 . 426

15.24 Successive Steps with Potential Moves for Improving C1 428

15.25 Metric for the Subset Selection Heuristic 430

15.26 Evaluation of the Design Transformation Heuristics 434

15.27 Percentage of Future Applications Successfully Implemented . . . 435

15.28 Evaluation of the Modification Cost Minimization 436

15.29 Worst-Case Arrival Time for SM 441

15.30 Optimizing the MEDL for SM and MM 442

15.31 Optimizing the MEDL for DM and DP 445

15.32 Greedy Heuristic for SM . 448

15.33 Greedy Heuristic for DM . 450

15.34 The Simulated Annealing Strategy 451

15.35 Comparison of the Four Approaches to Message Scheduling . . . 453

15.36 Four Approaches to Message Scheduling: The Influence of the

Number of Messages . 454

15.37 Four Approaches to Message Scheduling: The Influence of the

Message Sizes . 454

15.38 Examples of Different COM Layers 459

15.39 Sending and Receiving on FrIf Level 463

15.40 FrIf Configuration as C code — An Example 465

15.41 Communication Configuration as C code — An Example

(HS-COM) . 467

15.42 Comparison of Assurance Levels in Different Certification

Standards . 481

15.43 Interaction of the Development Tools with the Verification Tools . 492

List of Tables

4.1 Classification of clock synchronization algorithms 62

4.2 Properties of deterministic clock synchronization algorithms . . . 63

4.3 Properties of probabilistic and statistical clock synchronization al-

gorithms . 64

7.1 SAFEbus terminology . 157

9.1 CRC—Hamming distance shortfall 238

11.1 Hierarchical structure of an Interface File System (IFS) address . . 258

11.2 Resource requirements and performance of time-triggered smart

transducer interface implementations 266

12.1 SINT message fields . 280

12.2 CBCA fields . 285

14.1 Exemplary traffic classes categorization with properties for regional

or transport category airplane (Part 1) 312

14.2 Exemplary traffic classes categorization with properties for regional

or transport category airplane (Part 2) 313

14.3 TTP-cluster cycle . 358

15.1 Evaluation of the initial mapping and scheduling 432

15.2 Percentage deviations for the greedy heuristics compared to SA . . 455

15.3 COM layer properties compared. 460

xxiii

Editor

Roman Obermaisser is a full professor for embedded systems at the Department

of Electrical Engineering and Computer Science of the University of Siegen in Ger-

many. He studied computer sciences at Vienna University of Technology and re-

ceived his master’s degree in 2001. In February 2004, Professor Obermaisser fin-

ished his doctoral studies in computer science at Vienna University of Technology

with Professor Hermann Kopetz as research advisor. In July 2009, he received the

habilitation (”Venia docendi”) certificate for Technical Computer Science. He is the

author of numerous journal papers, books and conference publications.

Professor Obermaisser has participated in European research projects (e.g., uni-

versAAL, DECOS, NextTTA, INDEXYS) and was the technical coordinator of

the FP7 research projects GENESYS (GENeric Embedded SYStem Platform) and

ACROSS (Artemis Cross-Domain Architecture). He was also a member of the work-

ing groups “reference designs/architectures” and “middleware/seamless connectiv-

ity” in the European technology platform ARTEMIS, where a roadmap for European

research in the area of embedded systems was defined. His leading role in the scien-

tific community is shown through his chairing of and participation in many program

committees (e.g., chair of the program committee of the IEEE Symposiums for Ob-

ject and Component-Oriented Real-Time Distributed Computing, chair of the IEEE

Workshop on Architectures and Applications for Mixed-Criticality Systems, chair of

the IFIP Workshops on Software Technologies for Future Embedded and Ubiquitous

Systems).

Professor Obermaisser’s research focuses on system architectures, which provide

the scientific and engineering foundation for the construction of embedded systems.

The goals of his research are to discover design principles and to develop platform

services that enable a component-based development of embedded systems in such

a way that the ensuing systems can be built cost-effectively and exhibit key non-

functional properties (e.g., dependability, timeliness, composability, maintainability).

His investigations have resulted in contributions ranging from conceptual models of

component-based system architectures to model-based development solutions and

distributed algorithms for fault-tolerance and embedded operating system technolo-

gies for safety-relevant applications.

xxv

Contributors

Günther Bauer
TTTech Computertechnik AG
Vienna, Austria

Kenan Bilic
Vienna University of Technology
Vienna, Austria

Kevin Driscoll
Honeywell International Inc.
Maple Grove, MN

Christian El Salloum
Vienna University of Technology
Vienna, Austria

Petru Eles
Linkoping University
Linköping, Sweden

Wilfried Elmenreich
Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

Alois Goller
TTTech Computertechnik AG
Vienna, Austria

Brendan Hall
Honeywell International Inc.
Eden Prairie, MN

Roland Kammerer
Vienna University of Technology
Vienna, Austria

Heinz Kantz
Thales Austria GmbH
Vienna, Austria

Hermann Kopetz
Vienna University of Technology
Vienna, Austria

Roman Obermaisser
University of Siegen
Siegen, Germany

Michael Paulitsch
EADS Innovation Works
Munich, Germany

Paul Pop
Technical University of Denmark
Kongens Lyngby, Denmark

Traian Pop
Ericsson AB
Linköping, Sweden

Christoph Scherrer
Thales Austria GmbH
Vienna, Austria

Eric Schmidt
TTTech Automotive GmbH
Vienna, Austria

Wilfried Steiner
TTTech Computertechnik AG
Vienna, Austria

xxvii

1
Introduction

R. Obermaisser
University of Siegen

CONTENTS

1.1 Scope of the Book . 2

1.2 Structure of the Book . 3

Embedded computers are by far the most common type of computer in use to-

day. Ninety-eight percent of all computing devices are embedded in different kinds

of electronic equipment such as automotive, industrial automation, telecommunica-

tions, consumer electronics and health/medical systems. Due to the many different

and, partially, contradicting requirements, there exists no single model for building

embedded systems. Well-known tradeoffs are predictability versus flexibility or re-

source adequacy versus best-effort strategies. Therefore, the chosen system model

depends strongly on the requirements of the application.

For example, in safety-critical control applications such as by-wire systems in the

avionic and automotive industries, a system’s inability to provide its specified ser-

vices can lead to a catastrophe endangering human lives. Failure rates in the order of

10−9 failures/hour are demanded in these systems, which are called ultra-dependable

systems [349]. Since today’s technology does not support the manufacturing of elec-

tronic components with failure rates low enough to meet these reliability require-

ments, ultra-dependable systems can only be built by utilizing fault-tolerant strate-

gies that enable the continued operation of the system in the presence of component

failures [48]. Ultra-dependable real-time systems must be designed according to the

resource adequacy policy by providing sufficient communication and computational

resources to handle the worst-case load and fault scenarios.

At present, two types of communication networks can be distinguished. The com-

munication activities in event-triggered networks are triggered by the occurrence of

significant events in the environment or the computer system. For example, a node

computer requests the transmission of a message whenever an interrupt arrives from

a sensor. In time-triggered networks, on the other hand, communication activities are

controlled by the progression of a global time base. Each correct node sends mes-

sages with predefined periods and phases regardless of the events occurring within

the node and in the environment. The difference between event-triggered and time-

1

2 Time-Triggered Communication

triggered networks is the location of control. While event-triggered networks react to

stimuli as they occur, time-triggered networks provide autonomous temporal control

based on a statically computed communication schedule.

While event-triggered and time-triggered models exhibit duality in the sense

that each of them is sufficiently expressive to model a system [331], the two com-

munication approaches result in significant differences of non functional proper-

ties [165, 293]. Time-triggered networks are beneficial in safety-critical systems,

because they help in managing the complexity of fault-tolerance and analytical de-

pendability models. The static schedule of a time-triggered system maximizes pre-

dictability, while the schedule in an event-triggered network unfolds dynamically

at runtime depending on the occurrence of events. In a time-triggered network, the

predetermined instants of the periodic message exchanges enable rigorous error de-

tection and fault isolation. Redundancy can be provided transparently to applications

without modifications in the function and timing of the application software [25].

Time-triggered systems also support replica determinism, which is essential in estab-

lishing fault tolerance through active redundancy [258]. Furthermore, time-triggered

systems support temporal composability via a precise specification of the interfaces

between subsystems.

1.1 Scope of the Book
The scope of the book includes the conceptual foundations and fundamental princi-

ples of time-triggered communication, prevalent members of time-triggered commu-

nication protocols, industrial applications and development tools.

The conceptual foundation covers key concepts, properties and algorithms of

time-triggered communication. This knowledge allows us to understand the different

time-triggered communication protocols, as well as their differences and commonal-

ities.

The implementation of the time-triggered concepts is discussed in-depth for spe-

cific communication protocols. The described protocols range from low-cost time-

triggered field-bus networks to time-triggered networks for safety-critical applica-

tions.

Time-triggered communication protocols are widely used in today’s embedded

systems. Therefore, the book explains typical industrial applications along with the

rationale and benefits of the time-triggered paradigm in these systems. The book

provides information about the use of FlexRay in cars, TTP in railway and avionic

systems and TTEthernet in aerospace applications.

An important aspect in deploying a time-triggered communication system is the

generation, optimization and verification of time-triggered communication sched-

ules. Therefore, the book presents requirements and algorithms of development
tools for time-triggered communication networks. These concepts are also illustrated

based on commercially available tool chains.

Introduction 3

1.2 Structure of the Book
The chapters of the book are as follows:

Chapter 2 presents the underlying concepts and principles of time-triggered com-

munication. Key concepts such as the global time base, the autonomous control of

the communication system and the temporal firewall interface are introduced.

Chapter 3 is devoted to the properties of a time-triggered communication sys-

tem. The strengths of the time-triggered paradigm (e.g., composability, determinism,

diagnosability, fault containment) are contrasted with weak points (e.g., flexibility,

average performance). This discussion enables an application developer to decide

when a time-triggered communication protocol is most suitable.

The core algorithms, which can be found in many time-triggered communication

protocols, are the focus of Chapter 4. In particular, algorithms for clock synchroniza-

tion, startup, membership and fault isolation are addressed.

Chapters 5 to 13 describe widely used time-triggered communication protocols,

which incorporate these algorithms. The protocols TTP, FlexRay, SAFEbus, TTEth-

ernet, ROBUS, TTCAN, LIN, TTP/A, BRAIN and ASCB realize the concepts of

time-triggered communication for specific domains and corresponding requirements

(e.g., backward compatibility to legacy systems, reliability requirements).

Industrial applications of time-triggered communication are the focus of Chap-

ter 14. Applications and platforms for the aerospace, automotive and railway domains

are detailed.

Chapter 15 describes tooling requirements and system integration aspects and po-

tential solutions and approaches. One important integration aspect is the generation

of a schedule for a time-triggered system.

2
Basic Concepts and Principles of
Time-Triggered Communication

R. Obermaisser
University of Siegen

H. Kopetz
Vienna University of Technology

CONTENTS

2.1 Introduction . 6

2.2 System Structure . 6

2.3 Concepts of Dependability . 9

2.3.1 Dependability Threats – Failure, Error, Fault 10

2.3.2 Fault Containment . 10

2.3.3 Failure Modes . 10

2.3.4 Fault Hypothesis . 11

2.4 Global Time and State . 12

2.4.1 Time and Clocks . 13

2.4.2 Precision and Accuracy . 15

2.4.3 Global Time . 16

2.4.4 Sparse Time . 17

2.4.5 State of a System . 19

2.5 Autonomous Control of Communication Networks 20

2.5.1 Types of Temporal Control Signals . 20

2.5.1.1 Event Triggers . 20

2.5.1.2 Time Triggers . 20

2.5.2 Information Semantics . 21

2.5.3 Temporal Firewall . 21

2.5.4 Transport Protocols . 22

2.5.5 Flow Control . 23

5

6 Time-Triggered Communication

2.1 Introduction
This introductory chapter describes the basic concepts used throughout the book.

The first section introduces the structural elements of an embedded computer system

with a time-triggered communication network. Thereby, a terminology is established

for describing time-triggered protocols and ensuing systems.

The following section addresses principles of dependability with a focus on fault

containment and the role of a fault hypothesis. The fault-tolerance mechanisms of

time-triggered communication protocols build on these concepts in order to mask

different types of node and network failures.

The following section describes the notions of state and time. A concise model of

time is required for a time-triggered communication protocol, which is autonomous

in the sense that all activities are controlled by the progression of a global time base.

This autonomous temporal control is the topic of the final section, which also

elaborates on the implications for flow control, supported information semantics and

synchronization.

2.2 System Structure
A real-time application can be decomposed into an embedded computer system and

a controlled object. The embedded computer system interacts with the controlled ob-

ject using sensors and actuators, each of which performs a transformation between

a physical variable in the controlled object (e.g., temperature, acceleration, speed)

and digital information in the embedded computer system. Such a real-time applica-

tion is also called a cyber-physical system [193] in order to reflect the integration of

computation and physical processes.

In any given application, the purpose of the embedded computer system is de-

fined by the requirements at the interface to the controlled object. For example, in

a control application the embedded computer system is required to monitor physi-

cal variables using sensors, compute set-points and perform outputs via actuators in

order to keep the actual value of the physical variable close to an intended value.

In an alarm monitoring application, abnormal conditions are detected by observing

significant variables via sensors.

The scope of this book is distributed embedded computer systems, which are

realized using time-triggered communication networks. Such a distributed embed-

ded system contains a set of node computers (nodes for short). Each node is a self-

contained composite hardware/software subsystem, which interacts with the other

nodes using the time-triggered communication network.

A node is internally structured into a host computer and a time-triggered commu-
nication controller (see Figure 2.1). The time-triggered communication controller

runs the communication protocol, while the host computer executes the operating

Basic Concepts and Principles of Time-Triggered Communication 7

Controlled Object

Host Computer
runs real-time operating system

and application software

Communication Controller
runs time-triggered

communication protocol

Communication
Interface

Interconnection Medium

Node Node Node
Embedded
Computer
System

Sensors and
Actuators

FIGURE 2.1
Embedded Computer System and Internal Structure of a Node

system and the application software. The communication controllers of all nodes and

the interconnection medium comprise the time-triggered communication network.

The set of nodes in conjunction with the time-triggered communication network is

called a cluster. Clusters can be interconnected by nodes that are part of more than

one cluster. Such a node is denoted as a gateway and serves for the construction of

multi-cluster systems.

The borderline between the host and the communication controller is called the

communication interface. This interface is of central importance for developing ap-

plications based on a time-triggered communication network. At this interface the

services of the time-triggered communication network are provided, such as the ex-

change of messages and the access to the global time base (cf. Chapter 4).

The services of the time-triggered communication network provide the basis for

the implementation of a node’s application services. The application services are pro-

vided to other nodes or to the controlled object. Examples in an automotive context

would be a braking actuation service provided by a node to the controlled object or a

diagnostic node providing a persistent memory service for the storage of break-down

logs from other nodes.

Conceptually, an application service is the intended behavior of a node according

to the specification. The application service of a node at the time-triggered commu-

nication network is the sequence of intended messages that is produced by a node in

response to the progression of time, input and state [109, page 28].

For the time-triggered communication network, different topologies can be dis-

tinguished such as bus, star and ring topologies. Independently of the topology, dif-

ferent redundancy degrees of the communication network are possible. A single com-

munication channel is typically used in non safety-critical applications. In safety-

critical systems, redundant communication channels support the masking of channel

failures.

Figure 2.2 depicts examples of specific topologies with two redundant commu-

nication channels. The simplest topology is a bus, where for each communication

8 Time-Triggered Communication

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

(a)

(b)

(c)

FIGURE 2.2
Bus Topology (a), Star Topology (b) and Cascaded Star (c)

channel every node is connected to a single cable. A terminator is required at each

end of the bus to prevent signal reflections. Since the bus topology consists of only

one cable for a channel, it is inexpensive compared to other topologies. This topology

inherently supports broadcasting, because all nodes can receive a message transmit-

ted on the bus within the propagation delay. The propagation delay is the time for a

bit to travel from one end of the bus to its other end. It can be computed as the ratio

between the wire length and the propagation speed (e.g., 2/3 of the speed of light in

copper wires).

In a star topology, every node is connected to a central device with a point-

to-point connection. A message sent by a node passes through this central device,

Basic Concepts and Principles of Time-Triggered Communication 9

which redirects the message to a selected set of receiver nodes. The possibility for

multicasting a message only to a subset of the nodes enables a more efficient use of

communication bandwidth, because different messages can be exchanged between

subgroups of nodes at the same time. The broadcast communication of a bus topol-

ogy is supported as a special use-case of multicasting.

Another benefit of a star topology is improved fault isolation for node failures

(e.g., for slightly-off-specification failures or during start-up [104]). The main dis-

advantages are the higher cost of installation and wiring. Also, since the central

device represents a single-point-of-failure, redundant stars are essential in safety-

critical systems.

In order to improve scalability, the cascading of star topologies can be performed.

Thereby, the physical dimensions of the distributed system can be extended and it is

not necessary to connect all nodes to a single device.

CI

Host

Controller

CI

Host

Controller

CI

Controller

Host

CI

Controller

Host

CI

Host

Controller

CI

Controller

Host

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

CI

Host

Controller

FIGURE 2.3
Combination of Star Topology and Bus Topology

Topologies can also be combined such as the integration of bus and star topolo-

gies in Figure 2.3. Such a hybrid topology has the benefit of improved fault isolation

between subsystems arranged in the star topology, while reducing cost of the wiring

harness for the network within such subsystems.

2.3 Concepts of Dependability
Dependability is the ability of a computing system to deliver services that can jus-

tifiably be trusted [52]. The service delivered by a system is its behavior as it is

perceptible by another system (human or physical) interacting with the former [21].

10 Time-Triggered Communication

2.3.1 Dependability Threats – Failure, Error, Fault

A failure occurs when the delivered service deviates from fulfilling the functional

specification. An error is that part of the system state which is liable to lead to a

subsequent failure. A failure occurs when the error reaches the service interface. A

fault is the adjudged or hypothesized cause of an error. As stated in [21], the concept

of fault is introduced to stop recursion.

It is important to discriminate faults based on the fault boundaries. An internal

fault of a node can be a physical fault (e.g., a short circuit, wire break), a design fault

in the software (a program error) or a design fault in the hardware (an erratum). An

external fault can be a physical disturbance (e.g., electro magnetic interference) or

the provision of incorrect input data.

Due to the recursive definition of systems, a failure at a particular level of de-

composition can be interpreted as a fault at the next upper level of decomposition,

thereby leading to a hierarchical causal chain.

2.3.2 Fault Containment

A Fault Containment Region (FCR) is defined as a subsystem that operates correctly

regardless of any arbitrary logical or electrical fault outside the region [187]. The

justification for building ultra-reliable systems from replicated resources rests on an

assumption of failure independence among redundant units. For this reason the in-

dependence of FCRs is of critical importance [48]. The independence of FCRs can

be compromised by shared physical resources (e.g., power supply, timing source),

external faults (e.g., EMI, spatial proximity) and design.

A node of an embedded computer system or a communication channel can be

considered as a FCR in a properly designed system where aspects such as physical

separation between nodes, separate timing sources, computing hardware and power

supplies have been considered.

2.3.3 Failure Modes

Failure modes of FCRs are defined through the effects as perceived by the service

user, i.e., independently of the actual cause or rate of failures. A formal definition

in terms of assertions on the sequences of value-time tuples can be found in [268].

Failure modes determine the degree of redundancy required to ensure correct error

processing. Based on the rigidity of assumptions, the following hierarchy of failure

modes can be established [69]:

• Fail-Stop Failures: A fail-stop failure is defined as a node behavior, where

the node does not produce any outputs. The node omits to produce output to

subsequent inputs until it restarts. It is additionally assumed that all correct

nodes detect the fail-stop failure.

• Crash Failures: A node with a crash failure does not produce any outputs. In

Basic Concepts and Principles of Time-Triggered Communication 11

contrast to fail-stop failures, a crash failure can remain undetected for correct

nodes.

• Omission Failures: An omission failure occurs if the sender node fails to send

a message or the receiver fails to receive a sent message. As a consequence,

the receiver does not respond to an input. The detection of an omission failure

is not guaranteed.

• Timing Failures: The node does not meet its temporal specification. Outputs

of a node are delivered too early or too late.

• Byzantine or Arbitrary Failures: There is no restriction on the effects a ser-

vice user may perceive. Arbitrary failures include the forging of messages and

“two-faced” node behaviors [190].

A different classification of failure modes can be found in [172] and distinguishes

the following additional types of failure modes:

• Babbling Idiot: In case of a babbling idiot failure, the FCR does not obey

its temporal specification by sending untimely messages. For example, a node

constantly sends messages and would monopolize the network without fault-

containment mechanisms.

• Slightly-off-Specification (SoS): Such a failure is a special type of Byzantine

failure. One can distinguish temporal and value SoS failures. An example for a

value SoS failure is an intermediate electrical voltage that is close to the thresh-

old between logical 0 and logical 1 and can be perceived with different logical

values by different observers. An example for a temporal SoS failure is a mes-

sage with a receive instant that is slightly outside the boundary of the interval

of correct receive instants. In such a case, due to the inability to perfectly syn-

chronize clocks one node can classify the message as timely, whereas another

node may detect a message timing failure.

• Masquerading: Masquerading is defined as the sending or receiving of mes-

sages using the identity of another principal without authority [66, p. 480].

2.3.4 Fault Hypothesis

The fault hypothesis specifies assumptions about the types of faults, the rate at which

nodes fail and how nodes may fail [237]. The fault hypothesis is a central part in any

safety-relevant system and provides the foundation for the design, implementation

and test of the fault-tolerance mechanisms.

For a time-triggered communication protocol, the fault hypothesis partitions the

fault space into two sets: a set of faults that is tolerated by the fault-tolerance mech-

anisms of the communication protocol and a set of faults outside the fault hypoth-

esis. The latter faults, which must be rare events, can be addressed (without guar-

anteed masking) by a never-give-up strategy [174]. In addition, the application can

12 Time-Triggered Communication

be informed about a scenario outside the fault hypothesis in order to perform an ap-

propriate reaction at the application-level (e.g., emergency shutdown in a fail-stop

application, algorithmic redundancy [110]).

The assumption coverage is the probability that these assumptions hold in reality.

Since fault-tolerance mechanisms of a system are based on these assumptions, the

complete system may fail in case the assumptions concerning faults, failure rates,

and failure modes are violated.

The fault hypothesis defines the fault containment regions and the failure mode

assumptions. In addition, the fault hypothesis contains failure rate assumptions.

These assumptions typically perform a differentiation of failure rates with respect

to different failure modes and the failure persistence. For example, fault injection ex-

periments [160] have shown that restrictive failure modes, such as omission failures,

are more frequent by a factor of 50 compared to arbitrary failures. Also, transient

failures are more likely than permanent failures by at least a factor of 1000.

Another part of the fault hypothesis are assumptions concerning the maximum

number of faults. This parameter denotes the maximum number of FCR failures,

which must be handled by the system. The maximum number of failures depends on

the failure rate and the recovery interval of FCRs.

2.4 Global Time and State
In many engineering models (e.g., Newtonian mechanics) of physical phenomena,

time is introduced as an independent variable that determines the sequence of states

of a system. The basic constants of physics are defined in relation to the standard of

time, the physical second. This is why the time base in a cyber-physical real-time

system should be based on the metric of the physical second.

In a typical real-time application, the distributed computer system performs a

multitude of different functions concurrently, e.g., the monitoring state variables in

the environment (both their value and rate of change), the detection of alarm con-

ditions, the display of the observations to the operator and the execution of control

algorithms to find new set-points. These different functions are normally executed at

different nodes. In addition, replicated nodes are introduced to provide fault tolerance

by active redundancy. To guarantee a consistent behavior of the entire distributed sys-

tem, it must be ensured that all nodes process all events in the same consistent order,

preferably in the same temporal order in which the events occurred in the controlled

object. A proper global time base helps to establish such a consistent temporal order

on the basis of the timestamps of the events.

Basic Concepts and Principles of Time-Triggered Communication 13

2.4.1 Time and Clocks

In ancient history, the measurement of durations between events was mainly based

on subjective judgment. With the advent of modern science, objective methods for

measuring the progression of time by using physical clocks have been devised.

A (digital physical) clock is a device for measuring time. It contains a counter
and a physical oscillation mechanism that periodically generates an event to increase

the counter. The periodic event is called the microtick of the clock. (The term tick is

introduced later to denote the events generated by the global time.)

The duration between two consecutive microticks of a digital physical clock is

called a granule of the clock. The granularity of a given clock can be measured only

if there is a clock with a finer granularity available. The granularity of any digital

clock leads to a digitalization error in time measurement. There exist also analog

physical clocks, e.g., the sundial, that do not have a granularity. In the following, we

only consider digital physical clocks.

In subsequent definitions, we use the following notation: clocks are identified

by natural numbers 1,2, . . . ,n. If we express properties of clocks, the property is

identified by the clock number as a superscript with the microtick or tick number as

a subscript. For example, microtick i of clock k is denoted by microtickk
i .

Let us assume an omniscient external observer who can observe all events that are

of interest in a given context. This observer possesses a unique reference clock z with

frequency f z which is in perfect agreement with the international standard of time.

The counter of the reference clock is always the same as that of the international time

standard. We call 1/ f z the granularity gz of clock z. Let us assume that f z is very

large, say 1015 microticks/second, so that the granularity gz is 1 femtosecond (10−15

seconds). Since the granularity of the reference clock is so small, the digitalization

error of the reference clock is considered a second order effect and disregarded in the

following analysis.

Whenever the omniscient observer perceives the occurrence of an event e, she/he

will instantaneously record the current state of the reference clock as the time of

occurrence of this event e, and, will generate a timestamp for e. Clock(event) denotes

the timestamp generated by the use of a given clock to timestamp an event. Because

z is the single reference clock in the system, z(e) is called the absolute timestamp of

the event e.

The duration between two events is measured by counting the microticks of the

reference clock that occur in the interval between these two events. The granularity
gk of a given clock k can now be measured and is given by the nominal number nk of

microticks of the reference clock z between two microticks of this clock k.

The temporal order of events that occur between any two consecutive microticks

of the reference clock, i.e., within the granularity gz, cannot be reestablished from

their absolute timestamps. This is a fundamental limit in time measurement.

The drift of a physical clock k between microtick i and microtick i+1 is the fre-

quency ratio between this clock k and the reference clock, at the instant of microtick

i. The drift is determined by measuring the duration of a granule of clock k with

14 Time-Triggered Communication

the reference clock z and dividing it by the nominal number nk of reference clock

microticks in a granule:

driftki =
z(microtickk

i+1 −microtickk
i)

nk (2.1)

Because a good clock has a drift that is very close to 1, for notational convenience

the notion of a drift rate ρk
i is introduced as

ρk
i =

∣
∣
∣
∣
∣

z(microtickk
i+1 −microtickk

i)
nk −1

∣
∣
∣
∣
∣

(2.2)

A perfect clock will have a drift rate of 0. Real clocks have a varying drift rate that

is influenced by environmental conditions, e.g., a change in the ambient temperature,

a change in the voltage level that is applied to a crystal oscillator, or aging of the

crystal. Within specified environmental parameters, the drift rate of an oscillator is

bounded by the maximum drift rate ρk
max which is documented in the data sheet of

the resonator. Typical maximum drift rates ρk
max are in the range of 10−2 to 10−7

sec/sec, or better, depending on the quality (and price) of the oscillator. Because

every clock has a non-zero drift rate, free-running clocks, i.e., clocks that are never

resynchronized, leave any bounded relative time interval after a finite time, even if

they are fully synchronized at startup.

A physical digital clock can exhibit two types of failures. The counter could be

mutilated by a fault so that the counter value becomes erroneous, or the drift rate of

the clock could depart from the specified drift rate (the shaded area of Figure 2.4)

because the clock starts ticking faster (or slower) than specified.

Time of the Local Clock

A good clock with a
bounded drift rate stays
in the shaded area

Perfect ClockTime of the
Reference
Clock

Error in Counter
(state error)

Error in Drift
(rate error)

FIGURE 2.4
Failure Modes of a Physical Clock

Basic Concepts and Principles of Time-Triggered Communication 15

2.4.2 Precision and Accuracy

The offset at microtick i between two clocks j and k of an ensemble of clocks with

the same granularity is defined as

offset
jk
i =

∣
∣
∣z(microtick j

i)− z(microtickk
i)

∣
∣
∣ (2.3)

The offset denotes the time difference between the respective microticks of the

two clocks, measured in the number of microticks of the reference clock.

Given an ensemble of n clocks 1,2, . . . ,n, the maximum offset between any two

clocks of the ensemble

Πi = max
∀1� j,k�n,

{o f f set jk
i } (2.4)

is called the precision Πi of the ensemble at microtick i. The maximum of Πi over an

interval of interest is called the precision Π of the ensemble. The precision denotes

the maximum offset of respective microticks of any two clocks of the ensemble during

the period of interest. The precision is expressed in the number of microticks of the

reference clock.

Because of the drift rate of any physical clock, the clocks of an ensemble will drift

apart if they are not resynchronized periodically (i.e., brought closer together). The

process of mutual resynchronization of an ensemble of clocks to maintain a bounded

precision is called internal synchronization.

The offset of clock k with respect to the reference clock z at microtick i is called

the accuracyk
i . The maximum offset over all microticks i that are of interest is called

the accuracyk of clock k. The accuracy denotes the maximum offset of a given clock

from an external time reference during the time interval of interest.

To keep a clock within a bounded interval of the reference clock, it must be peri-

odically resynchronized with an external time reference. This process of resynchro-

nization of a clock with an external time reference is called external synchronization.

If all clocks of an ensemble are externally synchronized with an accuracy A, then

the ensemble is also internally synchronized with a precision of at most 2A. The

converse is not true. An ensemble of internally synchronized clocks will drift from

the external time if the clocks are never resynchronized with the external time base.

In the last decades a number of different time standards have been proposed to

measure the time difference between any two events and to establish the position of

an event relative to some commonly agreed origin of a time base, the epoch. Two

of these time bases are relevant for the designer of a distributed real-time computer

system, the International Atomic Time (TAI) and the Universal Time Coordinated

(UTC).

International Atomic Time (TAI-Temps Atomique International): The need for

a time standard that can be generated in a laboratory gave birth to the International

Atomic Time (TAI). TAI defines the second as the duration of 9 192 631 770 periods

of the radiation of a specified transition of the cesium atom 133. The intention was to

define the duration of the TAI second so that it agrees with the second derived from

astronomical observations. TAI is a chronoscopic timescale, i.e., a timescale without

any discontinuities (e.g., leap seconds). The epoch of TAI starts on January 1, 1958

16 Time-Triggered Communication

00:00 hours Greenwich Mean Time (GMT). The time base of the global positioning

system (GPS) is based on TAI with the epoch starting on January 6, 1980 at 00:00

hours.

Universal Time Coordinated (UTC): UTC is a time standard that has been derived

from astronomical observations of the rotation of the earth relative to the sun. It is the

basis for the time on the “wall-clock.” However, there is a known offset between the

local wall-clock time and UTC determined by the timezone and by the political de-

cisions about when daylight savings time must be used. The UTC time standard was

introduced in 1972, replacing the Greenwich Mean Time (GMT) as an international

time standard. Because the rotation of the earth is not smooth, but slightly irregular,

the duration of the GMT second changes slightly over time. In 1972, it was interna-

tionally agreed that the duration of the second should conform to the TAI standard,

and that the number of seconds in an hour would have to be modified occasionally

by inserting a leap second into the UTC to maintain synchrony between the UTC

(wall-clock time) and astronomical phenomena, like day and night. Because of this

leap second, the UTC is not a chronoscopic time scale, i.e., it is not free of disconti-

nuities. It was agreed that on January 1, 1958 at midnight, both the UTC and the TAI

had the same value. Since then the UTC has deviated from TAI by about 30 seconds.

The point in time when a leap second is inserted into the UTC is determined by the

Bureau International de l’Heure and publicly announced, so that the current offset

between the UTC and the TAI is always known.

2.4.3 Global Time

If the real-time clocks of all nodes of a distributed system were perfectly synchro-

nized with the reference clock z, and all events were timestamped with this reference

time, then it would be easy to measure the interval between any two events or to

reconstruct the temporal order of events, even if variable communication delays gen-

erated differing delivery orders. In a loosely coupled distributed system where every

node has its own local oscillator, such a tight synchronization of clocks is not pos-

sible. A weaker notion of a universal time reference, the concept of global time, is

therefore introduced into a distributed system. Suppose a set of nodes exists, each

one with its own local physical clock ck that ticks with granularity gk. Assume that

all of the clocks are internally synchronized with a precision Π, i.e., for any two

clocks j, k and all microticks i
∣
∣
∣z(microtickj

i)− z(microtickk
i)

∣
∣
∣ < Π (2.5)

It is then possible to select a subset of the microticks of each local clock k for

the generation of the local implementation of a global notion of time. We call such

a selected local microtick i a macrotick (or a tick) of the global time. For example,

every tenth microtick of a local clock k may be interpreted as the global tick, the

macrotick iki , of this clock. If it does not matter at which clock k the (macro)tick

occurs, we denote the tick ti without a superscript. A global time is thus an abstract
notion that is approximated by properly selected microticks from the synchronized

local physical clocks of an ensemble.

Basic Concepts and Principles of Time-Triggered Communication 17

The global time t is called reasonable, if all local implementations of the global

time satisfy the condition

g > Π (2.6)

the reasonableness condition for the global granularity g. This reasonableness condi-

tion ensures that the synchronization error is bounded to less than one macrogranule,

i.e., the duration between two (macro) ticks. If this reasonableness condition is sat-

isfied, then for a single event e, that is observed by any two different clocks of the

ensemble, ∣
∣
∣t j(e)− tk(e)

∣
∣
∣ � 1 (2.7)

i.e., the global timestamps for a single event can differ by at most one tick. This is
the best we can achieve. Because of the impossibility of synchronizing the clocks

perfectly, and the granularity of any digital time, there is always the possibility of the

following sequence of events: clock j ticks, event e occurs, clock k ticks. In such a

situation, the single event e is timestamped by the two clocks j and k with a difference

of one tick.

Provided we have established a reasonable global time, the following four con-

ditions represent fundamental limits of time measurement in a distributed system:

1. If a single event is observed by two different nodes, there is always the pos-

sibility that the timestamps differ by one tick. A one-tick difference in the

timestamps of two events is not sufficient to reestablish the temporal order of

the events from their timestamps.

2. If the observed duration of an interval is dobs, then the true duration dtrue is

bounded by

dobs −2g < dtrue < dobs +2g (2.8)

3. The temporal order of events can be recovered from their timestamps, if the

difference between the measured timestamps is equal to or greater than 2 ticks.

4. The temporal order of events can always be recovered from their timestamps,

if the events are at least 3 ticks apart.

These fundamental limits of time measurement are also the fundamental limits to
the faithfulness of a digital model of a physical system.

2.4.4 Sparse Time

Assume a set E of events that are of interest in a particular context. This set E could

be the ticks of all clocks, or the events of sending and receiving messages. If these

events are allowed to occur at any instant of the timeline, we call the time base dense.

If the occurrence of these events is restricted to some active intervals of duration ε
with an interval of silence of duration Δ between any two active intervals, then we

call the time base ε/Δ-sparse, or simply sparse for short (Figure 2.5). If a system

is based on a sparse time base, there are time intervals during which no significant

18 Time-Triggered Communication

Time

Events are only allowed to occur within the intervals

Microticks

FIGURE 2.5
Sparse Time-Base

event is allowed to occur. Events that occur only in the active intervals are called

sparse events.
It is evident that the occurrences of events can only be restricted if the given

system has the authority to control these events, i.e., these events are in the sphere of

control of the computer system [73]. The occurrence of events outside the sphere of

control of the computer system cannot be restricted. These external events are based

on a dense time base and cannot be forced to be sparse events.

Consider a distributed system that consists of two clusters: cluster A generates

events, and cluster B observes these generated events. Each one of the clusters has

its own cluster-wide synchronized time with a granularity g, but these two cluster-

wide time bases are not synchronized with each other. Under what circumstances is

it possible for the nodes in the observing cluster to reestablish the intended temporal
order of the generated events without the need to execute an agreement protocol?

If two nodes, nodes j and k of cluster A, generate two events at the same cluster-

wide tick ti, i.e., at tick t j
i and at tick tk

i , then these two events can be a distance Π apart

from each other, where g > Π, the granularity of the cluster-wide time. Because there

is no intended temporal order among the events that are generated at the same cluster-

wide tick of cluster A, the observing cluster B should never establish a temporal order

among the events that have been sent at about the same time. On the other hand, the

observing cluster B should always reestablish the temporal order of the events that

have been sent at different cluster-wide ticks. Is it sufficient if cluster A generates

a 1g/3g precedent event set, i.e., after every cluster-wide tick at which events are

allowed to be generated there will be silence for at least three granules?

If cluster A generates a 1g/3g precedent event set, then it is possible that two

events that are generated at the same cluster-wide granule at cluster A will be time-

stamped by cluster B with timestamps that differ by 2 ticks. The observing cluster B
should not order these events (although it could), because they have been generated

at the same cluster-wide granule. Events that are generated by cluster A at different

cluster-wide granules (3g apart) and therefore should be ordered by cluster B, could

also obtain timestamps that differ by 2 ticks. Cluster B cannot decide whether or not

to order events with a timestamp difference of 2 ticks. To resolve this situation, clus-

ter A must generate a 1g/4g precedent event set. Cluster B will not order two events

Basic Concepts and Principles of Time-Triggered Communication 19

if their timestamps differ by � 2 ticks, but will order two events if their timestamps

differ by � 3 ticks, thus reestablishing the temporal order that has been intended by

the sender.

To arrive at a consistent view of the order of non-sparse events within a dis-

tributed computer system (which does not necessarily reflect the temporal order of

event occurrence), the nodes must execute an agreement protocol. The first phase of

an agreement protocol requires an information interchange among the nodes of the

distributed system with the goal that every node acquires the differing local views

about the state of the world from every other node. At the end of this first phase,

every node possesses exactly the same information as every other node. In the sec-

ond phase of the agreement protocol, each node applies a deterministic algorithm to

this consistent information to reach the same conclusion about the assignment of the

event to an active interval of the sparse time base — the commonly agreed value. In

the fault-free case, an agreement algorithm requires an additional round of informa-

tion exchange as well as the resources for executing the agreement algorithm.

Agreement algorithms are costly, both in terms of communication requirements,

processing requirements, and — worst of all — in terms of the additional delay

they introduce into a control loop. It is therefore expedient to look for solutions to

the consistent temporal ordering problem in distributed computer systems that do

not require these additional overheads. The sparse time model, introduced above,

provides for such a solution.

Many processes in the technical and biological world are cyclic [354]. A cyclic

process is characterized by a regular behavior, where a similar set of action patterns

is repeated in every cycle. In the cyclic representation of time, the linear time is

partitioned into cycles of equal duration. Every cycle is represented by a circle, where

an instant within a cycle is denoted by the phase, i.e., the angular deviation of the

instant from the beginning of the cycle. Cycle and phase thus denote an instant in a

cyclic representation. In the cyclic representation of sparse time, the circumference

of the circle is not a dense line, but a dotted line, where the size and the distance

between dots is determined by the precision of the clock synchronization.

An extension of the cyclic representation is the spiral representation of time,

where a third axis is introduced to depict the linear progression of the cycles.

2.4.5 State of a System

The notion of state is widely used in the computer science literature, albeit with

meanings that are different from the meaning of state that is useful in a real-time

system context. In order to clarify the situation, we follow the precise definition of

Mesarovic [220, p. 45] which is the basis for our elaborations:

The state enables the determination of a future output solely on the basis of the
future input and the state the system is in. In other words, the state enables a “de-
coupling” of the past from the present and future. The state embodies all past history
of a system. Knowing the state “supplants” knowledge of the past. . . . Apparently,
for this role to be meaningful, the notion of past and future must be relevant for the
system considered.

20 Time-Triggered Communication

The sparse time model introduced above makes it possible to establish the con-

sistent system-wide separation of the past from the future that is necessary to define

a consistent system state in a distributed real-time computer system.

In order to enable the dynamic reintegration of a node into a running system,

it is necessary to design periodic reintegration instants into the behavior, where the

size of a node’s state at the reintegration instant contained is a small set of state
variables. We call the state at the reintegration instant the ground state of a node and

the temporal distance between two reintegration points the ground cycle.

The ground state at the reintegration point is stored in a declared ground-state
data structure. Designing a minimal ground state data structure is the result of an

explicit design effort that involves a semantic analysis of the given application. The

designer has to find a periodic instant where there is a maximum decoupling of future

behavior from past behavior. This is relatively easy in cyclic applications, such as

in control applications and multimedia applications. In these applications a natural

reintegration instant is immediately after the termination of one cycle and before the

beginning of the next cycle.

2.5 Autonomous Control of Communication Networks
A time-triggered communication network is designed for the periodic transmission

of state information. It initiates all communication activities at predetermined global

points in time. Hence, the temporal behavior of the communication network is con-

trolled solely by the progression of time.

2.5.1 Types of Temporal Control Signals

A trigger is a control signal that initiates an action in the embedded computer system,

like the execution of a task or the transmission of a message. Depending on the source

from which a trigger is derived, one can distinguish event triggers and time triggers.

2.5.1.1 Event Triggers

An event trigger is a control signal that is derived from an event, i.e., a significant

state change. The event can originate either from activities within the computer sys-

tem (e.g., termination of a task) or from state changes in the controlled object (e.g.,

alarm condition indicated by a sensor). In the latter case, the event trigger serves as

a mechanism by which the controlled object delivers a service request to the em-

bedded computer system. In general, such a service request will start a sequence of

computational and communication activities.

Basic Concepts and Principles of Time-Triggered Communication 21

2.5.1.2 Time Triggers

A time trigger is a control signal that is generated at a particular point in time of a

synchronized global time base. Time triggers are solely derived from the progression

of the global time, which is established by a clock synchronization service (cf. Chap-

ter 4, Section 4.2). The set of time triggers is a subset of the set of event triggers, since

time triggers correspond to a particular class of events, namely changes in the state

of the global time. Time triggers are discriminated from other event triggers, since

systems restricting control signals to time triggers offer properties that are desirable

for distributed real-time systems. Among these properties are temporal predictability

and composability [168].

2.5.2 Information Semantics

A time-triggered communication network is designed for the periodic exchange of

messages carrying state information. Information with state semantics contains the

absolute value of a real-time entity (e.g., speed of the car is 41 km/h). Since appli-

cations are often only interested in the most recent value of a real-time entity, state

information allows the communication network to overwrite old state values with

newer state values.

Messages with state information are called state messages. The self-contained

nature and idempotence of state messages ease the establishment of state synchro-

nization, which does not depend on exactly-once processing guarantees. Since ap-

plications are often only interested in the most recent value of a real-time object,

old state values can be overwritten with newer state values. Hence, a time-triggered

communication network does not require message queues.

Information with event semantics relates to the occurrence of an event. Event

information represents the change in value of a real-time entity associated with a

particular event. Messages containing event information are called event messages
and transport relative values (e.g., increase of the speed of the car by 2 km/h). In

order to reconstruct the current state of a real-time entity from messages with event

semantics, it is essential to process every message exactly once. The loss of a single

message with event information can affect state synchronization between a sender

and a receiver.

2.5.3 Temporal Firewall

As depicted in Figure 2.6, the communication interface of a time-triggered commu-

nication network acts as a temporal firewall [182]. The sender can deposit informa-

tion into the communication interface according to the information push paradigm,

while the receiver must pull information out of the communication interface. A

time-triggered transport protocol autonomously carries the state information from

the communication interface of the sender to the communication interface of the re-

ceivers. Since no control signals cross the communication interface, temporal fault

propagation is prevented by design.

22 Time-Triggered Communication

Sending

Node Control
Flow

Data
Flow

Information Push

Ideal for Sending Node

Receiver

NodeControl
Flow

Data
Flow

Time-Triggered

Communication Network

Information Pull

Ideal for Receiving Node

Memory
C

o
m

m
u

n
ic

a
ti

o
n

In
te

rf
a
ce

Memory

C
o
m

m
u

n
ic

a
ti

o
n

In
te

rf
a
ce

FIGURE 2.6
Data Flow (Full Line) and Control Flow (Dashed Line) of a Temporal Firewall Inter-

face

The state messages in the communication interface memory form two groups.

One group of messages is written by the host computer. The communication con-

troller reads these messages and disseminates them during the slots reserved for the

node via the underlying Time Division Multiple Access (TDMA) scheme. The mes-

sages of the second group are written by the communication controller and read by

the host computer.

Consistency of information exchanged via the communication interface can be

ensured by exploiting the a priori knowledge about the points in time when the com-

munication network reads and writes data into the communication interface. The

host computer performs implicit synchronization by establishing a phase alignment

between its own communication interface accesses and the communication interface

accesses of the communication controller. A different approach is the use of a proto-

col for explicit synchronization, such as the Non-Blocking Write Protocol [184].

2.5.4 Transport Protocols

The media access control strategy of a time-triggered communication network is

TDMA. TDMA statically divides the channel capacity into a number of slots and

assigns a unique slot to every node. The communication activities of every node are

controlled by a time-triggered communication schedule. The schedule specifies the

temporal pattern of message transmissions, i.e., at what points in time nodes send

and receive messages. A sequence of sending slots, which allows every node in an

ensemble of n nodes to send exactly once, is called a TDMA round. The sequence of

the different TDMA rounds forms the cluster cycle and determines the periodicity of

the time-triggered communication.

The a priori knowledge about the times of message exchanges enables the com-

munication network to operate autonomously. The temporal control of communica-

tion activities is within the sphere of control of the communication network. Hence,

Basic Concepts and Principles of Time-Triggered Communication 23

the correct temporal behavior of the communication network is independent of tem-

poral behavior of the application software in the host computer and can be established

in isolation.

2.5.5 Flow Control

Time-triggered communication networks typically employ implicit flow con-
trol [169]. Sender and receiver agree a priori on the global points in time when mes-

sages are exchanged. Based on this knowledge, a component’s ability for handling

received messages can be ensured at design time, i.e., without acknowledgment mes-

sages. Implicit flow control is well-suited for multicast communication relationships,

because a unidirectional data flow involves only a unidirectional control flow. Such

an interface is called an elementary interface [170].

3
Properties of Time-Triggered Communication
Systems

R. Obermaisser
University of Siegen

H. Kopetz
Vienna University of Technology

CONTENTS

3.1 Introduction . 26

3.2 Composability . 27

3.2.1 Component-Based Design . 27

3.2.2 Component Interfaces . 28

3.2.2.1 Linking Interface . 28

3.2.2.2 Technology Independent Interface (TII) 29

3.2.2.3 Technology Dependent Interface (TDI) 29

3.2.2.4 Local Interface . 29

3.2.3 Linking Interface Specification . 30

3.2.4 Composition of Nodes . 31

3.2.4.1 Independent Development of Nodes 31

3.2.4.2 Stability of Prior Services . 32

3.2.4.3 Non-Interfering Interactions . 32

3.2.4.4 Preservation of the Node Abstraction in the Case

of Failures . 32

3.3 Determinism and Predictability . 33

3.3.1 The Concept of Determinism . 33

3.3.2 Replica Determinism . 34

3.3.2.1 Differing Inputs . 35

3.3.2.2 Deviations of Computational Progress Relative to

Real Time . 35

3.3.2.3 Oscillator Drift . 35

3.3.2.4 Preemptive Scheduling . 36

3.3.2.5 Nondeterministic Language Features 36

3.3.3 Building a Replica Determinate System . 36

3.3.3.1 Sparse Time-Base . 36

3.3.3.2 Agreement on Input . 36

25

26 Time-Triggered Communication

3.3.3.3 Static Control Structure . 37

3.3.3.4 Deterministic Algorithms . 37

3.3.3.5 Deterministic Communication System 37

3.4 Diagnosability . 37

3.4.1 Detection of Errors and Anomalies . 38

3.4.2 Decision Making – Analysis of Diagnostic Information 39

3.4.3 Use of Diagnostic Information and Analysis Results 40

3.5 Certifiability . 41

3.5.1 Safety Case . 41

3.5.2 Modular Certification . 43

3.5.3 Certification in Application Domains . 43

3.5.4 Time-Triggered Communication Protocols and Certification 44

3.6 Fault Containment and Error Containment . 45

3.6.1 Independent Fault Containment Regions 46

3.6.2 Strict Control on Node Interactions . 46

3.6.3 Replica Determinism . 47

3.6.4 Recovery and Repair . 47

3.7 Performance . 48

3.7.1 Periodic, Sporadic and Aperiodic Messages 48

3.7.2 Performance Attributes . 49

3.1 Introduction
This chapter introduces fundamental properties of embedded systems based on time-

triggered networks. The strengths of the time-triggered paradigm (e.g., composabil-

ity, determinism, diagnosability, fault containment) are contrasted with weak points

(e.g., average performance, flexibility). The discussion of these properties enables

an application developer to decide when a time-triggered network is most suitable.

In addition, the properties allow us to compare the different time-triggered protocols

that will be introduced in the following chapters.

The chapter starts with the property of composability, which is a prerequisite of

a component-based design framework. Composability enables the independent de-

velopment of nodes and the smooth integration of these nodes using a time-triggered

network. Composability rules out unintended interference between nodes and pre-

serves the correctness of the nodes’ services upon integration.

The following section addresses determinism and predictability. Determinism

is important for the realization of fault-tolerance through active redundancy with

exact voting. Determinism also facilitates the understanding and testing of complex

embedded systems, because a causal chain between a cause and the consequent effect

can be established.

The section on diagnosability analyzes the ability for monitoring the functional-

ity and the performance of nodes. This information can be used for active diagnosis

by taking actions at run-time such as the identification of faulty nodes and the ex-

Properties of Time-Triggered Communication Systems 27

ecution of an online error recovery. In case of passive diagnosis, this information

provides the basis for off-line maintenance decisions.

In safety-critical systems, certifiability is a key concern. In general, the design

of a safety-critical real-time system must be approved by an independent certifica-

tion agency in order to avoid danger to life, health, property or the environment.

Time-triggered networks facilitate certification by their inherent determinism and

predictability. In addition, time-triggered networks contribute to a constructive mod-

ular certification process where the certification of subsystems is done independently

of each other.

The following section explains fault containment and error containment with an

emphasis on time-triggered networks. Fault containment ensures that the immediate

consequences of a fault are limited to a single node. Error containment prevents the

propagation of an error through messages with incorrect values or timing.

Depending on the application, time-triggered networks need to satisfy given per-
formance attributes (e.g., latency, variability of the latency, bandwidth) for different

traffic classes such as periodic and sporadic messages.

The chapter closes with a view on flexibility. Many embedded systems must adapt

to technological changes and new environmental contexts. The section about flexi-

bility describes the ability to support different system configurations that evolve over

time. A time-triggered network should accommodate changes without requiring a

modification and retesting of the existing nodes that are not affected by the change.

3.2 Composability
In many engineering disciplines, large systems are built from prefabricated compo-

nents with known and validated properties. Components are connected via stable, un-

derstandable and standardized interfaces. The system engineer has knowledge about

the global properties of the components as they relate to the system functions and

of the detailed specification of the component interfaces. Knowledge about the inter-

nal design and implementation of the components is neither needed nor available in

many cases. Composability deals with all issues that relate to the component-based

design of large systems.

3.2.1 Component-Based Design

Component-based design is a meet-in-the-middle design method. On the one side,

the functional and temporal requirements on the components are derived top-down

from the desired application functions. On the other side, the functional and tempo-
ral capabilities of the components are contained in the specifications of the available

components (bottom-up). During the design process a proper match between com-

ponent requirements and component capabilities must be established. If there is no

28 Time-Triggered Communication

component available that meets the requirements, a new component must be devel-

oped.

A prerequisite of any component-based design is a crystal-clear component con-

cept that supports the precise specification of the services that are delivered and ac-

quired across the component interfaces. In many non-real-time applications, a soft-

ware unit is considered to form a component. In real-time systems, where the tem-

poral properties of components are as important as the value properties, the notion

of a software component is of questionable utility, since no temporal capabilities can

be assigned to software without associating the software with a virtual or real ma-

chine. The specification of the temporal properties of the Application Programming

Interface (API) between a software component and the machine is so involved that

a simple specification of the temporal properties of the API is hardly possible. If the

mental effort needed to understand the specification of the component interfaces is

in the same order of magnitude as the effort needed to understand the internals of

the component operation, then the utility of a component-based design methodology

becomes questionable.

3.2.2 Component Interfaces

In the following we regard a node of a time-triggered cluster as a component. A node

is a self-contained hardware/software unit with precisely specified interfaces. Each

interface of a node should serve a single well-defined purpose. Based on the purpose,

we distinguish between the following four message interfaces of a node:

• The Linking Interface (LIF) that provides the specified service of the node at

the considered level of abstraction.

• The Technology Independent Interface (TII) that is used to configure and con-

trol the execution of the node.

• The Technology Dependent Interface (TDI) that is used to provide access to

the internals of a node for the purpose of maintenance and debugging.

• The Local Interface that links a node to the outer world, that is the external

environment of a set of related nodes, that we call a cluster.

The LIF and the local interface are operational interfaces, while the TII and TDI

are control interfaces. The control interfaces are used to control, monitor or debug

a node, while the operational interfaces are in use during the normal operation of a

node.

3.2.2.1 Linking Interface

The services of a node are offered to the other nodes of the cluster at the Linking

Interface (LIF) of the node. The LIF is an operational message-based interface. The

LIF is thus the interface for the integration of nodes into the cluster. The LIF of a

node abstracts from the internal structure and the local interfaces of the node. The

Properties of Time-Triggered Communication Systems 29

specification of the LIF must be self-contained and cover not only the functionality

and timing of the node itself, but also the semantics of its local interfaces. The LIF is

technology agnostic in the sense that the LIF does not expose implementation details

of the internals of the node or of its local interfaces. A technology agnostic LIF

ensures that different implementations of nodes (e.g., host based on a general purpose

CPU, FPGA, ASIC) and different local Input/Output subsystems can be connected

to the node without any modification to the other nodes that interact with this node

across its message-based LIF.

3.2.2.2 Technology Independent Interface (TII)

The technology independent interface is a control interface that is used to configure

a node, e.g., assign the proper names to a node and its input output ports, to reset,
start and restart a node and to monitor and control the resource requirements (e.g.,

power) of a node during run time, if so required. Furthermore, the TII is used to

configure and reconfigure a node, i.e., to assign a specific job (i.e., software image)

to a programmable node hardware.

The messages that arrive at the TII communicate either directly with the node

hardware (e.g., reset) or with the node’s operating system (e.g., start a task), but

not with the application software. The TII is thus orthogonal to the LIF. This strict

separation of the application-specific message interfaces (i.e., the LIF) from the sys-

tem control interface of a node (i.e., the TII) simplifies the application software and

reduces the overall complexity of a node.

3.2.2.3 Technology Dependent Interface (TDI)

The TDI is a special control interface that provides a means to look inside a node

and to observe the internal variables of a node. It is related to the boundary scan
interface that is widely used for testing and debugging large VSLI chips and has

been standardized in the IEEE standard 1149.1 (also known as the JTAG Standard).

The TDI is intended for the person who has a deep understanding of the internals

of a node. The TDI is of no relevance for the user of the LIF services of the node

or the system engineer who configures a node. The precise specification of the TDI

depends on the technology of the node implementation and will be different if the

same functionality of a node is realized by software running on a CPU, by an FPGA

or by an ASIC.

3.2.2.4 Local Interface

The local interfaces establish a connection between a node and its outside environ-

ment, e.g., the sensors and actuators in the physical plant, the man-machine interface,

or another computer system in another cluster. A node that contains a local interface

is called a gateway node or an open node.

From the point of view of the LIF, only the timing and the semantic content, i.e.,

the meaning of the information exchanged across a local interface, is of relevance,

while the detailed structure, naming and access mechanisms of the local interface

30 Time-Triggered Communication

are intentionally left unspecified at the cluster level. A modification of the local ac-

cess mechanisms to the physical environment, e.g., the exchange of a CAN Bus by

Ethernet, will not have any effect on the LIF specification, and consequently on the

users of the LIF specification, as long as the semantic content and the timing of the

relevant data items are the same.

A node that does not contain a local interface is a closed node. The distinction be-

tween open and closed nodes is important from the point of view of the specification

of the semantics of a node. Only nodes that are closed nodes can be fully specified

without knowing the context of use.

3.2.3 Linking Interface Specification

The timed sequence of messages that a node exchanges across an interface with its

environment defines the behavior of the node at that interface. The interface behav-
ior is thus determined by the properties of all messages that cross an interface. We

distinguish between three parts of an interface specification: (i) the transport speci-
fication of the messages, (ii) the operational specification of the messages and (iii)

the meta-level specification of the messages.

The transport specification describes all properties of a message that are needed

to transport the message from the sender to the receiver(s). The transport specifica-

tion covers the addressing and temporal properties of a message. If two nodes are

linked by a communication system, the transport specification suffices to describe

the requested services from the communication system. The communication system

is agnostic about the contents of the data field of a message. For the communication

system, it does not matter whether the data field contains multimedia data, such as

voice or video, numerical data or any other data type.

In order to be able to interpret the data field of a message at the end points of

the communication, we need the operational and the meta-level specification. The

operational specification informs about the syntactic structure of the message that is

exchanged across the LIF and establishes the message variables. Both the transport

and the operational specification must be precise and formal to ensure the syntactic
interoperability of nodes. The meta-level specification of a LIF assigns meaning to

the message variable names introduced by the operational specification. It is based

on an interface model of the user environment. Since it is impossible to formalize all

aspects of a real-world user environment, the meta-level specification will often con-

tain natural language elements, which lack the precision of a formal system. Central

concepts of the application domains and applications can be specified using domain
specific ontologies.

The meta-level LIF specification bridges the gap between the message variables,

established by the operational specification, and the user’s mental model of the ser-

vice provided at the interface. Central to this meta-level specification is the LIF ser-

vice model. The LIF service model defines the concepts that are associated with the

message variable names contained in the operational specification. These concepts

will be qualitatively different for closed nodes and open nodes.

The LIF service model for a closed node can be formalized, since a closed node

Properties of Time-Triggered Communication Systems 31

does not interact with the external environment. The relationship between the LIF

inputs and LIF outputs depends on the discrete algorithms implemented within the

closed node. There is no input from the outer environment that can bring unpre-

dictability into the node behavior. The sparse time-base within a cluster is discrete

and supports a consistent temporal order of all events.

The LIF service model for an open node is fundamentally different since it must

encompass the inputs from the outer environment, the local interfaces of the node,

in its interface specification. Only the operational specification of an open node can
be provided without knowing the context of use of the open node. Since a physical

outer environment is not rigorously definable, the interpretation of the external inputs

depends on human understanding of the natural environment. The concepts used

in the description of the LIF service model must thus fit well with the accustomed

concepts within a user’s internal mental model of the application domain; otherwise

the description will not be understood.

The LIF service model of an open node must meet the following requirements:

• User orientation: Concepts that are familiar to a prototypical user must be the

basic elements of the LIF service model. For example, if a user is expected to

have an engineering background, terms and notations that are common knowl-
edge in the chosen engineering discipline should be utilized in presenting the

model.

• Goal orientation: A user of a node employs the node with the intent to achieve

a goal, i.e., to contribute to the solution of her/his problem. The relationship

between user intent and the services provided at the LIF must be exposed in

the LIF service model.

• System view: A LIF service user (the system architect) needs to consider the

system-wide effects of an interaction of the node with the external physical

environment, i.e., effects that go beyond the node. The LIF service model is

different from the model describing the algorithms implemented within a node,

since these algorithms end at the node’s boundary.

3.2.4 Composition of Nodes

A node is a self-contained validated unit that can be used as a building block in the

construction of larger systems. In order to enable a straightforward composition of

a node into a cluster of nodes, the following four principles of composability should

be observed.

3.2.4.1 Independent Development of Nodes

An architecture must enable the precise specification of the linking interface (LIF)

of a node in the domains of value and time. This is a necessary prerequisite for the

independent development of nodes on one side and the reuse of existing nodes that is

32 Time-Triggered Communication

based solely on their LIF specification on the other side. While the operational spec-

ification of the value domain of interacting messages is state-of-the-art in embedded

system design, the temporal properties of these messages are often not considered

with the appropriate care. The global time, which is available in time-triggered sys-

tems, is essential for the precise specification of the temporal properties of the LIF

messages. Note that the transport specification and the operational LIF specification

are independent of context of use of an open node, while the meta-level LIF specifi-

cation of an open node depends on the context of use.

3.2.4.2 Stability of Prior Services

The stability of prior services principle states that the services of a node that have

been validated in isolation (i.e., prior to the integration of the node into the larger

system) remain intact after the integration.

3.2.4.3 Non-Interfering Interactions

If there exist two disjoint subgroups of cooperating nodes that share a common com-

munication infrastructure, then the communication activities within one subgroup

may not interfere with the communication activities within the other subgroup. If

this principle is not satisfied, then the integration within one node-subgroup will de-

pend on the proper behavior of the other (functionally unrelated) node-subgroups.

These global interferences compromise the composability of the architecture. Time-

triggered communication systems provide predictable message transport latency that

are not influenced by the behavior of other, functionally unrelated messages.

3.2.4.4 Preservation of the Node Abstraction in the Case of Failures

In a composable architecture, the introduced abstraction of a node must remain intact,

even if a node becomes faulty. It must be possible to diagnose and replace a faulty

node without any knowledge about the node internals. This requires a certain amount

of redundancy for error detection within the architecture. This principle constrains

the implementation of a node, because it restricts the implicit sharing of resources

among nodes. If a shared resource fails, more than one node can be affected by

the failure. In time-triggered communication systems, the communications system

contains redundant information about the permitted temporal behavior of nodes and

disconnects nodes that violate their temporal specification in order to avoid error

propagation from a faulty node (a babbling idiot) into the communication system.

Properties of Time-Triggered Communication Systems 33

3.3 Determinism and Predictability
3.3.1 The Concept of Determinism

The analytical-rational problem solving subsystem of humans excels in reasoning

along causal chains. Causality refers to the unidirectional relationship that connects

an effect to a cause. If this relationship is one of entailment, we speak of determinism,

which we define as follows: A system behaves deterministically if, given an initial
state at instant t and a set of future timed inputs, the future states and the values
and instants of all future outputs are entailed (can be predicted without a doubt).

In a distributed real-time computer system, the consistent definition of the initial
state is only possible if all nodes agree on the instant now that separates past events
from future events. The sparse time model, introduced in Chapter 2, Section 2.4.4

provides the basis for a consistent definition of the initial state in a distributed real-

time system.

Deterministic behavior of a component is desired for the following reasons:

• The unconditional connection between initial state, input, output and the pro-

gression of time makes it easy to understand the real-time behavior of a com-

ponent.

• Two replicated components that start from the same initial state and receive the

same timed inputs will produce the same results at about the same time. This

property is important if the results of a faulty component are to be masked

(outvoted) by the results of correct components.

• The testability of the component is simplified, since every test case can be re-

produced, eliminating the appearance of spurious Heisenbugs in the software.

In order to realize a deterministic behavior of a distributed real-time computer

system, we must ensure that

• the initial state of all components is defined consistently in the distributed sys-

tem. Furthermore, all inputs to replicated components must be presented to all

replicas simultaneously. This is simplified if a global sparse time-base is avail-

able, since the sparse model of time solves the problems of the uncertainty
of simultaneity in replicated channels that exists if a dense time model or a

discrete time model is used.

• the computations are certain, i.e., there are no program constructs that produce

arbitrary results (e.g., a random number generator) and that the final result of a

computation will be delivered before an established instant in the future. This

requires that the worst-case execution time (WCET) of the involved computa-

tions can be determined.

• the message transport system among the components is predictable, i.e., the

instants of message delivery are known in advance and the temporal order of

34 Time-Triggered Communication

the received messages is the same as the temporal order of the sent messages

at all independent channels.

According to Section 2.4.5, the state of a component can only be defined if there

is a consistent separation of past events from future events. The sparse time model,

introduced in Section 2.4.4, provides for such a consistent separation of past events

from future events and makes it possible to define the instants where the initial state

is defined. Without a sparse global time, the establishment of a consistent initial state

of the components in a distributed system is difficult.

The implementation of a certain computation requires not only that the WCET

of all involved programs are known but also that temporal consequences of resource

sharing are bounded and known.

The implementation of a predictable message transport system requires that the

temporal order of messages on different channels can be determined consistently

and that the communication system will not reorder or arbitrarily delay messages. A

time-triggered transport service provides these characteristics.

3.3.2 Replica Determinism

Replica determinism is a desirable relation among a set of replicated components

that are introduced in order to mask the failure of one of the components of the set.

A set of replicated RT components is replica determinate if all the members of this
set start from the same initial state and produce the same output messages at about
the same instants. If the behavior of one member of the set of replicated components

deviates from the specified behavior, then this component has failed. In a properly

configured fault-tolerant system, such a failure is masked by the other replica deter-
minate components. The software design must ensure that a deviation of the specified

behavior is caused by random physical faults and not by software instructions with

unpredictable outcome. An example of such a software instruction is a semaphore-
wait-operation that protects a resource from the concurrent access by two concurrent

processes. The outcome of such a semaphore-wait-operation is uncertain. To one of

the replicated components the access may be granted, while to another component

the access may be delayed, resulting in a non-replica determinate behavior. From the

point of view of fault tolerance, any non-replica determinate behavior is tantamount

to a fault and leads to a loss of the further capability to tolerate a fault.

In a fault-tolerant system, the term about in the above definition of replica deter-

minism relates to the time interval that it takes to replace a missing output message or

an erroneous output message from a node by a correct message from the redundant

replicas. This time interval must be derived from the dynamics of the application. If,

in a time-triggered system, the components start from the same initial state (i.e., the

ground state – see Section 2.4.5) and produce the same output messages at the same

global ticks of their local clocks, then an upper bound for the time interval about is

given by the precision of the global time.

The basic causes of replica non-determinism are: differing inputs, a difference

between the progress of the computation and that of the local clocks in the repli-

Properties of Time-Triggered Communication Systems 35

cas, differing oscillator drifts caused by the physical variations of the resonators and

programming constructs that have uncertain results.

3.3.2.1 Differing Inputs

Whenever a value that is defined over a continuous value domain is mapped onto

a discrete value domain, a digitalization error occurs. The physical RT entities in

the controlled object, e.g., temperature and pressure, are defined over continuous

value domains. The analog-to-digital transformation at the computer interfaces maps

these values into discrete domains, causing a potential digitalization error of one bit.

The same phenomenon occurs in the temporal domain: external time is dense, while

internal time within a computer is discrete. If events that occur on a dense time-

base are observed in a different order by two replicas, then, significantly different

computational trajectories could develop.

3.3.2.2 Deviations of Computational Progress Relative to Real Time

In many computers, the same resonator drives the CPU and the real-time clock and

no clear distinction is made between real time and execution time. One would there-

fore assume that the progress of the local physical time is in synchrony with the

progress of the computation. This assumption is not generally valid, since, to correct

a randomly occurring transient error, many processors provide hardware-controlled

instruction-retry mechanisms that take physical time without resulting in computa-

tional progress. If, in two replicas, a different number of instruction retries are exe-

cuted, the computational progress can diverge from the progress of the local physical

time.

The differences in the progress between real time and the execution time lead to

consequences whenever a program reads the local clock. Two replicas read different

clock values at the same point of the computation, possibly resulting in different

decisions.

3.3.2.3 Oscillator Drift

The control signals for the CPU originate from a physical oscillator, a quartz crystal.

Because the mechanical dimensions of any two physical quartz crystals are slightly

different, no two physical oscillators have the same drift. These slight differences in

the drift of the oscillators of replicated nodes can lead to a non-determinate outcome

for those decisions that involve, in one way or another, the local time. A prime exam-

ple is the local use of time-outs. The same time-out value that is defined abstractly by

a time-out value in a replicated program will lead to time-out intervals of slightly dif-

fering physical lengths at the replicas. If a significant event, e.g., the expected arrival

of an acknowledgment message that is monitored by a local time-out, occurs after

the local time-out event in one replica, but before the same time-out event in another

replica, then, remarkably different computational trajectories may develop in the two

replicas.

36 Time-Triggered Communication

3.3.2.4 Preemptive Scheduling

If dynamic preemptive scheduling is used, the points in the computations where an

external event (interrupt) is recognized may differ at the different replicas. Conse-

quently, the interrupting processes see different states at the two replicas at the point

of interruption. They may reach different results at the next major decision point.

3.3.2.5 Nondeterministic Language Features

The use of a programming language with nondeterministic language constructs, such

as the SELECT statement in an ADA program, can lead to the loss of replica deter-

minism. Since the programming language does not define which alternative is to be

taken at a decision point, it is left up to the implementation to decide the course

of action to be taken. Two replicas may also take different decisions in the case

of programming constructs with uncertain results. For example, a semaphore wait

operation can also give rise to non-determinism, because of the uncertain outcome

regarding the process which will win the race for the semaphore. Communication

protocols that resolve a media-access conflict by reference to a random number gen-

erator, such as the Ethernet protocol, also suffer from replica non-determinism. The

same argument applies to communication protocols that resolve the access conflict

by relying on the outcome of non-determinate temporal decisions, such as ARINC

629 [7] or CAN [149].

3.3.3 Building a Replica Determinate System

The construction of replica determinate nodes requires careful design of the software

system so that all the causes of replica non-determinism that have been discussed in

the previous section are properly addressed.

3.3.3.1 Sparse Time-Base

A sparse global time-base makes it possible to assign a significant event to the same

global clock tick at all the replicas without the execution of an agreement protocol.

Any reference to the local real-time clock of a node (without the execution of an

agreement protocol) can lead to replica non-determinism. This means that no local

time-outs may be used in any part of the software, including the application software,

the operating system and the communication software.

3.3.3.2 Agreement on Input

Whenever a redundant observation of an RT entity outside the sphere of control of a

fault-tolerant computer system is performed, an agreement protocol must be executed

among all replicas of the observing Fault-Tolerant Unit (FTU) to reach a common

view of the exact digital value of an observation, and the exact instant on the sparse

time-base when the observation was taken. The agreement on the time is the basis

for establishing a consistent system-wide order of all observation events.

Properties of Time-Triggered Communication Systems 37

3.3.3.3 Static Control Structure

The implementation of a data-independent static control structure that can be val-

idated independently of the data inputs is a safe choice for the implementation of

replica determinate software. All inputs from the control object are periodically sam-

pled by a trigger task, and no interrupt from the controlled object is allowed to occur.

If the application timing requirements are so stringent (less than 1 msec response

time) that a process interrupt causing a dynamic task preemption cannot be avoided,

then all the possibilities of task preemption must be statically analyzed in the ap-

plication context to ensure that replica determinism is maintained. Non-preemptive

dynamic scheduling avoids the problems of unpredictable task interference.

3.3.3.4 Deterministic Algorithms

In the algorithmic section of an implementation, all constructs that could lead to non-

determinate results must be avoided. Special attention must be paid to any dynamic

synchronization construct that relies on the unpredictable resolution of a race condi-

tion, such as a semaphore wait operation. If software diversity is implemented, exact

arithmetic must be performed to avoid the consistent comparison problem.

3.3.3.5 Deterministic Communication System

The communication system that transports replicated messages using independent

redundant channels must be deterministic, such that no unplanned delay or reordering

of messages occurs.

3.4 Diagnosability
Diagnosis aims at ascertaining the impact and location of perturbations by monitor-

ing the functionality and performance of nodes. The reliable identification of failed

nodes can be used for the autonomous recovery in case a failure is transient, and

guide a maintenance engineer in the physical replacement of defective Field Re-

placeable Units (FRUs) in case the failure is permanent.

Depending on how diagnostic information is used, one can distinguish between

passive diagnosis and active diagnosis. In passive diagnosis, the diagnostic infor-

mation is stored and analyzed for maintenance and engineering feedback without

taking on-line actions in the system. In case of active diagnosis, on the other hand,

the diagnostic information is used to achieve fault-tolerance by directly intervening

in the system behavior by means of reconfiguration (e.g., migration of services to

spare nodes, graceful degradation). Since for safety-critical systems active diagnosis

is directly related to safety properties, the diagnostic subsystem must be trusted and

certified to the highest criticality level in the given application.

Both active and passive approaches involve distinct services for detection, analy-

38 Time-Triggered Communication

sis and use of diagnostic information, which will be explained in the following, along

with the relationship to time-triggered communication protocols.

3.4.1 Detection of Errors and Anomalies

It is the purpose of the detection services to identify discrepancies between the cur-

rent state and the intended state. In a time-triggered system, consistent information

about the current state is available during the inactivity intervals of the sparse time-

base (cf. Chapter 2, Section 2.4.4). The knowledge about the intended state of a

system can be available in two ways:

• A priori knowledge: This part comprises knowledge about the properties of

correct states, the timing of states and state changes, as well as the semantics

of state variables. In the value domain, information about the code space can

be used for error detection. For example, CRC codes or parity bits extend the

hamming distance and permit the identification of erroneous code words. In

the time domain, a priori knowledge can comprise restrictions on the time in-

tervals in which certain states may occur (e.g., send instant of a message), the

duration of states and the sequence of states. Furthermore, knowledge about

the semantics of state variables can be used to formulate plausibility checks

that express interrelationships between different state variables based on math-

ematical models of the system (e.g., using the laws of physics or based on past

experience). This knowledge is also denoted as analytical redundancy [247].

Analytical redundancy defines a set of variables denoted as residuals with one

or more residual generation filters. These residuals are ideally zero under no-

fault conditions and sensitive to a selective set of faults [137].

• Spatial and temporal redundancy: Error detection can exploit spatial redun-

dancy by comparing the information from redundant communication channels

or redundant computational units. N-Modular Redundancy (NMR) as intro-

duced in Section 3.6 is an example for the exploitation of replicated computa-

tional units to detect and mask the failure of replicas. In case of time redun-

dancy, a single node performs redundant computations during different execu-

tion time intervals. The states of successive executions are compared to detect

discrepancies. Time redundancy permits the detection of errors that are caused

by transient faults with a duration that is shorter than the time between the

execution time intervals.

In the following examples, error detection capabilities are given, which are lo-

cated at different parts of a time-triggered cluster.

• Self-Checking of Nodes. Many embedded nodes execute Built-In Self-Tests

(BISTs) such as memory tests [336], logic tests [198], sensor tests [154] and

test computations with known results (also called challenge/response mecha-

nisms). In addition, the communication controller can serve as a watchdog that

monitors a regular lifesign from the host. The absence of the lifesign indicates

Properties of Time-Triggered Communication Systems 39

a crash failure of the host. Using output assertions, a priori knowledge about

the produced messages can be expressed and checked (e.g., message syntax).

Such an assertion is a predicate on values of the message, and relevant state

variables, that evaluates to “TRUE” if the message is correct [221, p. 112].

• Mutual Checking of Nodes. In analogy to the output assertions of sender nodes,

receiver nodes can execute input assertions on messages. The benefit of the in-

put assertions is that the error detection occurs in a different FCR than the

production of the message. Self-checking of nodes is prone to leading to fault

negatives, because the error detector can be affected by the same fault that

caused the error of the rest of the node. Mutual checking of nodes can oc-

cur in a distributed fashion or using a dedicated node (e.g., called diagnostic

electronic control unit in [211]).

• Checks by the Communication System. A time-triggered communication sys-

tem possesses a priori knowledge about the temporal behavior of nodes.

The communication infrastructure of a time-triggered communication sys-

tem can be programmed with this knowledge (e.g., using central and local

guardians [26, 106]) for the detection of node failures in the time domain (e.g.,

late message failures, early message failures, omission failures).

As outlined in [252], the knowledge about the intended state is often insufficient

to perform immediate error detection. The state can indicate an error or be part of

a rare but correct operational situation. If the distinction cannot be performed with

certainty at a given time, we speak of an anomaly. In such a case, the state needs to

be analyzed over time and at different nodes in order to discriminate between errors

and intended (but unlikely) states.

3.4.2 Decision Making – Analysis of Diagnostic Information

In order to decide on a suitable reaction, the analysis of diagnostic information eval-

uates information about errors and anomalies from different nodes and performs cor-

relation in the value and time domains. The types of decisions depend on whether

active or passive diagnosis is realized. For passive diagnosis, a service technician

needs to be supported in performing maintenance decisions. For example, no main-

tenance action is required in case of an external fault that has no permanent effect on

the functionality of the FRUs. An example for such an external fault is Electromag-

netic Interference (EMI). In case of an internal fault, which originates from within the

FRU boundaries (e.g., crack in the PCB), examples of maintenance actions are the

replacement of an FRU affected by a hardware fault or a software-update of an FRU

with a software fault. So-called borderline faults are the class of faults that cannot be

judged to be external or internal with respect to the FRU boundaries. An example of

such a fault is a connector fault, where a connector consists of two parts, one attached

to the FRU and the other attached to the cable loom. This class is responsible for a

significant number of system failures [320]. A connector fault requires an inspection

of the FRUs and the wiring harness.

40 Time-Triggered Communication

For active diagnosis, the diagnostic subsystem decides on an action to recover

from a fault. After a transient fault, a suitable action is a reset of the affected node

with a subsequent restoration of the state (cf. Section 3.6.4). After a permanent fault,

the services can be migrated to suitable spare nodes. Restrictions on the migration of

services result from the types of nodes (e.g., deployed processing cores, performance,

memory) and the management of physical inputs and outputs. In particular, inputs

and outputs introduce a strong coupling between application service and specific

nodes [92].

For decision making in active and passive diagnosis, different types of analy-

sis technologies are available, such as solutions based on Bayesian networks [273],

neural networks [357] or inference [36]. The choice of the analysis technology has a

significant impact on the maximum time to reach a decision and the ability to provide

guarantees (e.g., error detection coverage). Temporal predictability and guaranteed

results are especially important for active diagnosis, where a failure of the diagnostic

services has the potential to cause a failure of the application services and is thus

safety-relevant. Therefore, safety-critical applications that need to be certified (e.g.,

in the avionic domain [277]) typically use static configurations or switch between a

small set of pre-qualified static configurations [92].

3.4.3 Use of Diagnostic Information and Analysis Results

In case of active diagnosis, nodes contain local enactors [50] that accept commands

via the TII from the decision making units and perform the computed actions. For

example, after a transient fault an enactor can perform a reset of the node and acquire

the restart state from the replicas.

Diagnostic information and the results of the analysis can also be fed back to

the nodes in order to enable application-level fault tolerance. A typical example is

a membership service [68]. The membership service provides binary information

about each node, denoting whether a node is operational or non-operational. In ad-

dition, the membership service provides consistency by guaranteeing that all correct

nodes have the same view on the operational state. For this purpose, algorithms for

the processor-group membership problem with suitable agreement algorithms are

used.

In case of passive diagnosis, service technicians retrieve the diagnostic informa-

tion and the proposed maintenance decisions. This information can be stored locally

in the nodes where the detection occurred or in a central database. Independently of

the storage location, filtering and preprocessing of diagnostic information can help to

reduce the amount of diagnostic data. The retrieval typically occurs via a diagnostic

access port that is part of the node’s TDI or TII. For example, in the automotive indus-

try the On-Board Diagnosis (OBD) standard defines the diagnostic connectors, the

electrical signalling protocols, the messaging formats and significant vehicle param-

eters [113]. OBD supports a unified data communication, which supports different

underlying communication protocols such as ISO14230 (KWP-2000) or SAEJ1850.

Solutions for the retrieval of diagnostic information can be classified depending on

whether the retrieval of diagnostic information occurs off-line (i.e., in a special main-

Properties of Time-Triggered Communication Systems 41

tenance mode) or during normal operation. The retrieval during normal operation is

desirable in systems with a high cost of down time (e.g., factory automation).

3.5 Certifiability
Legislatures and the public have decided that certification agencies – such as the Fed-

eral Aviation Administration (FAA) for commercial transport aircraft – must monitor

the design of safety-critical applications that are crucial to the preservation of human

life. Likewise, certification is required in military systems, the railway industry, the

nuclear industry and in industrial control systems.

In accordance with the safety standards of the respective domains, certification

agencies demand the construction of a safety case. A safety-case is a documented
body of evidence that provides convincing and valid argument that a system is ade-
quately safe for a given application in a given environment [34].

A safety case ensures that all justifiable precautions have been taken in order

to minimize the risk to the public. Adversely, the safety case establishes a shared

responsibility between the certification agency and the developer in case of an acci-

dent.

Certification is a significant cost factor in the development of embedded systems,

e.g., in the avionic domain [128]. Consequently, there is a need for systems that

are designed for validation in order to simplify the certification process. Design for

validation [155] occurs by devising a complete and accurate reliability model, by

avoiding design faults, and by minimizing parameters that have to be measured. The

construction of the reliability model has to be based on a detailed understanding of

failure modes and fault-tolerance mechanisms. The reliability model must be based

on parameters that can be accurately measured, e.g., failure rates of nodes.

3.5.1 Safety Case

The safety case provides documented arguments and evidence in order to justify that

a system is sufficiently safe for deployment. A safety case includes diverse evidence

and arguments that accumulate as the project proceeds. The following two types of

evidence can be distinguished:

• Process evidence: The focus of process evidence lies on management and is

gained by checking the quality of the life cycle process and the quality as-

surance organization. The quality and experience of the personnel is also an

important factor. In addition, the process evidence includes results of reviews,

tests and compliance with the plans.

• Product evidence investigates the product as such. This evidence consists of

experience with the operational system (e.g., testing by fault injection), re-

sults from simulations and formal verification. Experience with similar de-

42 Time-Triggered Communication

signs (e.g., field failure rates) and architecture properties also contributes to

the product evidence.

Today, emphasis is placed on process-related evidence in the field of computer

systems. The reliability requirements of safety-critical applications are orders of

magnitude higher than what can be validated experimentally by using measurements

and testing. Therefore, certification must be based on the life-cycle processes of the

development, reviews and analysis of the system and experience gained with similar

systems.

The main elements of a safety case are claims, evidence, inference and argu-

ments [34]. A claim is a statement about a property of a subsystem. Examples of

claims are statements about reliability, availability, performance and security. The

evidence provides the basis for the justification of safety and includes facts, assump-

tions and further subclaims. The arguments link the evidence with claims, and the

transformational rules for the arguments are called inference. Depending on the claim

and the available evidence, arguments can be deterministic, probabilistic or qualita-

tive. Deterministic arguments (e.g., exhaustive test, worst-case timing analysis, for-

mal proof of a property) are preferred over quantitative arguments (e.g., probabilis-

tic statistical reasoning). Also, quantitative arguments are preferred over qualitative.

Qualitative arguments reflect an indirect effect of evidence on the claimed attributes

such as the satisfaction of design rules and the qualifications of the developers.

Evidence

Evidence

Subclaim

Claim A

Evidence

Evidence

Argument for Claim A
Inference Rule

Inference Rule

Inference Rule

FIGURE 3.1
Hierarchical Structure of a Safety Case with Subclaims

Figure 3.1 depicts the relationship between the elements of a safety case. The

safety case can be structured hierarchically if another claim serves as evidence.

The safety case is typically a living document that evolves throughout a project.

Along with the refinement of requirements and the design, the safety case is pro-

gressively refined into a layered safety case. The traceability of subsystems, refined

requirements and design features to the top-level requirements is essential in order to

maintain the link to the claimed safety attributes.

Properties of Time-Triggered Communication Systems 43

3.5.2 Modular Certification

Traditionally, certification of a system (e.g., an aircraft) is considered as an indivis-

ible whole. The goal of modular certification is the separation of the certification of

platform services from applications and aims at independent safety arguments for

different components.

Ideally, the supplier of a component describes and analyzes significant properties

in isolation. In order to certify the whole, the manufacturer integrates these properties

with the properties of the rest of the system. For example, [228] proposes a model for

software certification where suppliers provide test certificates in a standard portable

form.

Such an approach reduces the efforts for the manufacturer of the overall system,

because certification arguments from suppliers are available. In addition, the reuse of

components in different systems is facilitated. The supplier can develop a certifica-

tion argument once and use it in many systems.

The main challenge in modular certification is the need for a component and

interface model, which is also valid in the presence of faults. Certification is mainly

concerned with faults and the analysis of the hazard of a component in the context

of the global system. Reference [284] explains the problem of a disintegrating tire,

which can penetrate the wing tanks in a Concorde. However, this hazard might not

exist on other aircraft.

Although a time-triggered communication protocol cannot solve the analysis of

such hazards at the application level, the temporal and spatial partitioning of a time-

triggered communication protocol (see Section 3.6) provides an important baseline

for modular certification.

At higher levels, modular certification can exploit assume-guarantee reasoning

where assumptions and guarantees take into account both normal and abnormal con-

ditions. Temporal and spatial partitioning ensures that components respect interfaces

after failures (e.g., no modification of private data in another component) and in-

teract only based on the respective assumptions and guarantees. Assume-guarantee

reasoning in this context has been formally examined in [284].

3.5.3 Certification in Application Domains

Certification typically occurs according to safety standards, which define a safety

life cycle ranging from an initial specification with safety requirements to the design,

implementation and deployment of safety-critical systems.

For example, IEC 61508 is a universal safety-standard for different application

domains including automotive, industrial control, powerplans, medical devices and

railway systems. The focus of IEC 61508 is the identification of potential hazards

and the evaluation of the impact and occurrence probability. Four Safety Integrity

Levels (SILs) are distinguished in order to reflect the acceptable risk. Each SIL is

associated with quantitative and qualitative requirements for the development process

and the safety life cycle management. The most critical systems belong to SIL4 and

a probability of a critical failure of 10−9 is demanded (i.e., ultra dependability).

44 Time-Triggered Communication

Domain-specific safety standards have been developed based on IEC 61508. For

example, in the automotive domain the functional safety standard ISO 26262 is cur-

rently under development. This standard is entitled “Road vehicles – Functional

safety.”

In the aerospace domain, Quality Assurance (QA) is critical due to the relatively

small production numbers and potentially large impact of failures on safety of opera-

tion. QA stretches through development, production and operation and maintenance

phases of an aircraft. This section addresses especially the use of formal methods for

the development of algorithms that may have an impact on the safety of an aircraft.

The regulations driving the safety of an aircraft are Federal Aviation Regulations

(FAR) 25 Paragraph 1309 (or internationally are reflected in Joint Aviation Regula-

tions [JAR]). For the methods of compliance with the FAR and JAR 25 requirements

for a new system design, five methodologies are generally adopted, some of which

are described in more detail in ARP4754 [321] and ARP4761 [322]:

1. Analysis including engineering analysis, stress analysis, system modeling and

similarity modeling.

2. Failure analysis including FMEA (Failure Mode and Effects Analysis), FTA

(Fault Tree Analysis) and safety analysis (including Functional Hazard Assess-

ment (FHA), (Preliminary) System Safety Assessment ([P]SSA), and Com-

mon Cause Analysis [CCA]).

3. Laboratory tests including component tests, qualification tests, system tests

through an integrated systems test rig.

4. Ground Tests–On aircraft ground tests.

5. Flight Tests–On aircraft flight tests.

3.5.4 Time-Triggered Communication Protocols and Certification

In an distributed system, the services of the communication protocol (e.g., message

exchange, time services, fault isolation) are among the most critical parts of the sys-

tem, since any design fault in these services is likely to result in correlated failures

in multiple functions. The core algorithms and architectural mechanisms in fault-
tolerant systems are single points of failure: they just have to work correctly [284,

p. 27]. Consequently, high emphasis should be placed on validating the services of

the communication protocol, e.g., by employing formal verification techniques.

Therefore, Chapter 5 provides results on the validation by means of fault injection

and formal verification along with the explanation of the time-triggered communica-

tion protocols.

Properties of Time-Triggered Communication Systems 45

Node

Network

Node

Node

Node

Node

Node

Node

Node

Node

FTU of Service 1 FTU of Service 2 FTU of Service 3

FIGURE 3.2
Incoming Voting

3.6 Fault Containment and Error Containment
An FCR has been introduced in Chapter 2, Section 2.3.2 as the boundary of the

immediate impact of a fault. In conformance with the fault-error-failure chain intro-

duced by Laprie [21], one can distinguish between faults that cause the failure of an

FCR (e.g., design of the hardware or software of the FCR, operational fault of the

FCR) and faults at the system level. The latter type of fault is a failure of an FCR,

which could propagate to other FCRs through a sent message that deviates from the

specification. If the transmission instant of the message violates the specifications,

we speak of a message timing failure. A message value failure means that the data

structure contained in a message is incorrect.

Such a failure of an FCR can be tolerated by distributed fault-tolerance mecha-

nisms. The masking of failures of FCRs is denoted as error containment [187] be-

cause it avoids error propagation by the flow of erroneous messages. The error de-

tection mechanisms must be part of different FCRs than the message sender [172].

Otherwise, the error detection mechanism may be impacted by the same fault that

caused the message failure.

For example, a common approach for masking node failures is N-Modular
Redundancy (NMR) [194]. N replicas receive the same requests and provide the same

service. The output of all replicas is provided to a voting mechanism, which selects

one of the results (e.g., based on majority) or transforms the results to a single one

(average voter). The most frequently used N-modular configuration is triple-modular

redundancy (TMR).

We denote three replicas in a TMR configuration a Fault-Tolerant Unit (FTU).
In addition, we consider the voter at the input of a node and the node itself as a

self-contained unit, which receives the replicated inputs and performs voting by it-

self without relying on an external voter. We call this behavior incoming voting (see

Figure 3.2).

In the following, the prerequisites for error containment through FTUs are dis-

cussed.

46 Time-Triggered Communication

3.6.1 Independent Fault Containment Regions

Common-mode failures are failures of multiple FCRs, which are correlated and oc-

cur due to a common cause. Common-mode failures occur when the assumption of

the independence of FCRs is compromised. They can result from replicated design

faults or from common operational faults such as a massive transient disturbance.

Common-mode failures of the replicas in an FTU must be avoided, because any cor-

relation in the instants of the failures of FCRs significantly decreases the reliability

improvements that can be achieved by NMR [130].

The definition of FCRs needs to take into account shared resources that could be

impacted by a fault. Typically, shared resources include the computing hardware, the

power supply, the timing source, the clock source and the physical space. For exam-

ple, if two subsystems depend on a single power supply, then these two subsystems

are not considered to be independent and therefore belong to the same FCR. Since

this definition of independence allows that two FCRs can share the same design, de-

sign faults are not part of this fault-model. Diversity is a method to avoid common

design faults in FCRs by using different designs that perform the same function.

3.6.2 Strict Control on Node Interactions

A distributed system uses shared networking resources in order to support the inter-

action between nodes. In order to preserve the independence of FCRs, strict control

on the node interactions and the use of these shared resources is required. Based on

the specification of the permitted behavior of a node at its linking interface, a time-

triggered communication protocol can isolate nodes that violate the linking interface

specification. Thereby, the time-triggered communication protocol realizes temporal
partitioning and spatial partitioning [281] at the network-level:

• Temporal partitioning. Media access control is concerned with the assignment

of time intervals to each node for the transmission of the node’s messages. A

node that sends untimely messages has the potential of disrupting the com-

munication abilities of the other nodes by delaying their messages. The media

access control mechanisms of a time-triggered communication system can be

designed to prevent this interference between nodes in the temporal domain. A

time-triggered communication system is autonomous and has a priori knowl-

edge of all intended message sent and receive instants. This knowledge can be

used by local or central guardians [26, 106] in order to block untimely mes-

sages.

• Spatial partitioning. Spatial partitioning ensures that one node cannot alter the

code, private data or messages of another node. Spatial partitioning must en-

sure that no messages with corrupted data or wrong addresses are delivered.

A message with a wrong address or identification – also called a masquerad-

ing failure – could cause correct messages of other nodes to be overwritten at

the recipient. Faults occurring at the communication channel can be detected

using CRC checks. For faults that occur within the sender, an unforgeable au-

thentication mechanism is necessary. Depending on the failure assumptions, an

Properties of Time-Triggered Communication Systems 47

authentication mechanism can be implemented with simple signature schemes

or cryptographic mechanisms [114].

3.6.3 Replica Determinism

Replica determinism has to be supported by the architecture to ensure that the repli-

cas of an FTU produce the same outputs in defined time intervals. As discussed in

Section 3.3.2, a time-triggered communication system addresses key issues of replica

determinism. In particular, a time-triggered communication system supports replica

determinism by exploiting the sparse global time base in conjunction with preplanned

communication and computational schedules. Computational activities are triggered

after the last message of a set of input messages has been received by all replicas of

an FTU. This instant is a priori known due to the predefined time-triggered sched-

ules. Thus, each replica wakes up at the same global tick and operates on the same

set of input messages. The alignment of communication and computational activi-

ties on the sparse global time-base ensures temporal predictability and avoids race

conditions.

3.6.4 Recovery and Repair

A time-triggered communication protocol should support adequate recovery and re-

pair mechanisms in order to reestablish the original reliability of an FTU after the

failure of a replica. Although a failure of an FCR is masked by an FTU and is thus

not visible to the users, a failure of an FCR nevertheless reduces or eliminates any

further fault-masking capability.

After a permanent fault, the masked failures are reported to a diagnostic system

in order to perform a repair action at the next maintenance point. In case of a tran-

sient fault where the hardware is still operational, the recovery of an FCR can occur

by restarting the FCR with a valid state. Part of the state can be restored from the

environment by performing a complete scan of all the sensors and resynchronizing

the node with the external world. In addition, output data that is in the control of the

computer can be enforced on the environment using a restart vector [169, p. 136].

State that can be neither read from the environment nor enforced onto the environ-

ment must be recovered from a node-external source such as another node that has

stored this information redundantly.

The instant for the reintegration of an FCR can be selected to minimize the state

that needs to be recovered (cf. ground state in Chapter 2, Section 2.4.5). In cyclic

systems (e.g., control loops, many multimedia systems), an ideal instant for the rein-

tegration of a node is at the beginning of a new cycle.

The recovery from transient faults is of particular importance, because transient

faults are, at least by a factor of 1000, more likely than permanent faults. Hence, the

time needed to recover after a transient failure is an important input for a reliability

model. After the recovery, the FCR is able to tolerate another transient or permanent

fault.

48 Time-Triggered Communication

3.7 Performance
This section discusses the types of communication loads that need to be handled

by time-triggered communication networks. Based on these communication loads,

performance attributes are presented.

3.7.1 Periodic, Sporadic and Aperiodic Messages

In a cluster with nodes interconnected by a time-triggered network, each node is

assigned one or more messages that are repeatedly sent by the node. A node requests

the dissemination of a message m at points in time ρk,m ∈ R
+ (k ∈ N), where ρk,m

are stochastic variables.

The parameter m identifies the message as well as the corresponding node. The

parameter k counts the instances of the message at that node. Every message m is

characterized by two parameters, a minimum interarrival time dm ∈R
+ and a random

interval offset δk,m ∈ R
+.

∀k ∈ N : ρk+1,m −ρk,m = dm +δk,m

dm specifies an a priori known minimum interval of time between two transmission

requests of m. The stochastic variables δk,m cover the random part in the time interval

between two transmission requests of m. For a particular message m the stochastic

variables δk,m possess a corresponding probability distribution in the interval [0,um].
um is called the random interval length.

In conjunction with knowledge about the parameter bm denoting the length of

message m in bits, the average bandwidth usage of a message m is as follows:

bandwidth(m) =
bm

dm +E
[

δk,m
] (3.1)

where E
[

δk,m
]

is the expected value of the random interval length.

The two message parameters dm and um employed in this message model allow

us to distinguish between different message types. For a sporadic message, the trans-

mission request instants are not known, but it is known that a minimum time interval

exists between successive transmission requests.

m sporadic ↔ (∀k 0 � δk,m � um
) ∧ (

dm ∈ R
+)

For a periodic message, the transmission request instants are known and the ran-

dom interval is 0.

m periodic ↔ (∀k δk,m = 0
) ∧ (

dm ∈ R
+)

For an aperiodic message, no minimum time interval between successive trans-

mission requests is known.

m aperiodic ↔ (∀k 0 � δk,m � um
) ∧ (dm = 0)

Properties of Time-Triggered Communication Systems 49

3.7.2 Performance Attributes

Important performance attributes in real-time communication networks are the band-

width, the network delay and the variability of the network delay (i.e., communica-

tion jitter).

The bandwidth is a measure of the available communication resources expressed

in bits/second. The bandwidth is an important parameter as it determines the types

of functions that can be handled and the number of messages and nodes that can be

handled by the communication network.

The network delay denotes the time difference between the production of a mes-

sage at a sending node and the reception of the last bit of the message at a receiving

node. At some instant trequest the sending node requests the transmission of a message

by invoking a send operation at the node’s communication controller. Depending on

the communication protocol and the current traffic on the communication channel,

the transmission of the message will start after the access delay daccess at the send in-

stant tsend. After the transmission delay dtransmission the message arrives at the receiver

node at instant treceive.

Communication slot
for msg. m in the
TDMA scheme

trequest tsend treceive

real-time

FIGURE 3.3
Phase-Alignment between Request Instant and Send Instant of a Periodic Message

Depending on whether the communication protocol is time-triggered or event

triggered, the access delays exhibit different characteristics. In a time-triggered sys-

tem the send instants tsend of all nodes are periodically recurring instants, which are

globally planned in the system and defined with respect to the global time-base. The

access delay daccess of a message in a time-triggered system is thus locally deter-

mined at the sending node. The access delay is independent of the traffic from other

nodes and depends solely on the relationship between the request instants and the

preplanned send instants. Furthermore, since the next send instant tsend of every node

is known a priori, a node can synchronize locally the production of periodic messages

trequest with the send instant tsend and thus minimize the access delay of a message.

This phase-alignment between the request instant of a periodic message with the

communication schedule of the time-triggered communication protocol is depicted

in Figure 3.3.

In addition, the TDMA scheme of a time-triggered communication protocol can

contain periodic communication slots for the transport of sporadic and periodic mes-

sages. In case of a transmission request, the message is transmitted during the next

communication slot in the TDMA scheme. The period of the communication slots

can be determined by the maximum permitted network delay, the bandwidth require-

ments and knowledge about the message interarrival times (e.g., minimum and aver-

age values). As depicted in Figure 3.4, sporadic and aperiodic messages incur a delay

50 Time-Triggered Communication

depending on the (stochastic) time of the request instant relative to the preplanned

send instants of the time-triggered communication protocol. In the worst case, the

transmission of a sporadic or aperiodic message is requested immediately after a send

instant, thereby incurring a delay equal to the period of the communication slot. At

the cost of additional communication resources, this network delay can be reduced by

increasing the frequency of the communication slots reserved for sporadic and ape-

riodic messages. In order to reduce the consumption of communication resources,

several time-triggered communication protocols have been extended with means for

the event-triggered communication of sporadic and aperiodic messages such as time

intervals with dynamic arbitration as described in Chapter 4, Section 4.4.

slot for m

trequest

slot for m

tsend treceive

Period of slot for message m in the TDMA schedule

FIGURE 3.4
Worst-Case Relationship between Request Instant and Send Instant of a Sporadic

Message

In an event-triggered system the access delay daccess of a message depends on the

state of the communication system at the instant trequest. If the communication net-

work is idle at the instant trequest the message transmission can start immediately lead-

ing to an access delay close to zero. If the channel is busy at the instant trequest then the

access delay daccess depends on the media access strategy implemented in the commu-

nication protocol. For example, in the CSMA/CD protocol of Ethernet [140], nodes

wait for a random delay before attempting transmission again. In the CSMA/CA pro-

tocol of CAN [149], the access delay of a message depends on its priority relative

to the priorities of other pending messages. Hence, in an event-triggered network the

access delay of a message is a global property that depends on the traffic patterns of

all nodes.

A bounded network delay with a minimum variability is important in many em-

bedded applications. For example, achievement of control stability in real-time ap-

plications depends on the completion of activities (like communicating sensor and

control values) in bounded time. Hard real-time systems ensure guaranteed response

even in the case of peak load and fault scenarios. Guaranteed response involves as-

surance of temporal correctness of the design without reference to probabilistic ar-

guments. Guaranteed response requires extensive analysis during the design phase

such as an off-line timing and resource analysis [17]. An off-line timing and resource

analysis assesses the worst-case behavior of the system in terms of communication

delays, computational delays, jitter, end-to-end delays, and temporal interference be-

tween different activities.

In hard real-time systems, missed deadlines represent system failures with the

potential of consequences as serious as in the case of providing incorrect results. For

Properties of Time-Triggered Communication Systems 51

example, in drive-by-wire applications, the dynamics for steered wheels in closed

control loops enforce computer delays of less than 2 ms [131]. Taking the vehicle

dynamics into account, a transient outage-time of the steering system must not ex-

ceed 50 ms [131]. In the avionic domain, variable-cycle jet engines can blow up if

correct control inputs are not applied every 20 to 50 ms [187].

While control algorithms can be designed to compensate a known delay, delay

jitter (i.e., the difference between the maximum and minimum value of delay) brings

an additional uncertainty into a control loop that has an adverse effect on the quality

of control [169]. Delay jitter represents an uncertainty about the instant a real-time

entity was observed and can be expressed as an additional error in the value domain.

In case of low jitter or a global time-base with a good precision, state estimation

techniques allow us to compensate for a known delay between the time of observation

and the time of use of a real-time image. State estimation uses a model of a real-time

entity to compute the probable state of the real-time entity at a future point in time.

4
Core Algorithms

M. Paulitsch
EADS Innovation Works

W. Steiner
TTTech Computertechnik AG

R. Obermaisser
University of Siegen

C. El Salloum
Vienna University of Technology

CONTENTS

4.1 Introduction . 54

4.2 Clock Synchronization . 55

4.2.1 Principle of Operation of Clock Synchronization 56

4.2.1.1 Resynchronization Initiation . 57

4.2.1.2 Remote Clock Time Readings 57

4.2.1.3 Convergence Functions . 58

4.2.2 Classifications of Clock Synchronization Algorithms 59

4.2.3 Limits in and Performance of Clock Synchronization

Algorithms . 61

4.2.4 Related Work on Clock Synchronization Algorithms 61

4.2.5 Time Standards and Sources . 65

4.2.5.1 Time Standards . 65

4.2.5.2 Time Sources . 66

4.2.6 Time Aspects from an Application-Specific View 67

4.3 Startup and Restart . 68

4.3.1 Introduction and Overview . 68

4.3.2 Startup . 70

4.3.2.1 Integration . 71

4.3.2.2 Coldstart . 74

4.3.3 Restart . 77

4.3.3.1 Clique Detection Algorithms 78

4.4 Integration of Event-Triggered and Time-Triggered Communication . 80

53

54 Time-Triggered Communication

4.4.1 Integration of Event-Triggered and Time-Triggered

Communication at MAC Layer . 81

4.4.1.1 Event-Triggered and Time-Triggered

Communication — Contention Avoidance 81

4.4.1.2 Event-Triggered and Time-Triggered

Communication — Contention Detection with

Preemption . 82

4.4.1.3 Event-Triggered and Time-Triggered

Communication — Contention Tolerance 83

4.4.2 Event-Triggered Overlay Networks . 83

4.4.3 Generic Event Service . 84

4.4.3.1 Higher Protocols: CORBA Internet Inter-ORB

Protocol . 85

4.4.3.2 Higher Protocols: Controller Area Network

(CAN) . 85

4.5 Diagnostic Services . 88

4.5.1 Error Detection . 88

4.5.1.1 Error Detection by Syntactic Checks 89

4.5.1.2 Error Detection by Semantic Checks 89

4.5.1.3 Error Detection by Active Redundancy 90

4.5.2 Membership Agreement . 90

4.1 Introduction
The focus of this chapter are the algorithms that provide the core of a time-triggered

communication protocol.

Clock synchronization is concerned with aligning the local clocks of all nodes

in the cluster with a given precision. The resulting system-wide global time-base is

a prerequisite for the realization of a time-triggered network, which performs the

temporal coordination of all communication activities using the global time.

Clock synchronization is based on the assumption of initially synchronized

nodes. The core algorithms for startup serve for establishing this initial synchro-

nization by negotiating and agreeing on the initial synchronization point. If a node

joins a cluster with already synchronized nodes, this process is called integration.

Many communication protocols support both event-triggered and time-triggered
communication. Event-triggered control excels with respect to flexibility (e.g., strong

migration transparency, no need to change a communication schedule when adding

messages) and resource efficiency through the sharing of bandwidth between nodes.

In event-triggered communication, messages exchanges are initiated when a signifi-

cant event occurs. In contrast to time-triggered systems, these events are not necessar-

ily derived from a clock tick but can include arbitrary state changes in the computer

system or the environment (e.g., interrupt from a sensor).

The section on diagnosis introduces diagnostic services of time-triggered net-

Core Algorithms 55

works. After explaining basic error detection mechanisms, which provide a local

view of the operational state of other nodes, the establishment of a globally consis-

tent membership vector is described.

The last section describes algorithms for interactive consistency, which ensure

that all non-faulty nodes of a cluster receive a consistent value for any communicated

message. Interactive consistency reduces the complexity of developing fault-tolerant

embedded systems, since developers would otherwise have to realize agreement at

the application level.

4.2 Clock Synchronization
Clock synchronization in its most general meaning comprises startup, integration

and keeping clocks synchronized during continuous operation. In this book, we dif-

ferentiate between synchronization of clocks during continuous and during initial

synchronization. The reason for this approach lies more in the literature and the ap-

proaches to synchronization of clocks than in the problem of synchronization itself.

This section describes the problems and approaches of continuous synchronization

of clocks and Section 4.3 describes the initial synchronization.

Since any clock drifts, the clock times of an ensemble of clocks will drift apart

if they are not periodically re-synchronized with respect to each other.1 We call the

clocks of a subsystem local clocks. Clock synchronization is concerned with bring-

ing the time of local clocks in close relation with respect to each other. A measure

for the quality of synchronization is the precision described in detail in Chapter 2,

Section 2.4 and defines the maximum difference of local clocks.

Internal Clock Synchronization

The process of mutual resynchronization of an ensemble of clocks to maintain a

bounded precision is called internal clock synchronization. Internal clock synchro-

nization does not necessarily mean synchronization to real time, as all clocks of an

ensemble can drift with respect to real time. Internal clock synchronization is defined

as optimal by Srikanth and Toueg [304], if the drift rate of the synchronized clock

time of an ensemble of clocks (with respect to real time) is smaller than or equal to

the drift rate of the largest drift rate of the ensemble of clocks.

Mathematically, the problem of internal clock synchronization can be formulated

as follows (using the notion of Chapter 2, Section 2.4):

Property 1 Internal clock synchronization: For any two local clocks j and k and all
microticks mti

|z(mt j
k)− z(mt j

k)| < Π (4.1)

1“Re-synchronize clocks with respect to each other” means “to bring the different times of the clocks

closer together.”

56 Time-Triggered Communication

where Π is the precision of the clock synchronization algorithm.

External Clock Synchronization

If an ensemble of clocks synchronizes their clock times to a distinguished set of

clocks that are not part of this ensemble, this is called external clock synchronization.

A quality measure for this kind of synchronization is the accuracy described and

defined in Chapter 2, Section 2.4.

Mathematically, the problem of external clock synchronization can be formulated

as follows:

Property 2 External clock synchronization: For any local clock j, reference clock r
representing the reference time to which clocks synchronize to, and all microticks mti

|z(mt j
k)− z(mtr

k)| < αr (4.2)

where αr is the accuracy of the clock synchronization algorithm to the reference
clock.

Clock Synchronization Versus Synchronization of Clock Rates

Clock synchronization (i.e., synchronization of the times of clocks) is not the same

as clock rate synchronization [201]. Clock synchronization does not mean only syn-

chronizing the rates of clocks, because synchronizing rates of clocks leaves the ini-

tial state of a clock open. Synchronizing clock times, however, automatically implies

synchronization of clock rates. Synchronizing rates is computationally less intensive

compared to synchronizing times and may suffice for certain applications [201].

State Correction Versus Rate Correction

In order to synchronize local clocks, the local clocks’ time values must be corrected.

There are two different approaches to correcting local clocks: state correction and

rate correction. For state correction, a node applies a computed correction value at

once and immediately after calculation. For rate correction, the rate of the clock is

accelerated or decelerated by changing the number of hardware clock ticks over an

interval. The sum of the number of local clock time changes in the interval equals

the computed correction value.

4.2.1 Principle of Operation of Clock Synchronization

As mentioned above, the goal of clock synchronization is to bring or maintain the

local clock times of the synchronizing clocks in close relation to each other or to

a reference clock. In order to achieve this goal, each node cyclically performs the

following three phases:

Phase 1: Collection of clock time values. In phase 1, a node collects information

Core Algorithms 57

about the clock time values of other clocks actively participating in the syn-

chronization. This can either be the difference to its own clock time or the

actual clock time value.

Phase 2: Calculation of correction value. After performing phase 1, each node

computes a correction value using (some or all) of the collected clock time

values in phase 2. The computation is performed using the convergence func-

tion, which should bring clock times closer together.

Phase 3: Clock correction. In phase 3, a node corrects its clock time using the cal-

culated correction value of phase 2.

Schneider argues in [297] that basically all internal clock synchronization algo-

rithms are solutions to the following three subproblems:

Resynchronization. What is the event that causes the resynchronization of clocks?

Remote clock time readings. How does a clock obtain the clock time values of

other clocks?

Convergence function. How are the correction values of different clocks computed

in order to keep clocks synchronized within a bounded interval (the precision)

while preserving the monotonicity of the clock times and keeping the drift of

the clocks better than or equal to the hardware clock drifts?

Schneider’s argument is also valid for the external clock synchronization algo-

rithm. For all clock synchronization problems, the correction approach (state correc-

tion or rate correction) is another sub-problem to be addressed.

4.2.1.1 Resynchronization Initiation

The trigger for resynchronization can be a key differentiator in clock synchronization

algorithms. Often periodic resynchronization, so-called round-based algorithms, are

used. The problem is when a round starts initially. The most common assumption

is initial synchronization leaving the problem of initial synchronization to another

algorithm (like startup). Another approach is the use of message exchanges to initiate

resynchronization.

4.2.1.2 Remote Clock Time Readings

There are two major approaches identified by [5]: Time Transmission (TT) and Re-
mote Clock Reading (RCR). In algorithms using the TT technique, local clocks send

their clock value based on local time. Alternatively, a processor (or node) estimates

the remote time based on a message received from the remote clock. The RCR tech-

nique has been introduced by [67] to circumvent the absence of knowledge of an

upper bound of communication delays. In the RCR technique, a processor p j willing

to estimate the clock of a remote processor pi sends a request message to pi and waits

for a certain amount of time for pi’s response. The estimate of the remote clock is

obtained using the round trip times and the distribution of communication delays and

58 Time-Triggered Communication

the drifts of pi and p j during the estimation process. The result can be an interval or

a value out of this interval. The key difference between RCR and TT is who initiates

the process of remote clock reading.

4.2.1.3 Convergence Functions

In the literature, clock synchronization approaches often differentiate themselves via

the convergence function. The convergence function uses the different remote clock

estimates and calculates a single new clock value which the local clock uses to correct

itself to. Schneider [296] and Anceaume and Puaut [4, 5] list different convergence

functions with the following being the most often referenced ones.

Convergence Averaging Techniques

In the following, some kind of averaging on clock estimates characterizes the con-

vergence functions. Some functions tolerate potentially faulty clock estimates, while

others don’t. For the overview, f (pi,x1, ...,xn) identifies a convergence function,

where pi is the processor (or node) requesting the convergence function and x1, ...,xn
are the estimated clock values. For the convergence function fmm and fim, xi is an

interval otherwise an integer value.

Interactive convergence function. [188] uses this function, which is also called

egocentric average function and denoted by fe. fe(pi,x1, ...,xn) returns the av-

erage of the arguments modified in the following: x j, 1 ≤ j ≤ n, stays x j if

|x j − xi| < ω̄ (i.e., if x j is not further than ω̄ away from xi) otherwise x j is

replaced with xi. ω̄ has to be chosen appropriately, but be at least ω̄ > π , π be-

ing the precision. For fe no sorting algorithm needs to be applied to the remote

clock estimates, which is an advantage.

Fast convergence function. f f c denotes this function and is used in [212, 115]. f f c
returns the average of all arguments x1 to xn that are within ω̄ of at least n− f
other arguments. f f c yields a high-quality precision, but is computationally

quite complex.

Fault-tolerant midpoint function. Denoted f f tm and used in [352] returns the mid-

point of the range of values spanned by arguments x1 to xn after the f highest

and f lowest values have been discarded.

Differential fault-tolerant midpoint. Denoted fd f tm and used in [101, 102] is opti-

mal with respect to the best precision achievable and best drift rate achiev-

able for logical clocks. fd f tm is defined as
min(T−Θ,xl)+max(T+Θ,xu)

2 , where

xl = xh f +1
,xu = xhn− f with xh1

≤ xh2
≤ xhn , hp �= hq; 1 ≤ hp hq ≤ n where

T is p’s logical time and Θ is the maximum reading error of a remote clock.

Sliding window function. This function selects a fixed size window w that contains

the larger number of clock estimates. This function is proposed in [257] and

proposed to convergence functions differing by the way a window is chosen

Core Algorithms 59

when multiple windows contain the same number of clock estimates and dif-

fering by the way the correction term is computed once the window has been

identified. The first function, f det
mean, chooses the first window and returns the

mean of the clock values contained in the window instance. The second func-

tion, fmedian, chooses the window containing clock estimates having the small-

est variance and returns the median of all clock estimates within the selected

window. The main interest of sliding window convergence functions is that

logical clocks closeness degrades gracefully when more failures are assumed

to occur.

Minimization of the maximum error interval-based function. Denoted fmm and

takes for each xi an interval [Lpi(t)−epi(t),Lpi(t)+epi(t)], where epi(t) is the

maximum error on pi’s clock estimate and returns an interval for the corrected

clock value. fmm is used in [217].

Intersection of the maximum error interval-based function. Denoted fim and

also used in [217] is similar to fmm in the sense that it also takes intervals rep-

resenting clock estimates as arguments. fim, however, returns an intersection

of the intervals of the clock estimates.

Convergence Non-Averaging Techniques

Convergence non-averaging techniques compute a new clock value based on the fact

that a fixed number of estimates of remote clocks have been received to compute a

new clock value. The number of expected clock estimates depends on the type and

number of tolerated failures. When all required clock estimates are received, the local

clock is corrected to the value that is computed using the respective algorithm.

Reference [70] uses only one estimate as only performance failures are tolerated

and the logical clock is corrected with kR, where k is the round number and R is the

round duration. Similarly, [124] also only corrects kR. In [304], the logical clock is

corrected with the value kR+π , where π is constant selected large enough for clocks

not to be set backwards. In [347], the clock is corrected with the value of one of the

clock estimates contained in the clock estimation message.

4.2.2 Classifications of Clock Synchronization Algorithms

The following paragraphs further classify clock synchronization algorithms.

Internal and External Clock Synchronization Algorithms

Clock synchronization algorithms can be classified by the clocks used as refer-

ence clocks. If the clocks used as reference are not part of the synchronizing en-

semble, this is commonly called external clock synchronization. Examples of ex-

ternal clock synchronization algorithms are [71, 217]. If the clocks used as ref-

erence are also synchronizing clocks, this is called internal clock synchronization.

There are a number of different internal clock synchronization algorithms protocols,

60 Time-Triggered Communication

which all basically differ by the different approaches to the three subproblems de-

scribed by Schneider [297]. Examples for internal clock synchronization algorithms

are [22, 101, 124, 183, 189, 188, 209, 212, 304, 272, 350, 70]. Fetzer and Cristian

combined the internal and external clock synchronization [102, 71].

Sometimes internal clock synchronization is also additionally characterized as

symmetric and asymmetric. In symmetric algorithms all clocks participating play the

same role, whereas in asymmetric algorithms one or more predefined local clock(s)

play a specific role often referred to as master(s). Symmetry influences the ability

of the algorithm to support failures and requirements in terms of message exchanges

needed to achieve synchronization within a sought precision [4].

Deterministic, Probabilistic and Statistical Clock Synchronization Algorithms

Internal clock synchronization algorithms can further be classified by assumptions

about the transmission delay of the communication system in deterministic, proba-
bilistic and statistical clock synchronization algorithms [4].

• Deterministic clock synchronization algorithms assume that an upper bound

on transmission delay exists. If this assumption holds, a certain quality level of

clock synchronization (in terms of a guaranteed precision) can be guaranteed.

• Probabilistic and statistical clock synchronization algorithms do not assume a

strict upper bound on the transmission delay. Instead, statistical clock synchro-

nization algorithms assume that the first and second moment of the distribution

of the transmission delay and – sometimes – that the distribution is known. As

a consequence, a node does not know the precision of the clock synchroniza-

tion at a given time. Probabilistic clock synchronization algorithms make no

assumption about the distribution of the transmission delay. Instead it is as-

sumed that with probability p, p < 1, the transmission delay will be smaller

than a guaranteed constant maximum transmission delay. As a consequence,

all clocks know whether they are synchronized or not at any time [67].

Hardware Versus Software Implementation

Clock synchronization algorithms that are implemented in hardware and use special-

ized hardware components, such as [299, 183], achieve tight synchronization. On

the other side, implementations in software, such as [67, 101, 124, 304, 209, 188,

212, 257, 347], do not achieve synchronization as tight as hardware algorithms, but

use commercial-off-the-shelf components. Lately, the trend towards support of some

critical clock synchronization elements being supported by hardware enables tighter

precision values for clock synchronization. An example of this trend is driven by the

standardization activities around IEEE 1588 [142] effectively requiring some hard-

ware support to be efficiently possible.

Core Algorithms 61

4.2.3 Limits in and Performance of Clock Synchronization Algorithms

As the remote clock readings are estimates of local clocks by other nodes and con-

tain some unknown variances, clock synchronization can never be perfect. In other

words, local clocks cannot be re-synchronized perfectly, so that at a given time the

local clock readings are equal at all clocks. For a symmetric clock synchronization

algorithm and a given uncertainty ε and n local clocks, Lundelius and Lynch have

shown in [210] that the bound that a symmetric clock synchronization algorithm can

achieve immediately after resynchronization cannot be smaller than ε(1−1/n). For

asymmetrical clock synchronization and one master, the bound is ε , the uncertainty

of the remote clock reading of the master reference clock.

Krause et al. show in [185] that there is a relationship between precision and

drift of the global time. The more frequently an algorithm synchronizes, the tighter

the precision, but frequent resynchronization may lead to a larger drift of the global

time. This is easily explained by the fact that any error terms in remote clock readings

are integrated and increase the drift.

Anceaume and Puaut provide an overview of mostly internal clock synchroniza-

tion algorithms in [4, 5] and describe the key parameters of these algorithms such

as precision, failure modes tolerated, assumptions and drift rate of the global time

(called accuracy by Anceaume). Table 4.1 provides an overview and classification of

some clock synchronization algorithms. Table 4.2 provides an overview of the key

parameters of the deterministic clock synchronization algorithms presented in Ta-

ble 4.1. Table 4.3 provides a similar overview for statistical and probabilistic clock

synchronization algorithms.

4.2.4 Related Work on Clock Synchronization Algorithms

Halpern et al. [124] present a fault-tolerant clock synchronization algorithm that

works in arbitrary networks. Approaches to clock synchronization are refined for

the employment in large distributed systems [218, 295, 294, 347]. Rushby and von

Henke have formally verified clock synchronization algorithms [286]. Schedl simu-

lated several clock synchronization algorithms [292].

Most of the presented clock synchronization algorithms use replication as fault

tolerance strategy. Dolev, Welch and Papatriantafilou present approaches that achieve

fault tolerance using self-stabilization [77, 76, 246]. Analyses of self-stabilizing

clock synchronization algorithms can be found in [208, 59].

Measurement and control applications are increasingly using distributed system

technologies such as network communication, local computing and distributed ob-

jects. As these measurement and control applications are based on distributed em-

bedded systems, clock synchronization has become an important area for standard-

ization. In 2001, the IEEE standard organization started a standardization process for

clock synchronization in measurement and control applications. In 2002, the stan-

dardization committee published a draft standard [141] for clock synchronization,

called “Precision Time Protocol” (IEEE P1588). This standard was revised and ex-

tended in 2008 and is called “IEEE Standard for a Precision Clock Synchroniza-

62
Tim

e-Triggered
C

om
m

unication
TABLE 4.1
Classification of clock synchronization algorithms [5].

Reference Type Failures Structure Synchronization Remote Clock
C L P Event Detection Clock Estimation Correction

[70] D R P O/P SYM-FLOOD MSG TT NAV
[124] D B P B SYM-FLOOD MSG TT NAV
[304] D B R B SYM-FLOOD MSG TT NAV
[352] D B R B SYM-FLOOD SYNC TT AV - f f tm
[188] (CSM) D B R B SYM-FLOOD SYNC TT AV - fe
[347] D B O C/P SYM-FLOOD MSG RCR NAV
[257] D B R B SYM-FLOOD SYNC TT AV - fsw
[116] (Tempo) D T P C ASYM-MAST not required RCR AV - f f c
[212] D B R B not imposed not imposed not imposed AV - f f c
[100] D B R B not imposed not imposed not imposed AV - fd f tm
[102] D B R B not imposed not imposed not imposed AV - fd f tm
[188] (CON) D B R B not imposed not imposed not imposed AV - fe
[188] (COM) D B R B not imposed not imposed not imposed AV - fe
[217] (MM) D R R B not imposed not imposed RCR AV - fmm
[217] (IM) D R R B not imposed not imposed RCR AV - fim
[240] (TT) S R - C SYM-RING not imposed TT not considered
[240] (RCR) P R - C SYM-RING not imposed RCR not considered
[12] S R - R ASYM-SLAV not imposed TT AV - fid
[67] P T - P ASYM-SLAV not imposed RCR AV - fid

Note: D stands for deterministic, P for probabilistic, S for statistical.
Components are labeled C (Clock), L (Link), and P (Processor). R means Reliable, C Crash, B Byzantine, O Omission, P Performance, and T Timing. Probabilistic and
statistical algorithms do not assume an upper bound on message delays, which makes omission and performance failures irrelevant as indicated by “-”.
SYM stands for symmetric, ASYM for asymmetric. FLOOD, RING, MAST, and SLAV represent flooding-based, ring-based, master-based, and slave-controlled schemes,
respectively.
NAV is used for non-averaging and AV for averaging techniques. AV also contain the name of the convergence function.
SYNC or MSG are used when rounds are detected thanks to initially synchronized clocks or message exchanges, respectively.
RCR stands for “remote clock reading,” TT for “time transmission.”

C
ore

A
lgorithm

s
63

TABLE 4.2
Properties of deterministic clock synchronization algorithms [5].

Reference Type Redundancy Precision Drift Rate Msg.
[70] I none (δ + ε)(1+ρ)+2ρ[R(1+ρ)+(δ + ε)] ρ n2

[124] I none (1+ρ)(δ + ε)+2ρ(1+ρ)R (f +1)2ρ n2

[304] I 2 f +1 (δ + ε)[(1+ρ)3 +2ρ](1+ρ)R ρ n2

[352] I 3 f +1 5ε +4ρε +4ρR ρ + ε

Rmin
n2

[188] (CSM) I 2 f +1 (f +6)ε +6ρS +2ρR (2 f +12)ε +10ρS +2ρR n f +1

[347] I+E (f0 +1)(fp +1) Γt +2ρΓa +2ρR ρR−(1−ρ)Γt
R+(1−ρ)Γt

3n bcasts

[257] I 4 f +1 (n2+n− f 2)(δ+ε)+2Rρ(n− f)(n− f +1)
n2−5 f n+n+4 f 2−2 f not given n2

[116] (Tempo) I 2 f +1 4D(1+2ρ)−4(δ − ε)+2ρR not given 3n
[212] I 3 f +1 (n+ f)Θ+2 f (π+Θ)

n +2ρR not given -
[100] I 3 f +1 4Θ+4ρR+2ρβ ρ -
[102] I+E 2 f +1 ϕ = ∆+Θ+ρR ρ -
[188] (CON) I 3 f +1 max(n

n−3 f Θ+2ρ(R+2S n− f
n),β +2ρR) not given -

[188] (COM) I 3 f +1 (6 f +4)Θ+2ρS(4 f +3)+2ρR (12 f +8)Θ+(8 f +5)2ρS +2ρR -
[217] (MM) I 3 f +1 2Em(t)+2(δ + ε)+2ρ(R+2(δ + ε)) not given -
[217] (IM) I 3 f +1 δ + ε +2ρR not given -

Note: Although not required, [5] assumes a fully connected network for [70, 124, 304] in order to be able to compare the algorithm precision with the one of other
algorithms. The worst case precision for [352] given here is obtained when taking β = 4ε + 4ρR as suggested by the authors. Rmin is the minimum duration of a round.
For [188] (CSM), S stands for the time interval during which clock estimates are obtained (last S seconds of R). In [347] at most f0 omissions are supported during each
synchronization round and there can be at most fp fault clock-node pairs per round. Γt is maximum difference between message received at different nodes. Γa is the
maximum duration of an agreement protocol. For [116], D equals δ +ε . For comparison reasons, external time masters do not drift and reference time servers approximate
real time with an a priori given error ∆ for [102]. For [217](MM), Em(t) stands for the smallest clock error in the system.

64
Tim

e-Triggered
C

om
m

unication

TABLE 4.3
Properties of probabilistic and statistical clock synchronization algorithms [5].

Reference Type Precision Messages

[240] (TT) I
∫∞
−∞ dy

∫ w+y+n(δ−ε)
−∞ fmax(y,m) fmin(x,m)dx not mentioned

[240] (RCR) I Pγ<γmax = er f (γmax
√

2m√
nµ

) m = 2 nµ
2

2γ2
max

er f−1(Pγ<γmax)
2

[12] I γmax = 2(γsynch +(R+2ε)ρ) 2σ
2
d (er f c−1(p))2

ε2
max

[67] I U−δ + ε +ρk(1+ρ)W 2
1−p

Note: For [240] (TT), fmin and fmax stand for the density function of the lower and upper bound on the skew interval, respectively, generated by a message under the
assumption that endpoints of the interval can be modeled as independent random variables. The constant w/2 is the sought remote clock reading error. The estimate in
column Precision is the probability a remote clock is estimated with an error w/2 using m messages.
For [240] (RCR), the value given in the Precision column is the probability a remote clock is estimated with an error lower than a given constant γmax using m messages.
Function er f - defined as er f (u) = f rac2

√
π
∫ u

0 e−u2
dy. Variable γ is the difference between any two clocks assuming that the average of the transmission delay δ is

known, γmax the maximum value the estimate is allowed to vary from the true value. µ2 is the variance of a single hop on the ring. The value in column Messages is the
average number of messages exchanged per resynchronization.
For [12], the Precision value is the best precision achievable when a precision of γsynch in obtained just after resynchronization. Variable p stands for the probability a
precision of γsynch is obtained, σ2 is the standard deviation of the message delay. er f c−1(p) is the inverse of the complementary error function defined as er f c(u) =
1− er f (u).
For [67], the Precision column value is the best precision achievable assuming no error occurs. Variable k is the number of successive reading attempts performed by the
master, and W is the delay elapsed between each reading attempt. U is the maximal round trip delay accepted by the master to consider a slave response, beyond which,
the master discards a reading attempt. The figure given in the Messages column is the average number of messages required in a fail-free environment. p is the probability
that a process observes a round trip delay greater than 2U .

Core Algorithms 65

tion Protocol for Networked Measurement and Control Systems” [142]. This stan-

dard addresses the needs of measurement and control systems: microsecond to sub-

microsecond accuracy; administration free; and most importantly, accessible for both

high-end devices and low-cost, low-end devices. This standard decouples the appli-

cation and communication task by introducing an application and a communication

layer and an isolation layer that isolates application activities from communication

activities and provides time provision services. The communication layer of the pro-

tocol requires all communicating nodes to follow a time-division multiple access

(TDMA) strategy for the communication medium in order to achieve low latency jit-

ter. The TDMA strategy is achieved by implementing a master/slave protocol [142].

4.2.5 Time Standards and Sources

Time standards are an agreed origin and representation of time. This section de-

scribes the two time standards Internal Atomic Time and Universal Time Coordi-
nated. Clocks that are synchronized to time standards are potential sources for ref-

erences for external clock synchronization. That is, they can be used as relational

clocks. We call systems that provide clocks that are synchronized to time standards

time sources.

4.2.5.1 Time Standards

International Atomic Time

In 1967, the Bureau International de l’Heure (BIH) specified the Temps Atomique
International (TAI) in order to provide a time standard that can be produced in a lab-

oratory, but is in agreement with the second derived from astronomical observations.

The TAI defines the second as the duration of 9192631770 periods of the radiation

of a specified transition of the cesium atom 133. The TAI is a strictly monotonic

timescale (also called a chronoscopic time scale). That is a timescale without any

discontinuities.

Universal Time Coordinated

The Universal Time Coordinated (UTC) is a time standard that is in close relation

to the time derived from astronomic observations of the rotation of the earth rela-

tive to the sun. UTC is a time standard used for business relations and is a basis for

widely used synchronized clocks, such as wall clocks. There is an offset between

TAI and UTC due to the deceleration of the rotation speed of the earth, which is ad-

justed in second intervals by the BIH whenever necessary. UTC time is always kept

within ±0.9 seconds of the time derived from astronomic observations (including

polar wander effect corrections) by the insertion of an extra second (positive leap

second) as needed. While it is theoretically possible to have to remove an extra sec-

ond (negative leap second), it has not happened so far. From the last statements it can

be concluded that UTC is not free of discontinuities.

66 Time-Triggered Communication

4.2.5.2 Time Sources

Global Positioning System

The U. S. Department of Defense funds, controls and operates the Global Posi-
tioning System (GPS). GPS is a dual-use, satellite-based system that provides ac-

curate location and timing data world-wide. Provision is done via specially coded

satellite signals that can be processed in a GPS receiver, enabling the receiver to

compute position, velocity and time. The time at GPS satellite is synchronized to

UTC time with an accuracy that is better than 15 ns (there is an offset between GPS

time and UTC to provide monotonicity). The accuracy of the timing information of

commercially available GPS receivers using special measurement methods is about

50 ns. GPS is an accepted and widely used time source for military and civil appli-

cation [197, 133, 72].

Global Navigation Satellite System

The GLObal NAvigation Satellite System (GLONASS) is – similar to GPS – a dual-

use, satellite-based navigation system that enables global-wide positioning, velocity

measuring and timing information. The GLONASS system is managed by the Rus-

sian Space Forces for the Russian Federation Government. The GLONASS system

provides two types of navigation signals with different precision levels. The time

of GLONASS satellites is synchronized to UTC (with a constant offset to provide

chronoscopic behavior) with approximately 15 ns [192].

Galileo

Galileo is the planned European satellite navigation and time transferring system.

The European Union launched the GALILEO project due to the following concerns

regarding GPS and to a degree GLONASS [164]: Both systems are under the uni-

lateral control of a foreign national defense authority, the absence of guarantees of

service, priority on military needs, intentionally degraded use to civil needs, poor

availability in urban areas and unpredictable gaps in coverage. Galileo should over-

come these concerns and become fully operational in 2008.

Radio-Controlled Clocks

In several regions of the world, time information is broadcast via radio services

with a UTC timecode modulation (examples are DCF77, WWVH, WWV, and HBG).

Timecode receivers enable the reception of a time signal with an accuracy with re-

spect to UTC in the order of 10 ms. Receivers, however, are subject to occasional

gross errors due to propagation and equipment failures [197, 298, 224]. Terrestrial

radio stations allow for accuracies of timing information in the range of 50 ms to

10 μs [199].

Core Algorithms 67

4.2.6 Time Aspects from an Application-Specific View

Time can serve different aspects for an application. For a real-time control applica-

tion, time must have properties such as chronoscopic behavior. For applications that

use time as reference for users for synchronizing their wall clocks and watches, time

must be synchronized to UTC and chronoscopic behavior is thus impossible. This

section describes different aspects of time.

Optimal Representation of Time for Real-Time Systems

For time in real-time systems, a representation should be chosen that has the follow-

ing properties:

• No overflow occurs in system life time

• The precision of the time is smaller than the granularity of the representation

• Chronoscopic behavior

The time should be accessible via reliable sources world-wide and the jitter at

receivers with respect to the reference time should be low. The GPS time is a con-

tinuous representation of time with high availability and low jitter. Yet, GPS time

overflows every 19.6 years because the GPS week is represented by a 10 bit value.

This shortcoming of GPS is overcome by the time format [241] described in Fig-

ure 4.1. This representation guarantees no overflow during the lifetime of the product

(horizon of more than 10,000 years) and the full second can be easily accessed due

to binary representation of a second overflow. The granularity of this time represen-

tation is 59.6 ns, which is in the order of the accuracy of common GPS receivers.

Using this time representation and a satellite-based time provision system enables

the above-mentioned requirements.

...

239 seconds 20 seconds = 1 second 2-24 seconds

8 bytes

1 byte1 bit

FIGURE 4.1
Optimal Representation of Time in Real-Time Systems [241]

68 Time-Triggered Communication

4.3 Startup and Restart
4.3.1 Introduction and Overview

The initial synchronization of distributed local clocks in a network of computing

nodes is an essential prerequisite for successful time-triggered communication. In-

deed, clock synchronization algorithms for most applied time-triggered protocols

are based on the assumption of initially synchronized local clocks as established by

a startup algorithm. While both algorithms can be interwoven, in principle, the main

motivation of a dedicated startup algorithm is in achieving a simple clock synchro-

nization algorithm as it is continually executed during mission time. Typical periods

of clock synchronization are in the order of some tens of milliseconds, resulting in

several millions of repetitions in a transatlantic flight for example. In contrast, the

startup algorithm is ideally executed only once. Hence, we isolate complexity in the

startup algorithm as a simple clock synchronization algorithm contributes to low run-

time and resource requirements as well as robust and precise synchronization.

The success of a startup algorithm ideally does not depend on the individual

power-on times of the participating nodes. Therefore, most startup algorithms are

subdivided in a so called “coldstart” and “integration” phase. Coldstart is the phase

when nodes negotiate and agree on the initial synchronization point. Nodes that are

powered on late will then integrate to this synchronized timebase. Coldstart and in-

tegration are discussed in more detail in Section 4.3.2.

Once synchronization is established, clock synchronization maintains the syn-

chronization quality. Clock synchronization algorithms can be designed in a fault-

tolerant way such that they even sustain faulty nodes and faulty channels. In rare

scenarios, when the underlying fault hypothesis is exceeded, it may happen that the

synchronization is lost. Therefore, startup algorithms are often used for the resyn-

chronization after a network-wide synchronization failure. In this case we speak of

a restart of the system. Before restart, a node has to detect that it has lost synchro-

nization. For this purpose, time-triggered protocols use clique avoidance or clique

detection algorithms. We discuss restart in Section 4.3.3.

The startup problem is often associated with the leader election problem. How-

ever, it is the task of the startup to reach an agreement on a point in time rather than to

reach an agreement on a particular node which would then in turn propose a starting

point in time. One reason to have a dedicated startup algorithm rather than to use a

leader election algorithm is that the leader just elected may become faulty and a new

election phase is required.

Figure 4.2 depicts boxes which represent common phases of operation in a time-

triggered protocol: Integration, coldstart and the synchronized phase. Arrows be-

tween boxes denote transitions between two phases. Arrows marked with (A)..(C)

represent the initial phase entered after power-on. Note that initially entering the

synchronized phase (C) demands an external synchronization event, such as the si-

multaneous power-on of all nodes or an external time reference like GPS. The algo-

Core Algorithms 69

Integration Coldstart

Synchronized

)B()A(

(C)

FIGURE 4.2
The Startup/Restart Triangle: A Time-Triggered Protocol Usually Distinguishes be-

tween the Integration, the Coldstart, and the Synchronized Phase

rithms realizing the individual phases as well as the transitions and the initial phase

are key characteristics of a particular instance of a time-triggered protocol.

In one example protocol, a node may start in the integration phase after initial

power-on (entry point A). In the integration phase, the node listens to the network

to discover whether there exists already a synchronized timebase, or not. The pres-

ence of a synchronized timebase may be indicated by the periodic synchronization

messages used in the clock synchronization algorithm. When the node receives such

synchronization messages, it may use these messages for integration and enter the

synchronized phase. In a case when a node does not receive such synchronization

messages for a sufficient long duration, it is safe to conclude that there does not exist

a synchronized timebase. In this case, the node transits to the coldstart phase and

aims to establish a new timebase. As more and more nodes become powered-on the

coldstart phase will succeed in establishing a timebase and the nodes may move on

to the synchronized phase.

While the clock synchronization problem has been studied thoroughly since the

early 1980s, the startup problem got relatively little attention: Claesson et al. present

a strategy for the solution of the startup problem that is based on unique message

lengths and full-duplex communication links [60]. Lönn discusses startup algorithms

in [204] and formally verifies with Pettersson a particular startup algorithm in [206].

Startup algorithms based on unique timeouts are similar to the startup algorithm of

the Token Bus protocol [139]. Krüger introduces such an algorithm for the startup of

time-triggered protocols [186]. The TTP/C startup algorithm as specified in [171]

is based on this principle. More recent studies of the startup problem have been

conducted by Widder [353] and Steiner and Kopetz [312]. Starting time-triggered

communication in ring topologies has been researched by Paulitsch and Hall [249].

70 Time-Triggered Communication

In the remainder of this chapter, we continue discussing the phases of the startup

triangle and its transitions in more detail.

4.3.2 Startup

As introduced in Chapter 2, components in a system can be characterized by their

functionality: Nodes are components that access sensor values, perform computa-

tions and/or operate actuators. Channels are components that connect nodes to each

other. Depending on the network topology, channels may be pure wiring only in

case of a multi-drop bus topology or may consist of several nodes such as routers,

switches, hubs or repeaters in case of a star or tree-based topology. Sometimes, a

component may be both, node and channel, e.g., a FireWire node acts as computing

node and also relays messages from other nodes.

A node that has access to an oscillator, e.g., a quartz crystal, can use the regu-

larity of this oscillator to implement a clock. A clock is a hierarchical set of cyclical

counters and has state and rate. The state of a clock at some point in real-time is the

current assignment of all its counters. The rate of a clock is the update rate of these

counters. The state of a clock, therefore, changes with the progress of real-time in re-

lation to the frequency of the oscillator. According to [282]: Let C be the clocktime,

that is time represented within a node by its counters, and let R be the real-time; then

the clock of node p is represented by the function:

Cp : R→ C (4.3)

meaning that at each point in real-time t there exists a corresponding assignment of

a node p’s counters that represent the node’s local view of time Cp(t).
Formally stated, a startup algorithm ensures that there exists a point in time t0,

such that the difference of the local clocks in any two nodes p and q that are powered-

on and non-faulty is less than the precision Π.

∃t0 : |Cp(t0)−Cq(t0)| < Π (4.4)

Property 1 Timely Startup: Whenever at least a minimum configuration of nodes
and channels is powered-on, a startup algorithm establishes synchronous communi-
cation of the non-faulty nodes within an upper bound in time.

The minimum configuration is specific to a time-triggered protocol. The “when-

ever” factor in the property specification is highly important, since it does not specify

an upper bound in time until a minimum configuration is powered-up. The timeliness

property is stronger than a “liveness” property: In contrast to liveness properties,

timeliness properties require a known upper bound on the duration after which a

property has to be established.

Property 2 Safe Startup: When the startup algorithm terminates, all correct nodes
and channels that communicate synchronously are synchronized to each other.

Core Algorithms 71

Node 1 Node 2 Node 3Synchronized
Nodes

Integrating
Node Node 4

...
Integration Cycle

Node 1 Node 2 Node 3

Node 4

...
Integration Cycle

a) Sequential Synchronization Messages b) Parallel Synchronization Messages

FIGURE 4.3
Integration Messages Must Be Periodically Communicated to Allow Integration; The

Integration Messages May Be Sent in Sequence or in Parallel

The safety property ensures that the startup algorithm will not produce multiple

“cliques,” that are disjoint subsets of nodes that communicate synchronously within

the subset but not with nodes in different subsets. However, cliques can be formed

temporarily during the startup process.

4.3.2.1 Integration

Nodes in the synchronized phase periodically exchange integration messages. An

integrating node determines from these integration messages the number of synchro-

nized nodes. When this number is sufficiently high, the integrating node p uses the

synchronization messages to initialize its local clock Cp. In this section, we discuss

this integration process and alternative realizations.

Figure 4.3 depicts a network of four nodes. Nodes 1..3 are already synchronized,

which means that they execute the off-line configured access schedule to the net-

work. The network is represented by a cloud and may allow only sequential com-

munication, like in a multi-drop bus, or allow also parallel communication, like a

star/tree-based network. As a consequence, the nodes either have to send the integra-

tion messages in sequence or may send them in parallel. Many time-triggered proto-

cols use the clock synchronization messages also as integration messages. However,

this is an implementation choice rather than a necessary paradigm. In principle it is

possible to use different sets of messages with potentially different message periods.

However, to increase bandwidth efficiency, one type of message is typically used for

both, integration and clock synchronization.

From a purely functional perspective, integration of a node requires the reception

of a single integration message only. The receiver knows the state of the local clock

in the sender CS at the scheduled dispatch point in time tdispatch. Furthermore, latency

72 Time-Triggered Communication

and jitter of the received integration message are bounded. Upon reception of the

integration message, at treceive, the receiver can set its local clock CR to max(latency):
CR(treceive) = max(latency). As a consequence, at treceive, CR and CS are synchronized

(where ρ is the maximum drift rate of the local clocks in the system):

CR(treceive)−CS(treceive) ≤ jitter +(max(latency)×ρ) (4.5)

The network jitter will be typically the dominant factor in this equation, espe-

cially in networks that share the physical communication links with unsynchronized

traffic. For example, in the TTEthernet chapter we discuss the “transparent clock”

mechanism as a means to measure the individual jitter of a message in the network

and the “permanence function” to transform the measured jitter into network latency.

The minimum content of an integration message is a type field which distin-

guishes the integration message from all other messages in the system. This field

may even be encoded in other fields present in the message, as for example an Ether-

net frame with a particular Ethernet MAC destination address. Other typical content

of an integration message is as follows:

• Sender identifier: An identifier of the sender of the integration message.

• Membership vector: A bitvector with a fixed relation of bits to nodes in the

system, for example to the set of nodes that are allowed to send integration

messages. In case of parallel synchronization messages, the channels in the

network may form a single integration message out of a group of integration

messages. In order to preserve the information about the original senders, the

channels can set the respective bits in the membership vector of the newly

generated frame.

• Integration cycle number: The length of the overall communication cycle is

determined by the least common multiple of all frame periods in the system.

Long communication cycles may require multiple integration points, such that

a node may not only integrate at the beginning of the communication cycle

but also at periodic points in between. The integration cycle number identifies

these points.

• Global time value: A time-triggered protocol may provide a global time service

with a time-horizon that exceeds the communication cycle. The global time

value is then used to integrate to this global time.

Integration algorithms become slightly more complex, when faulty integration

senders have to be assumed. Such faulty senders may send integration frames at

faulty points in time or with fault message contents. Hence, the reception of an in-

tegration message from a single sender is in general insufficient for a fault-tolerant

integration process. Instead, integration messages from a group of nodes have to be

used. The size of this group follows the classic fault-tolerance results: k +1 senders

to tolerate k fail-silent faulty senders, 2k+1 for fail-consistent failures, and 3k+1 for

Core Algorithms 73

...
Integration Cycle i Integration Cycle i+1 Integration Cycle i+2

...
INTEGRATION

SYNCHRONIZED

INTEGRATION

SYNCHRONIZED

OFF

OFF

...
Integration Cycle i Integration Cycle i+1 Integration Cycle i+2

...

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Node 2
Integration

Node 1
Integration

INTEGRATION

SYNCHRONIZED

OFF

...
Integration Cycle i Integration Cycle i+1 Integration Cycle i+2

...
1 2 3 1 2 31 2 3

Node x
Integration

a) Sequential Synchronization Messages – Integration Scenarios

b) Parallel Synchronization Messages – Integration Scenario

FIGURE 4.4
The Determination of the Number of Synchronized Nodes Can Be Done by “Count-

ing” the Number of Received Integration Messages or by Checking the Contents of

an Integration Message

arbitrarily-faulty senders. When error-containment measures are implemented, like

central guardians, the failure modes refer to the failure manifestation on the interface

to the error-containment unit, e.g., the output as forwarded or blocked by the central

guardian.

As different networks allow different synchronization message transmissions, the

process of deducing the number of senders from the received integration messages

differs. Figure 4.4 shows some example scenarios on how the information from mul-

tiple senders may be combined in the integration process.

The top two examples in Figure 4.4 depict the fault-tolerant integration process

when the integration messages are only sequentially transmitted. Here we assume

a system of three nodes where two nodes are synchronized and the third node is

integrating. In the first scenario, Nodes 1 and 3 are synchronized and Node 2 is

powered-on just after the slot of Node 2. It receives the integration message of Node 3

and continues listening for integration messages with matching contents and timing.

In the next integration cycle, Node 2 receives the integration message from Node

1, which matches the previously received integration message. Node 2 received two

integration messages from different senders. In case of a fail-consistent failure model,

this is sufficient for Node 2 to integrate. The second scenario is similar, with Node

74 Time-Triggered Communication

1 being the integrating node. Again, Node 1 needs integration messages from two

independent sources for integration.

When parallel integration messages are possible, all synchronized nodes may

send their integration message at the same scheduled dispatch point in time. The in-

tegration messages are then sent to a dedicated set of “compressing nodes” rather

than broadcast to all nodes. Each compressing node generates a new compressed in-

tegration message in which the membership vector identifies the original integration

message senders. This compressed integration message is then broadcasted in the

network. An integrating node can deduce the quality of the compressed integration

message by the number of bits set in the membership vector. When this number is

sufficiently high, the integrating node can use the integration message for integra-

tion. The third example in Figure 4.4 depicts a scenario in which parallel integration

messages are used. Here, a Node x is able to integrate after the reception of a single

compressed integration message with a sufficiently high number of bits set in the

membership vector.

Dedicated compression nodes have been introduced to reduce the overall num-

ber of broadcast messages and to implement two convergence phases in the clock

synchronization process.

The integration phase can terminate “successfully” or “unsuccessfully”: When

the node has received a sufficiently long sequence of messages, it is able to synchro-

nize to a running system and the integration terminates successfully. If the node is

not able to integrate for a given duration, the node terminates the integration phase

unsuccessfully and transits to the coldstart phase.

4.3.2.2 Coldstart

When a node perceives no synchronized communication or synchronized commu-

nication of a too little number of nodes, it may enter the coldstart phase. A time-

triggered protocol may be configured such that only a dedicated set of nodes, the

“core system,” is allowed to enter the coldstart phase while the remaining nodes en-

ter the synchronized phase only by integration. In the coldstart phase, a node aims

to establish a new synchronized time-base rather than integrating to an existing one.

As the node is not synchronized yet, its input/output behavior to the network is un-

coordinated with other nodes. In particular, a node in the coldstart phase will asyn-

chronously send periodic coldstart messages and will asynchronously receive cold-

start messages.

Coldstart messages are signals for the nodes to start synchronized communica-

tion. There are different options to construct coldstart messages [305]:

• Noise: any kind of activity other than the idle state of the network channels.

This form of coldstart message depends on the physical layer.

• Semantic-Free Coldstart Message: A well-formed message with minimum

content only identifying the message as a coldstart message, as for example

a type field.

• Semantic-Full Coldstart Message: A well-formed message with content ex-

Core Algorithms 75

ceeding the minimum; for example, information on where to start in the com-

munication schedule similar to that discussed for the integration messages.

Similar to the integration process, the reception of a coldstart message is used to

set the local clock in the receiver CR such that it holds approximately the same value

as the local clock in the sender CS (see Equation 4.5).

In a fault-tolerant system, it is necessary to configure more than one node to

send coldstart messages to ensure the presence of a starting node despite failures.

The asynchronous transmission of coldstart messages leads to a contention problem

at the network when two or more nodes send their coldstart message within a short

time interval. Depending on the network properties, the contention may result in a

physical collision, a logical collision or network buffering.

Physical collisions appear when half-duplex communication links are used or

in multi-drop network topologies, like the traditional bus network topology. Here,

two or more senders access the same communication link at the same point in time.

Thereby, the electro-magnetic waves in the physical communication links overlay.

Physical collisions may have different effects in different time-triggered protocols.

When noise is used as coldstart message the collision itself may be still sufficient

as a starting signal for time-triggered communication. In case of semantic-free cold-

start messages, the physical collision may destroy the message consistently for all

nodes or inconsistently only for some nodes. However, as there is no more content

transported in the coldstart message, it is guaranteed that all nodes that receive the

semantic-free coldstart message will set their local clocks to about the same position

in the communication cycle. The physical collision of semantic-full coldstart mes-

sages is more critical. Again, the physical collision of semantic-full coldstart mes-

sages may be consistent or inconsistent. In the inconsistent case, different nodes may

receive different semantic-full coldstart messages. Hence, different nodes potentially

set their local clocks to different points in the communication cycle.

In summary, the physical collision of coldstart messages may result in an in-

sufficient quality of synchronization (when using noise as a coldstart message), no

initial synchronization at all (when using semantic-free coldstart messages) or incon-

sistent initial synchronization (when using semantic-full messages). To resolve these

problems, a contention-resolving algorithm can be used. In particular, a deterministic

contention resolving algorithm guarantees that there exists an upper bound in time,

when the access of at least one node will not result in a contention:

Property 3 If several nodes have produced a contention at their n-th access to the
shared medium, there exists an x such that the (n+ x)-th access of at least one node
in this set will not result in a contention.

This property is essential for the coldstart phase in networks with bus-based

topology since it guarantees that even if there are more nodes sending their cold-

start messages at approximately the same point in time, there exists an upper bound

in time when one node will send its coldstart signal without a contention.

The contention problem naturally arises in communication networks based on a

76 Time-Triggered Communication

CS

CS

CS

Coldstart Timeout
CS

Coldstart Timeout

Coldstart Timeout

Listen Timeout

Local Time

Local Time

Local Time

Local Time

CS

CS

CS

Node 1

Node 2

Node 3

Node 4

FIGURE 4.5
TTP Coldstart Scenario: Nodes 1 and 2 Produce a Collision, Which is Resolved by

Unique Timeouts

shared communication medium and, hence, communication protocols have to pro-

vide solutions for this problem. A summary of contention resolving algorithms of

well-established communication protocols (such as Avionics Full-Duplex Ethernet,

Token Bus, etc.) can be found in [305, p.35 ff.]. Such protocols usually use priority-

based algorithms where the priorities are realized as different unique timeouts; e.g.,

a re-try timeout – if a contention occurs, the one node with the shortest timeout will

be the first to re-transmit its message. An example contention-resolving algorithm

based on unique timeouts is the TTP coldstart procedure [313] depicted in Figure

4.5.

The coldstart procedure assigns each node a unique coldstart timeout which de-

fines the period in which the node dispatches coldstart messages. In the scenario

depicted in Figure 4.5, nodes 1 and 2 send their coldstart messages at approximately

the same point in time, which results in a collision. Node 1 has the shorter coldstart

timeout assigned and is, hence, the first one to send a succeeding coldstart message.

Receivers of this coldstart message may start synchronized operation. Node 3 would

send a coldstart message before the second coldstart message of node 1, but resets

its coldstart timeout when it perceives the collision. Also, node 4, which is powered-

on late and does not perceive the collision, will wait an initial listen timeout which

is sufficiently long that its first coldstart message would not collide with coldstart

messages from nodes that already produced a collision.

Logical collisions are a result of the replication of the shared medium where the

replicas are controlled by mutually independent instances, e.g., central guardians.

Each of these instances guarantees a transmission free of physical contentions on

one replica. However, since these instances are independent of each other, nodes that

start to broadcast at approximately the same time may occupy only a subset of the

replicas each. A receiver, therefore, will receive messages from different senders on

the replicas of the communication medium. Logical collisions may occur in networks

with star topology and there is similar potential for inconsistent initial synchroniza-

tion when semantic-full coldstart messages are used as discussed in the context of

Core Algorithms 77

physical collisions. Contention-resolving algorithms can also be used to resolve log-

ical collisions.

A network capable of buffering coldstart messages in case of a contention does

not have to realize a contention-resolving algorithm. In case of a contention, the

coldstart messages can be buffered in the network nodes, like switches, and be re-

layed sequentially. Again, measures like the transparent clock and the permanence

function (discussed in the context of TTEthernet) can be applied to mitigate the ad-

ditional transmission jitter on the coldstart messages.

The coldstart will terminate “successfully,” if the node finds a sufficient number

of nodes/channels synchronized. The node then transits to the synchronized phase.

The coldstart terminates “unsuccessfully” if the number of nodes/channels is not suf-

ficient. When the coldstart phase terminates unsuccessfully, another coldstart phase

may be started immediately or the integration phase may be re-started, which allows

the node to check whether a different set of nodes reached the synchronized phase

already. Determining whether a set of nodes/channels is sufficient or not is done at

design time and can be bound to the following numbers:

1. The numbers of nodes/channels necessary to guarantee the correct operation

of the application, or

2. The numbers of nodes/channels necessary to allow an unsynchronized node

to integrate into a synchronized system (this is the approach used within this

chapter).

4.3.3 Restart

Network startup addresses the problem of initial synchronization after power-on of

the nodes and channels in the network. Once initial synchronization is established,

the clock synchronization routine takes over and maintains the synchronized time-

base. Clock synchronization algorithms for time-triggered protocols are typically

also fault-tolerant and ensure synchronization even in the presence of failures. The

restart procedure allows faulty nodes to re-synchronize to the network once their er-

ror state has been corrected, for example after a node reset. On the other hand, in

rare situations, like an airplane hit by a lightning stroke, the number and mode of

failures may exceed the fault hypothesis such that global synchronization is lost. In

a good case, this synchronization loss is consistent throughout the network; in a bad

case, disjoint subsets of nodes may remain synchronized within their subset but the

synchronization between the subsets is lost. In the latter case, the subsets are called

“cliques.” The restart procedure also addresses these rare situations.

Figure 4.6(a) depicts the general concept behind a restart procedure. The con-

centric circles depict the sets of possible states of a system. The center circle forms

the set of system states covered by the fault hypothesis. We say this is the set of

safe states. The other circles depict system states that violate the fault hypothesis.

These circles form a classification: inner circles represent unsafe states from which

recovery can be done by simple procedures; the more outward the more complex the

78 Time-Triggered Communication

safe

. . .

level 1...n

a

b

c

1 2 n. . .

fault
stabilize

(a) General levels of safe-state recovery

safe

integration possible

multiple cliques (benign)

multiple cliques (malign)
a

b

c

d e

fault
stabilizef

(b) Particular levels of safe-state recovery in the TTA [314]

FIGURE 4.6
Different Levels of Safe State Violations and Their Recovery Actions (with kind

permission from Springer Science + Business Media [314])

recovery procedure may be. The unsafe system states in time-triggered communi-

cation protocols are typically different types of clique formations. A fault affecting

multiple nodes may cause a transition from a safe system state to an unsafe one. Fault

b in Figure 4.6(a), for example, is a more severe failure than fault a. The restart pro-

cedure of a time-triggered protocol implements algorithms to stabilize the system to

the safe system states. Figure 4.6(b) depicts the restart scheme for the time-triggered

architecture (TTA). For the different classes of unsafe states, different algorithms, in

particular clique detection algorithms, can be implemented. Once a clique is detected,

the startup algorithm is used to bring the system back to the safe state.

4.3.3.1 Clique Detection Algorithms

Clique detection algorithms are diagnosis algorithms that keep track of the health

state of the synchronized global time. They may only use the regularity and irregu-

larity of the synchronization message reception as symptoms for their conclusion on

the health state of the synchronized global time. We can distinguish three types of

Core Algorithms 79

clique detection functions: Synchronous clique detection, asynchronous clique de-

tection and relative clique detection.

The synchronous clique detection algorithm counts the number of nodes that

are currently synchronized to each other. When a node detects this number to be

smaller than a threshold T sync, then the synchronous clique detection algorithm has

detected a clique scenario. The quantification of T sync is influenced by several design

decisions such as the number of faulty nodes allowed in the system or the number

of nodes required for the integration process: when a node discovers too few nodes

synchronized with itself than would be necessary to integrate, the synchronous clique

detection algorithm can decide to reset the node. Furthermore, T sync may be statically

configured and dynamically adapted. In the latter case, T sync can be a function of the

overall number of powered-on nodes in the system. Hence, the threshold may change

during mission time. When more and more nodes become powered-on the thresholds

increase and they are decreased when nodes are powered-down.

Asynchronous clique detection algorithms count the number of nodes that are

powered-on, but are not synchronized with each other. A node that counts equal or

more than T async unsynchronized nodes has detected a clique by means of asyn-

chronous clique detection.

The relative clique detection algorithm simply compares the T sync with T async.

When T sync ≤ T async then the relative clique detection algorithm has detected a

clique.

The counting processes in the clique detection algorithms depend on the under-

lying physical network properties. In bus-based networks, the receiver of a synchro-

nization message can associate a particular node with the received synchronization

message. When the receiver receives the synchronization message of a node x within

a defined acceptance window around an expected receive point in time, then the

receiver qualifies the synchronization message as temporally valid, otherwise tem-

porally invalid.

We know that the receive point in time of the synchronization message is a symp-

tom from which the receiver can deduce the state of the local clock in the sender CS.

Hence, when |CS −CR| ≤ Π then the receiver classifies the sender as synchronized

with itself. When there exists a one-to-one relation between nodes and received syn-

chronization messages, an acceptance window of size 2×Π is necessary and suffi-

cient to qualify sender and receiver to be either synchronized or unsynchronized.

In star-based networks, the receiver may associate multiple nodes with a single

synchronization message. In TTEthernet, for example, switches will compress the

synchronization messages from the senders into a single synchronization message

that is then forwarded. The receiver knows from a bitvector within the received syn-

chronization message how many nodes are related to this message. In this case, the

counting process of the clique detection functions use this number to qualify against

the configured thresholds T sync and T async. When multiple failures have to be tol-

erated, the compression of synchronization messages from multiple senders into a

single synchronization message imposes an interesting corner case for the clique de-

tection functions. As the received synchronization message represents the local clock

of multiple receivers, a failure in one of the senders influences the perception of the

80 Time-Triggered Communication

MAC Layer Integration

ET/TT Integration Solutions

Overlay Network (Event Service)

Contention Detection
with Preemption

(TT Ethernet)

Non-Preemptive

ET/TT Contention Avoidance
(FlexRay, FTTCAN controlled)

ET/TT Contention Tolerance
(FTTCAN uncontrolled)

FIGURE 4.7
Solutions for Integration of Event-Triggered and Time-Triggered Communication

receiver of all local clocks in the senders. Hence, when the sender to received syn-

chronization messages is a multiple-to-one relation, the influence of the faulty node

and/or faulty channel has to be reflected when selecting the size of the acceptance

window.

4.4 Integration of Event-Triggered and Time-Triggered Commu-
nication

Due to the respective advantages of the paradigms of event-triggered and time-

triggered control, solutions for the integration of both communication approaches

have been developed. The rationale behind these integrated communication proto-

cols is the effective covering of mixed criticality systems, in which a safety-critical

subsystem exploits time-triggered communication services and a non-safety-critical

subsystem can exploit event-triggered communication services. Thereby, the com-

munication protocol can support different, possibly contradicting requirements from

different application subsystems.

For this reason, several communication protocols integrating event-triggered and

time-triggered control have been developed [105, 251, 234, 179]. These protocols

differ at the level at which the integration takes place (i.e., either at the Media Access

Control (MAC) layer or above), and the basic operational principles for separating

event-triggered and time-triggered traffic.

Communication protocols for the integration of event-triggered and time-

triggered control can be grouped into two classes, depending on whether the integra-

tion occurs on the Media Access Control (MAC) layer or through an overlay network

(see Figure 4.7).We further subdivide the MAC layer solutions depending on whether

Core Algorithms 81

contention between event-triggered and time-triggered messages is resolved by mes-

sage preemption or non-preemptively. In the latter case, contention along with the

resulting communication jitter can either be tolerated or contention can be avoided

by enforcing constraints on the transmission start instants of messages.

4.4.1 Integration of Event-Triggered and Time-Triggered Communica-
tion at MAC Layer

This class of protocols employs a MAC layer that supports both event-triggered and

time-triggered message transmissions. The start and end instants of the periodic time-

triggered message transmissions, as well as the sending nodes are specified at design

time. For this class of messages, contention is resolved statically. All time-triggered

message transmissions follow an a priori defined schedule, which repeats itself with

a fixed round length, which is the least common multiple of all time-triggered mes-

sage periods. Within each round, the time intervals that are not consumed by time-

triggered message exchanges are available for event-triggered communication. Con-

sequently, time is divided into two types of slots: event-triggered and time-triggered

slots. The time-triggered slots follow from successive time-triggered message trans-

missions, while event-triggered slots are located in between the time-triggered slots.

In event-triggered slots, message exchanges depend on external control and the start

instants of message transmissions can vary. This difference with respect to the start

instants of event-triggered and time-triggered slots is depicted in Figure 4.8. Further-

more, event-triggered slots can be assigned to multiple (or all) nodes of the system.

For this reason, the MAC layer needs to support the dynamic resolving of contention

when more than one node intends to transmit a message. During event-triggered slots

a sub-protocol (e.g., CSMA/CA, CSMA/CD) takes over that is not required during

time-triggered slots in which contention is prevented by design.

While time-triggered messages can always be fit into the respective slots at de-

sign time, on-demand event-triggered messages require support by the MAC proto-

col for protecting time-triggered slots. The mechanism for the delimitation of event-

triggered and time-triggered slots allows us to further classify protocols with an in-

tegration of event-triggered and time-triggered communication at the MAC layer:

Contention avoidance protocols, preemptive protocols and contention tolerant proto-

cols.

4.4.1.1 Event-Triggered and Time-Triggered Communication — Contention
Avoidance

Contention avoidance protocols reserve at the end of each event-triggered slot a time

interval, in which no message transmissions may be started. The length of this time

interval is equal to the maximum message transmission duration of an event-triggered

message. Consequently, it is ensured that an event-triggered message transmission

can always be completed before the next time-triggered slot starts.

An example of a communication protocol realizing this solution is FlexRay [105].

FlexRay denotes event-triggered slots as dynamic segments, while time-triggered

82 Time-Triggered Communication

real-timeTT
Slot

ET
Slot

TT
Slot

ET
Slot

TT
Slot

ET
Slot

ET
Slot

TT
Slot

table-driven
(static schedule)

demand-driven
(dynamic requests)

Round k Round k+1

FIGURE 4.8
Event-Triggered and Time-Triggered Communication Slots

slots are named static segments. The static segments realize a strict TDMA scheme,

while the dynamic segments employ an event-driven mini-slotting sub-protocol. The

fixed duration of the dynamic segment is subdivided into mini-slots that identify

potential start times of message transmissions. Each node is assigned a unique mini-

slot, in which the node can start a message transmission in case the medium is idle.

Consequently, an earlier mini-slot gives a node a higher priority compared to nodes

with later mini-slots. Due to this demand driven access pattern, the reserved band-

width of a dynamic segment can be shared between nodes. In FlexRay, the time

interval reserved for contention avoidance at the end of an event-triggered slot is part

of the dynamic slot idle phase.

Flexible Time-Triggered (FTT–CAN) in controlled mode is another example of a

protocol integrating event-triggered and time-triggered communication at the MAC

Layer with contention avoidance. Flexible Time-Triggered CAN (FTT-CAN) [251]

is a CAN-based master/slave protocol for building a predictable time-triggered com-

munication service on top of CAN, while also permitting event-triggered CAN

communication. Time-triggered slots in FTT-CAN are used for the so-called syn-
chronous traffic, which consists of periodic time-triggered messages. Time intervals

not used by these periodic messages are available for the asynchronous traffic (i.e.,

event-triggered slots). Contention within the asynchronous traffic is resolved by the

CSMA/CA arbitration mechanism of CAN. Furthermore, in controlled mode a node

may only send an asynchronous message if the remaining time interval before the

next synchronous message has a sufficient length for preventing any interference of

synchronous and asynchronous messages.

4.4.1.2 Event-Triggered and Time-Triggered Communication — Contention
Detection with Preemption

An example of a protocol that performs the integration of event-triggered and time-

triggered communication based on contention detection with preemption is the Time-

Triggered Ethernet (TTE) protocol [179]. TTE defines the coexistence of standard

Core Algorithms 83

event-triggered Ethernet traffic and time-triggered traffic that is temporally guaran-

teed. For the time-triggered traffic, a static or dynamic scheduler has to define the

conflict-free periods of the messages. The scheduler ensures that no conflict between

TTE messages occurs. If an event-triggered Ethernet message comes into conflict

with a time-triggered Ethernet message, then the TTE switch [316] preempts the

transmission of the event-triggered message. After the completion of the transmis-

sion of the time-triggered Ethernet message, the switch autonomously retransmits

the preempted event-triggered Ethernet message.

4.4.1.3 Event-Triggered and Time-Triggered Communication — Contention
Tolerance

Contention tolerant protocols neither restrict transmission start instants within an

event-triggered slot nor preempt ongoing event-triggered message transmissions. All

event-triggered message transmissions are permitted to finish, thus leading to poten-

tial perturbations of the boundaries of time-triggered slots.

An example of this protocol type is FTT-CAN in uncontrolled mode [251].

In analogy to the controlled mode of FTT-CAN, both event-triggered communica-

tion (i.e., asynchronous traffic) and time-triggered communication (i.e., synchronous

messages) are supported. Every node participating in time-triggered communication

is equipped with a local table that contains information about the time-triggered mes-

sages transmitted and received during each communication round. Nodes can start

with the transmission of event-triggered messages at arbitrary instants. Through as-

signing higher priorities to time-triggered messages, it is ensured that time-triggered

messages always win in the arbitration process. Nevertheless, the non-preemptive

nature of CAN results in transmission jitter of time-triggered messages, in case an

event-triggered message is being transmitted when a time-triggered message trans-

mission is scheduled. In the worst-case, a time-triggered slot with one or more time-

triggered messages is delayed by the maximum transmission duration of an event-

triggered message.

4.4.2 Event-Triggered Overlay Networks

Event-triggered overlay networks based on a time-triggered communication protocol

are a solution for the integration of the two control paradigms by layering event-

triggered communication on top of time-triggered communication. The MAC pro-

tocol is TDMA, i.e., time is divided into slots and each slot is statically assigned

to a node that exclusively sends messages during this slot. A subset of the slots

in each communication round is used for the construction of event-triggered over-

lay networks. This solution is similar to layer 2 Virtual Private Networks (VPNs),

which emulate a point-to-point layer 2 connection over layer 3 (e.g., IP/MPLS net-

works) [334].

Event-triggered overlay networks have been established for different event-

triggered protocols [234, 30]. A generic event service exploits time-triggered slots

in order to support event-triggered on-demand message transmissions. This generic

84 Time-Triggered Communication

event service can then be used for the realization of layer 2 protocols (e.g.,

CAN [234]) or higher protocol layers (e.g., TCP/IP [30]).

4.4.3 Generic Event Service

The generic event service maps an event-triggered protocol to the sparse time-

base [166] of the time-triggered communication protocol. Although message trans-

mission requests can occur at arbitrary instants, the dissemination of the messages on

the underlying time-triggered network is always performed at the predefined global

instants of the time-triggered slots.

The generic event service is based on a temporal subdivision of the communica-

tion resources. Time Division Multiple Access (TDMA) of a time-triggered physical

network statically divides the channel capacity into a number of slots and assigns to

each node a unique slot that periodically reoccurs at a priori specified global points

in time. Each node’s slot is subdivided into two subslots, namely a slot for time-

triggered communication and a slot for the event-triggered dissemination of mes-

sages (see Figure 4.9).

Slot for Node 1

Subslot for
Time-Triggered
Communication

Subslot for
Event-Triggered
Communication

Slot for Node 2

Subslot for
Time-Triggered
Communication

Subslot for
Event-Triggered
Communication

Slot for Node n

Subslot for
Time-Triggered
Communication

Subslot for
Event-Triggered
Communication

TDMA Round Consisting of n Node Slots

FIGURE 4.9
Subdivision of Communication Slots for an Event-Triggered Overlay Network

Since in the time-triggered protocol each slot is exclusively written by a single

node, a particular slot enables only a single node to broadcast messages to all other

nodes. In order to support a general communication topology, in which each node can

transmit event-triggered messages, a system with n nodes employs n event-triggered

slots as an input to the event service.

In each node, outgoing messages are buffered in message queues until the respec-

tive node’s subslot for event-triggered communication occurs in the TDMA scheme

(cf. Figure 4.10). Also, the queuing of messages handles bursts during which the

bandwidth consumption of outgoing messages exceeds the bandwidth that is avail-

able via event-triggered subslots. In every node, the event service performs a frag-

mentation of outgoing messages into packets that can be placed in the node’s event-

triggered subslot. In addition, the event service reassembles messages out of received

packets.

Core Algorithms 85

Sender
Component Message

Queue

Output Port Receiver
ComponentMessage

Queue

Input Port

Event-Triggered
Overlay Network

Control

Flow

Data
Flow

Control

Flow

Data
Flow

FIGURE 4.10
Event-Triggered Overlay Network

4.4.3.1 Higher Protocols: CORBA Internet Inter-ORB Protocol

The Common Object Request Broker Architecture (CORBA) specification of the

Object Management Group (OMG) [238] provides a solution for distributed object

computing based on a flexible middleware for integrating applications in heteroge-

neous environments. CORBA offers interoperability between components on differ-

ent platforms and written in different programming languages.

The Object Request Broker (ORB) is the central building block in the CORBA

architecture and hides the internal details of the execution environment (e.g., operat-

ing system, communication network). An ORB communicates with the application

and with other ORBs using network connections and inter-process communication

mechanisms. CORBA offers location transparency, since there are no differences for

a client in accessing local and remote objects. In case of remote objects, the Internet

General Inter-ORB Protocol (GIOP) establishes the interoperability between differ-

ent nodes. The Internet Inter-ORB Protocol (IIOP) is a specific mapping of the GIOP

onto TCP/IP. The protocol layers of IIOP are depicted in Figure 4.11.

Internet Inter-ORB Protocol (IIOP)

Transmission Control Protocol (TCP)

Internet Protocol (IP)

Link-Level Protocol
(Event-Triggered Overlay Network)

FIGURE 4.11
Commonly Used Protocol Layers for CORBA

Reference [207] describes a realization of GIOP using an event-triggered overlay

network. At the link level, an implementation of the generic event service serves as

the basis for the IP, TCP/IP and IIOP.

4.4.3.2 Higher Protocols: Controller Area Network (CAN)

The automotive industry is on the verge of deploying computer systems not only

for safety-related and comfort functionality, but for safety-critical by-wire systems.

86 Time-Triggered Communication

While the CAN protocol is prevalent in present day automotive networks, safety-

critical by-wire systems will also use time-triggered networks.

Event-triggered overlay networks are a solution to reuse existing CAN-based ap-

plications on these time-triggered networks, thus offering the possibility to reduce

the number of physical CAN networks, which leads to cost reductions and reliability

improvements. However, for the reuse of CAN-based legacy applications, it is impor-

tant to note that time-triggered networks and event-triggered overlay networks can

exhibit a different temporal order of received messages than a physical CAN network

for the same sequence of message transmission requests. While this difference may

not be a concern in many newly developed applications, it poses a problem for the

reuse of CAN-based legacy software. Substantial re-testing or adaptations of existing

code would be required to ensure a correct behavior of legacy software despite the

different temporal message order compared to the platform the application software

has been developed for.

Therefore, a CAN protocol emulation middleware was introduced in [235] that

establishes in an overlay network the same temporal order of the receive instants as

in a physical CAN network. The CAN protocol emulation aims at the reuse of legacy

applications with a minimum of redevelopment and retesting efforts.

CAN-based
Application Software

Middleware for
Protocol Emulation

T
ra

ns
m

is
si

on
R

eq
ue

st

Time-Triggered Network

Host

M
es

sa
ge

R
ec

ep
tio

ns
(c

or
re

ct
or

de
rin

g)

Generic Event Service

Communication Controller
(e.g., FlexRay)

FIGURE 4.12
Node with Middleware for CAN Protocol Emulation

As depicted in Figure 4.12, in every node a protocol emulation middleware is

executed, which is located in-between the generic event service and the application

software. The protocol emulation middleware simulates at run-time a physical CAN

network in every node and takes into account the message request instants, the mes-

sage priorities and the message lengths [151]. The input of this simulation process

Core Algorithms 87

are both messages for which a transmission has been requested at the same node and

messages received via the generic event service from other nodes. Based on these

inputs, the CAN emulation computes for each message the send instant when the

message would have been sent on a physical CAN network. Messages are passed

to the application in the order of ascending message send instants. Due to the non-

preemptive nature of CAN, this strategy ensures ascending message receive instants

and thus the correct temporal message order.

Before a message received from an event-triggered overlay network is forwarded

to the application, the message goes through the following three steps:

• Pending Non-Permanent. A message m with a transmission request instant

trequest is non-permanent, if future messages, i.e., messages that have not yet

arrived at the protocol emulation, can exhibit an earlier request instant than m.

The notion of message permanence is based on the definition in [169]. Since

messages with an earlier request instant can precede m in the temporal mes-

sage order, message m must become permanent before it can be used in the

simulation.

• Pending Permanent. After passing the permanence test (described below) a

pending message becomes permanent. For a permanent message, it is ensured

that all future messages will possess later request instants. The simulation de-

termines the temporal message order based on the pending permanent message

as its input.

• In-Order. After a pending message has been sent in the simulation of the

physical CAN bus, the message is denoted as in-order. The message is revealed

to the application software.

A message m1 is permanent at instant tp, if it is known that no message m2 with

an earlier or equal request instant (m2.trequest ≤ m1.trequest) can be received at a later

instant t (t > tp) via the event-triggered overlay network.

For determining permanence, we exploit the fact that transmission request time-

stamps of messages received from any particular node through the event-triggered

overlay network are monotonically increasing.

In order to determine the permanence of messages, the protocol emulation main-

tains a vector
−−→tlatest, which contains a timestamp for every sender. The ith element

of this vector contains the message request instant of the most recent message re-

ceived from sender i. Since the request instants of messages from a particular sender

are monotonically increasing, the element associated with the sender in
−−→tlatest repre-

sents a temporal bound for subsequent messages, i.e., all future CAN messages must

contain a later request instant.

A sufficient condition for the permanence of a message is that its request instant

is earlier than all temporal bounds for message request instants of correct nodes in

the vector
−−→tlatest:

permanence test:
n
∀

i=1

(

m.trequest < t
latest,i

)

→ m permanent (4.6)

88 Time-Triggered Communication

where n is the number of nodes in the system.

The temporal ordering of messages occurs through a simulation of a physi-

cal CAN network, where simulated message transmissions represent the simulation

steps. The current simulation time is specified by the instant tidlestart. tidlestart is a spe-

cial instant that separates the messages which have been sent on the simulated CAN

bus from those that have not. tidlestart marks the beginning of idleness on the simu-

lated CAN bus. The message transmissions before tidlestart are already fixed, i.e., no

later transmission requests can result in a modification of the sequence of message

transmissions. Consequently, tidlestart also separates the ordered messages from the

non-ordered ones.

In case the simulation time lies before the minimum request instant of a future

timestamped CAN message (tidlestart < min
i

(tlatest,i)) and one or more pending per-

manent messages are available, a simulation step can be taken. Out of the set of

pending permanent messages, the protocol emulation chooses a message for the next

simulation step based on the request instants and the message priorities. After the

simulation step, the selected message becomes in-order and is transferred from the

protocol emulation to the application software. Simulation steps are executed until

no more pending permanent messages are available or a future timestamped CAN

message can exhibit an earlier request instant than the current simulation time.

The protocol emulation has been validated in [235] using a communication ma-

trix from a real-world automotive application, as well as synthetic message patterns.

4.5 Diagnostic Services
This section gives an overview of diagnostic services for time-triggered communi-

cation protocols. First, we describe basic error detection services, that enable a node

to establish a local view of the operational state of other nodes in the system. In the

next step, we introduce membership agreement, which is a service that provides a

consistent view of the system’s health state among multiple nodes.

4.5.1 Error Detection

In order to achieve the required level of safety, it is required for many applications,

that errors in the systems are reliably detected and isolated in bounded time. In this

section we will see, that many error detection mechanisms are facilitated in time-

triggered systems due to their deterministic nature and the availability of a priori

knowledge.

In general, error detection mechanisms can be implemented at the architectural

level, or within the application itself. The advantage of implementations at the ar-

chitectural level is that they are built in a generic way and thus, can be verified and

certified once and for all. Furthermore, they can be implemented directly in hardware

(e.g., within the communication controller) which can reduce the error detection la-

Core Algorithms 89

tency and relieves the host CPU from computational overhead for error detection.

Nevertheless, according to Saltzer’s end-to-end argument [290] every safety-critical

system must contain additional end-to-end error detection mechanisms at the appli-

cation level, in order to cover the entire controlled process.

In the following, we describe error detection mechanisms based on syntactic
checks and semantic checks that are implemented at the protocol level in many time-

triggered protocols, and error detection by active redundancy which is usually im-

plemented at a higher level.

4.5.1.1 Error Detection by Syntactic Checks

The syntactic checks are targeted on the syntax of the received frames. Protocols usu-

ally check for the satisfaction of specific constraints defined in the frame format. Ex-

amples are start and end sequences of the entire frame, or specific sequences within

the frame like the byte start sequence that is mandatory before the transmission of

every byte in the FlexRay protocol.

Another important category of syntactic checks are checksums, which protect the

integrity of data with respect to accidental faults. Cyclic Redundancy Checks (CRCs)

are employed in many protocols for this purpose. Often, there is a dedicated CRC

that protects the data in the header of the frame and another CRC that protects the

payload. The generation and the checking of the CRCs is usually implemented in

hardware for performance reasons.

4.5.1.2 Error Detection by Semantic Checks

Semantic checks can be implemented very efficiently in time-triggered protocols, due

to the a priori knowledge of communication patterns. Examples of semantic errors

that can be detected by using this knowledge are:

Omission or Crash Failures: These failures can be detected, since the periodic

points in time when a node should send are known.

Invalid Frame ID: Invalid frame IDs can be detected, since the allocation of frame

IDs to periodic time instances is known.

Invalid Sender ID: Invalid sender IDs can be detected in topologies with active star

couplers, since a star coupler knows which sender is attached to which port.

Invalid Temporal Information in the Frame Header: These failures can be de-

tected by comparing the timing information included in the frame with the

global time.

Violation of Slot Boundaries: Can be detected via the global time and the pre-

defined schedules.

90 Time-Triggered Communication

4.5.1.3 Error Detection by Active Redundancy

Value errors in a frame’s payload cannot be detected by the above-mentioned mech-

anisms, if the payload CRC is valid. Such errors can happen, when the sending node

computed an erroneous value at the application level before the CRC is generated.

Value errors can be systematically detected by active redundancy, which means that

the sending node is replicated, and the values generated by the redundant senders are

compared at the receivers.

The most convenient way to systematically apply active redundancy is bit-exact
voting, where the outputs of the redundant senders are bit-wise compared without

the need of interpreting the values. Bit-exact voting is only possible if the redun-

dant components are replica deterministic [169]. The time-triggered architecture pro-

vides, by the sparse time-base, an optimal platform for building replica-deterministic

components, and thus for performing error detection in the value domain by active

redundancy.

In order to make the voting process transparent to the user, a voting layer is

included in major software communication stacks like OSEK-FTCOM or the com-

munication stack of AUTOSAR.

4.5.2 Membership Agreement

The error detection mechanisms presented in the former section are performed lo-

cally on each node. Therefore, they establish a node’s local view of the health state

of the other components in the system. Due to asymmetric faults, the local view of

different nodes is not necessarily the same. The goal of membership agreement pro-

tocols is to establish a consistent view of the system’s health status among all correct

nodes or processes of the system.

Two major properties of each membership algorithm are the following [68]:

Agreement: All correct nodes compute the same membership view

Timeliness: A faulty process will be removed from the member process group in a

bounded time

The basic functionality of many membership agreement protocols is similar, and

consists of the following steps:

1. In each communication round, each node observes the statically assigned slots

of all other nodes.

2. Each node records for every slot whether a correct frame was received. The

discrimination between correct and incorrect frames can be done with the error

detection mechanisms introduced above.

3. Based on the observations, each node can build its local view on the health state

of the other nodes. Due to asymmetric failures, the local opinion of different

nodes can vary.

Core Algorithms 91

4. Each node disseminates its local option to all the other nodes. The dissemina-

tion can occur in statically defined slots in each round. Another option is to

transmit the local opinion only when it has changed in a dynamic slot (this is

only possible if the communication protocol provides dynamic arbitration like

in FlexRay or TTEthernet). The local opinion can be sent explicitly as a vector

with one bit for each node in the network, or implicitly as it is done in TTP/C

where the local view is included in the calculation of the frame CRC, but the

vector itself is not part of the frame.

5. Having received the local options of all other nodes, each node can construct a

matrix containing the system view of all nodes in the system.

6. Based on the matrix, the nodes can execute a decision algorithm like majority

voting.

The realization of membership agreement differs from protocol to protocol. In

TTP/C, the membership service is an architectural service realized in hardware.

Other protocols like FlexRay, provide no membership at the architectural level. In

these cases, the membership service can be realized in software as proposed in [31]

and [161].

5
Time-Triggered Protocol (TTP/C)

R. Obermaisser
University of Siegen

CONTENTS

5.1 Protocol Overview . 94

5.2 Protocol Services . 95

5.2.1 Communication Services . 96

5.2.1.1 Temporal Structuring of Communication 96

5.2.1.2 Timing of a TDMA Slot . 97

5.2.1.3 Frame Types and States . 98

5.2.2 Clock Synchronization . 99

5.2.3 Restart, Re-Integration, Integration . 100

5.2.4 Diagnostic Services . 101

5.2.4.1 Life-Sign . 101

5.2.4.2 Membership Service . 102

5.2.4.3 Clique Detection . 104

5.2.4.4 Communication System Blackout Detection 104

5.2.5 Fault Isolation . 104

5.2.6 Configuration Services . 106

5.2.6.1 Mode Changes . 106

5.2.6.2 Boot Loader . 107

5.3 Protocol Parameterization . 108

5.3.1 Message Descriptor List . 108

5.4 Communication Interface . 110

5.4.1 Status Area . 110

5.4.2 Control Area . 113

5.4.2.1 Message Area . 114

5.5 Protocol States . 114

5.6 Validation and Verification Efforts . 116

5.6.1 Formal Analysis of Clock Synchronization Algorithm 116

5.6.2 Formal Analysis of Fault Isolation and Consistency 117

5.6.3 Formal Analysis of Membership Service and Clique

Avoidance . 117

5.6.4 Fault Injection Experiments . 118

5.7 Example Configurations and Implementations . 119

93

94 Time-Triggered Communication

5.1 Protocol Overview
The Time-Triggered Protocol (TTP) is a communication protocol for distributed

fault-tolerant real-time systems. It is designed for applications with stringent require-

ments concerning safety and availability, such as avionic, automotive, industrial con-

trol and railway systems. TTP was initially named TTP/C and later renamed TTP.

The initial name of the communication protocol originated from the classification

of communication protocols of the Society of Automotive Engineers (SAE), which

distinguishes four classes of in-vehicle networks based on the performance (see Fig-

ure 5.1). TTP/C satisfies the highest performance requirements in this classification

of in-vehicle networks and is suitable for network classes C and above.

Network
Class

Examples of Protocols Bandwidth
Typical

Latencies
Examples of Automotive
Applications in this Class

Class A Local Interconnect Network (LIN) < 10 kbps 10-100ms sensor/actuator access

Class B Controller Area Network (CAN) 10kbps-125kbps 10-100ms comfort domain

Class C Controller Area Network (CAN) 125kbps-1Mbps 5ms powertrain domain

Class D
Time-Triggered Protocol (TTP),
FlexRay

> 1 Mbps 5ms multimedia, X-by-wire

FIGURE 5.1
SAE Network Classes

The design of TTP has been driven by the following six design principles [177]:

• Global time. The global time is based on the metric of the physical second and

provides the control signals for all communication and computational activi-

ties. In addition, the global time is also used to monitor the temporal accuracy

of real-time data.

• Temporal firewalls. The communication interface in TTP is a unidirectional

data-sharing interface with state-data semantics, where the communication

network accesses this interface according to an a priori known schedule. Since

no control signals cross the communication interface, it is a temporal firewall

(cf. Chapter 2, Section 2.5.3) and supports fault and error containment.

• Unification of interfaces. The temporal firewall of TTP unifies the interface

properties between host and communication system, as well as the gateway in-

terfaces between multiple TTP clusters. In addition, the temporal firewall hides

the local interfaces of a node (e.g., sensors, actuators, man-machine interface).

Therefore, uniform interaction mechanisms are available between nodes re-

gardless of the implementation technology within a node for interfacing the

controlled object or other communication networks.

• Two-phase design methodology. TTP supports a two-phase design methodol-

ogy for the component-based development of large distributed real-time sys-

tems. In the first phase, the message interaction patterns among nodes are de-

Time-Triggered Protocol (TTP/C) 95

signed as temporal firewall interfaces. During the second phase, the nodes are

implemented taking the specification of the temporal firewall interfaces from

the first design phase as constraints. TTP ensures that no unintended side ef-

fects occur during system integration at the communication network.

• Real-time database. TTP is designed to support the realization of a real-time

database in each node, which consist of temporally accurate images of the

relevant real entities [169].

• Scalability. TTP supports scalability with multi-cluster systems. Nodes can

be expanded into gateway nodes, which implement two communication inter-

faces to two TTP networks. Each cluster can be understood independently by

analyzing the temporal firewall interfaces within the cluster and the gateway

node. The autonomous temporal behavior of a cluster does not depend on the

operation of other clusters.

TTP provides a consistent distributed computing base [173] in order to ease the

construction of reliable distributed applications. Given the assumptions of the fault

hypothesis, TTP guarantees that all correct nodes perceive messages consistently in

the value and time domains. In addition, TTP provides consistent information about

the operational state of all nodes in the cluster. For example, in the automotive do-

main these properties would reduce the efforts for the realization of a safety-critical

brake-by-wire application with four braking nodes. Given the consistent information

about inputs and node failures, each of the nodes can adjust the braking force to com-

pensate for the failure of other braking nodes. In contrast, the design of distributed

algorithms becomes more complex [190], if nodes cannot be certain that every other

node works on the same data. In such a case, the agreement problem has to be solved

at the application level.

This chapter is organized as follows. Section 5.2 introduces the protocol services

of TTP. At the core of TTP is a time-triggered communication service that builds on

the fault-tolerant global time base. The protocol services of TTP are parameterized

by a static data structure called the message descriptor list, which includes the time-

triggered communication schedule with the points in time of all message transmis-

sions and receptions. The elements of this data structure and the message schedule

are explained in Section 5.3. Section 5.4 describes the interface, which is used by

a host application in a node to access the services of TTP. This interface contains

the messages as well as control and status variables. Finally, the chapter addresses

the results of validation and verification efforts for TTP in Section 5.5 and example

configurations and implementations in Section 5.6.

5.2 Protocol Services
The TTP protocol provides the services of a time-triggered communication proto-

col as introduced in Chapter 4. The communication services support the predictable

96 Time-Triggered Communication

message transport with a small variability of the latency. The fault-tolerant clock syn-
chronization maintains a specified precision and accuracy of the global time-base,

which is initially established by the restart and startup services when transiting from

asynchronous to synchronous operation. The diagnostic services provide the appli-

cation with feedback about the operational state of the nodes and the network using

a consistent membership vector. The diagnostic services in conjunction with the a

priori knowledge about the permitted behavior of nodes is the basis for the fault iso-
lation services of TTP. Finally, configuration services offer flexibility by switching

between predefined modes or programming new communication schedules into the

system.

5.2.1 Communication Services

5.2.1.1 Temporal Structuring of Communication

The smallest unit of transmission and media access control on the TTP network is

a TDMA slot. A TDMA slot is a time interval with a fixed duration (as defined by

the Message Descriptor List (MEDL) in Section 5.3.1) that can be used by a node to

broadcast a frame to all other nodes. A frame is a transmission of defined length on

a TTP channel containing both application and protocol data. The application data

within a frame represents a message, which possesses corresponding semantics for

the host (e.g., a speed value in a control loop).

A sequence of TDMA slots is called a TDMA round. The cluster cycle defines

a pattern of periodically recurring TDMA rounds. Although the sequence and the

length of the TDMA slots in every TDMA round are equal, the frame communicated

in a TDMA slot can differ between TDMA rounds. A TDMA slot in two TDMA

rounds can be used for the exchange of frames with different sender nodes, content

and size. The fixed duration of the TDMA slot limits the maximum size of a frame.

While a TDMA slot is defined within the TDMA round, a so-called round slot
uniquely identifies a slot within the entire cluster cycle. A round slot possesses a

unique sender node. In addition, the content and size of the frame communicated in

the round slot is known.

If two TDMA rounds have two different sender nodes for a TDMA slot, the nodes

are called multiplexed nodes. Multiplexed nodes can improve the use of communica-

tion bandwidth. If no multiplexed nodes are used, TTP possesses a unique mapping

between TDMA slots and sender nodes. Otherwise, the sender is only known at the

level of round slots.

Figure 5.2 depicts the structuring of the communication activities on a TTP net-

work. This TDMA scheme is used after the completion of the startup and the estab-

lishment of synchronous operation.

A node that does not send during any slot is called a passive node. A node can

be passive by design, if it is only required to receive frames (e.g., a bus sniffer for

diagnosis). A failure can also lead to a passive node, such as the absence of the timely

update of the life-sign or isolation performed by the bus guardian.

Time-Triggered Protocol (TTP/C) 97

TDMA Round 0 TDMA Round 1 TDMA Round n

Cluster Cycle

Real-Time

T
D

M
A

 S
lo

t 0
, R

ou
nd

 S
lo

t 0

T
D

M
A

 S
lo

t 1
, R

ou
nd

 S
lo

t 1

T
D

M
A

S
lo

tk
, R

ou
nd

 S
lo

t k

T
D

M
A

 S
lo

t 0
, R

ou
nd

 S
lo

t k
+

1

T
D

M
A

 S
lo

t 1
, R

ou
nd

 S
lo

t k
+

2

T
D

M
A

S
lo

tk
, R

ou
nd

 S
lo

t 2
k

T
D

M
A

 S
lo

t 0
, R

ou
nd

 S
lo

t n
k+

1

T
D

M
A

 S
lo

t 1
, R

ou
nd

 S
lo

t n
k+

2

T
D

M
A

S
lo

tk
, R

ou
nd

 S
lo

t (
n+

1)
·k

Message

FIGURE 5.2
TDMA Scheme

5.2.1.2 Timing of a TDMA Slot

The constituting elements of a TDMA slot are depicted in Figure 5.3. The TDMA slot

begins with the transmission phase, which is used for sending a frame on the bus. The

post-receive phase is reserved for the protocol execution, e.g., updating the member-

ship vector and writing the status information in the CNI. The idle interval allows us

to stretch a TDMA slot in case a specific duration of TDMA slots and TDMA rounds

is required in an application. The pre-send phase serves for the preparation of the

transmission phase of the next TDMA slot. In this time interval, the communication

controller loads the information about the next slot from the MEDL.

The durations of the post-receive phase and the pre-send phase depend on the

controller implementation, namely the number of instructions for the protocol exe-

cution, the clock rate of the communication controller and the memory access times

of the CNI memory.

The transmission phase duration in macroticks is computed using the following

formula:

transmission phase =
⌈

4 ·Π+dcorrection +nframe/ fbitrate +dprocessing

g

⌉

+1

As introduced in Chapter 2, Π is the precision of the clocks in the cluster and g is the

granularity of the global time-base. The computation of the transmission phase must

take into account a maximum deviation of Π between the clocks of different TTP

98 Time-Triggered Communication

Action Time

Pre-Send
Phase

TDMA Slot

Transmission
Phase

Post-Receive
Phase

Idle

Real-Time

Transmission
Phase

Pre-Send
Phase

Interframe Gap

FIGURE 5.3
Timing of a TDMA Slot

nodes. dcorrection is the maximum delay correction of all receiving nodes to the sender

node of the round slot. The time required for the transmission on the bus is the quo-

tient of the frame length in bits nframe and the bitrate of the TTP bus fbitrate. dprocessing

denotes the number of instructions in the communication controller required for the

transmission or reception (e.g., 280 instructions at a clock rate of 40 MHz in the C2

controller [337, p. 21]).

5.2.1.3 Frame Types and States

The TTP protocol distinguishes two main types of frames (cf. Figure 5.4): coldstart
frames are sent during the unsynchronized operation at startup, while normal frames
are used in the synchronous operation. In addition, download frames can be used to

parameterize the TTP protocol or to write an application image into a node.

Normal Frame

CRCMode Change
Request

Controller State
(Optional) Application DataFrame

Type

CRCGlobal Time Round Slot of
Sender

Frame
Type

Coldstart Frame

FIGURE 5.4
Frame Formats

A coldstart frame contains a frame identifier which marks the frame as a coldstart

frame, the global time of the sender, the current round slot of the sender and a Cyclic

Redundancy Code (CRC). With the knowledge about the current global time and

round slot, receiving nodes are enabled to integrate and transit from asynchronous to

synchronous operation.

A normal frame consists of a frame type field, information about mode change

requests, an optional controller state, application data and a CRC. If the controller

state is included, one speaks of a frame with explicit controller state. Such a frame

Time-Triggered Protocol (TTP/C) 99

serves for the integration of nodes during synchronous operation (i.e., no coldstart

frames are exchanged).

The controller state encompasses internal variables of the TTP communication

controller, which are required to be globally consistent among all correct nodes in the

TTP cluster. The controller state consists of the global time, the round slot position,

the current mode of the cluster, information about pending mode changes and the

membership vector.

Regardless of the inclusion of the controller state in a frame, the controller state

is always used in the CRC calculation of the frame. The TTP protocol introduces the

notion of frames with an implicit controller state, if the state is not contained in a

frame. An implicit controller state reduces the protocol overhead and allows a more

efficient use of the communication bandwidth at the cost of higher computational

complexity.

A divergence of the controller state between receiver and sender is always de-

tected by a CRC error. In particular, this information is used to establish agreement

on a consistent view concerning the membership.

After each round slot configured for reception, a node classifies the received

frames depending on detected errors:

• Null frames. If a receiver observed no transmission activity on a communica-

tion channel, the expected frame is called a null frame. A null frame occurs in

case of a crash failure of a node.

• Invalid frames. A frame is received within the expected time interval of the

round slot and the coding rules are satisfied. For example, the Modified Fre-

quency Modulation (MFM) encoding, which is supported by existing TTP

communication controllers, imposes limits on the minimum and maximum

number of 0 bits that may appear between consecutive 1 bits. A frame that

violates these constraints is called an invalid frame.

• Incorrect frames. An incorrect frame is a valid frame with an incorrect CRC.

The CRC error indicates a disagreement of the controller states or a transmis-

sion error (e.g., bit flip during the transmission).

• Tentative frames. As long as the controller state agreement and acknowledg-

ment (cf. Section 5.2.4.2) is in progress, a frame is tentative. In order to per-

form this agreement, the membership views of successor nodes in the TDMA

round are evaluated.

• Correct frames. A correct frame is a valid frame, which has passed the CRC

check and the acknowledgment.

5.2.2 Clock Synchronization

The Fault-Tolerant Average (FTA) algorithm [183] is used for clock synchroniza-

tion in TTP. The FTA algorithm computes the convergence function for the clock

100 Time-Triggered Communication

synchronization within a single TDMA round. It is designed to tolerate k Byzantine

faults in a system with N nodes. Therefore, the FTA algorithm bounds the error that

can be introduced by arbitrary faulty nodes. These nodes can provide inconsistent

information to the other nodes.

Each node collects the N−1 measured time differences between the node’s clock

and the clocks of the other nodes. The time differences are determined by the differ-

ence of the actual arrival time of a frame and the expected arrival time of frames

(as defined by the time-triggered communication schedule). These time differences,

which indicate the deviations of the local times of sender and receiver, are sorted by

size. The k largest and the k smallest time differences are discarded. The average of

the remaining time differences is the correction term for the node’s clock.

Using the FTA algorithm, a faulty time value is discarded if it is larger or smaller

than the other time values. Otherwise, a faulty time value must be within the precision

window. As discussed in [183] the worst-case scenario occurs if all correct clocks are

at opposite ends of the precision window and the Byzantine clock is seen at different

corners by two nodes. In this case, each Byzantine clock will cause a difference of

Π/(N − 2k) in the calculated averages at two different nodes in an ensemble of N
clocks. In the worst case, a total of k Byzantine errors will thus cause an error term

of kΠ/(N −2k).
Considering the jitter ε of the synchronization frames and the drift offset Γ, the

convergence function of the FTA algorithm is as follows:

(ε +Γ) · N −2k
N −3k

(5.1)

In the TTP protocol, the MEDL controls which TDMA slots are used for clock

synchronization. The slots at which new correction terms are calculated are marked

consistently at all receivers in the MEDL in order to ensure that all nodes correct

their clocks at the same time.

In addition to internal clock synchronization, the TTP protocol supports external

clock synchronization using a time reference such as GPS. For this purpose, a host

acts as a time gateway and possesses a connection to GPS or to another cluster with

a different time base. The time gateway periodically computes a correction term and

provides this term to its communication controller using the external rate correction

field in the CNI. The external rate correction term denotes the number of microticks

that need to be corrected in the next synchronization interval.

If the absolute value of the external correction or the absolute value of the total

correction term is larger than Π/2 , a node freezes due to a synchronization error.

5.2.3 Restart, Re-Integration, Integration

Cluster start-up is the process of establishing a synchronized cluster after power-on.

After power-on, a node listens on the communication channels for a coldstart frame.

A coldstart frame consists of a frame type field (identifying the frame as a coldstart

frame), the global time at the send instant of the frame, a sender round slot position

in the MEDL and a CRC. If the frame is received, then the node sets its controller

Time-Triggered Protocol (TTP/C) 101

state accordingly. The node adopts the global time and the round slot position in the

MEDL.

If no coldstart frame is received within the listen timeout and the coldstart allowed

flag is set in the MEDL of the node, then the node sends a coldstart frame itself. The

sending of a coldstart frame can be repeated until a maximum number of allowed

coldstarts is reached (as defined in the MEDL). This limit is introduced in order to

prevent a node with an incoming link fault to interfere with the synchronization of

the other nodes in the cluster.

During startup the nodes perform asynchronous access to the communication

medium controlled by the startup timeout. This parameter is unique for each node

in a cluster. For a given node, it denotes the number of TDMA slots prior to the

sending slot of the node. The listen timeout introduced above is the sum of the node’s

controller startup timeout plus two TDMA rounds. Hence, the duration between two

coldstarts is always shorter than the listen timeout.

In case of a collision of the coldstart frames of two nodes, TTP performs the so-

called big bang mechanism. In case of large propagation delays, a collision can be

perceived inconsistently. Only a subset of the nodes could receive a correct coldstart

frame, thereby leading to the formation of cliques. All nodes can detect this situation

based on the transmission phases of two coldstart frames in relation to the sum of

the maximum propagation delay and the frame duration. In order to prevent cliques,

nodes will not integrate on coldstart frames once a big bang scenario has been de-

tected. Thereby, coldstarting nodes will not detect traffic and they will restart their

startup timeouts again. Because of the unique startup timeouts, no second collision

will occur between the nodes.

If a node joins a cluster, which is already synchronized, this process is called the

integration of the node [313]. In order to support integration, the MEDL must contain

at least one frame with the controller state within the minimum listen timeout (i.e.,

two TDMA rounds). This constraint ensures that an integrating node does not initiate

a coldstart.

In order to avoid the integration on faulty frames, an integrating node maintains

an integration counter. The MEDL contains a parameter called minimum integration
value, which specifies the number of correct frames that need to be received before

a node considers itself integrated and may start to send.

5.2.4 Diagnostic Services

5.2.4.1 Life-Sign

The TTP protocol detects the crash failure of a host based on a periodic host life-sign.

In every TDMA round, the host of a node must provide a life-sign to the communi-

cation controller. More precisely, a host needs to set the life-sign after the start of the

node’s transmission slot and before the beginning of the pre-send phase of the node’s

transmission slot in the next TDMA round. The communication controller verifies

whether the host has set the life-sign during the node’s transmission slot.

If the life-sign is not set by the host, the communication controller does not send

102 Time-Triggered Communication

frames and transits into passive mode. Frame transmission is only continued when

the host updates the life-sign again. The life-sign is used both during normal opera-

tion and at startup. The set life-sign is also a prerequisite for sending coldstart frames

to startup the cluster.

In addition to the host life-sign, the updating of the global time and schedule

position by the communication controller serves as a controller life-sign. Thereby,

the host can react to a crash failure of a communication controller in an application-

specific way (e.g., enter a safe state).

5.2.4.2 Membership Service

The TTP protocol informs nodes about the operational state of every other node in

the TTP cluster using a membership vector. The membership vector is a vector with

a bit for every node, denoting whether the respective node is operational.

A node A considers another node B as operational, if node A has correctly re-

ceived the frame that was sent by node B prior to the membership point. In case

redundant communication channels are used, the reception on one of the channels is

sufficient in order to consider a sender to be operational.

The delay between the failure of a node and the indication in the membership

vector is bounded by the duration of two TDMA rounds. The points in time for

establishing the membership information are called membership points. In TTP, the

post-receive phase (PRP) of a sending node serves as a membership point.

Node A transmits
frame fa

Node B transmits
frame fb Node A is

acknowledged

Failure of
Node B

Failure of
Node A or Node B

Node C transmits
frame fc

Node A is
acknowledged

Failure of
Node C

Failure of Node A
(Node C confirmed

view of Node B)

CRC correct
with node A in member-

ship vector

CRC correct
with node A not in mem-

bership vector

CRC correct
with node A in member-

ship vector

CRC correct
with node A not in mem-

bership vector

oNseY

oNseY

oNseY

oNseY

FIGURE 5.5
Acknowledgment Scheme (based on information in [338])

The agreement of the membership is part of the controller state agreement based

on CRC calculation (cf. Section 5.2.1.3). If the membership vectors of sender and

receiver of a frame diverge, the receiver will detect a CRC error on the received

frame. The reason for the CRC error is that the membership vector is part of the

controller state and the sender’s controller state is appended to the frame before the

calculation of the CRC. The receiver appends its own controller state before the

calculation of the frame’s CRC.

As depicted in Figure 5.5, the successor nodes of a sender in the time-triggered

Time-Triggered Protocol (TTP/C) 103

communication schedule determine whether the sender has sent a correct frame and

is therefore classified as operational:

• The node ‘A’ sets its membership flag to ‘1’ before starting to send frame fA.

The membership vector with node A classified as operational is used in the

calculation of the CRC of frame fA.

• The successor of the sender node ‘A’ is the node ‘B,’ which will send the next

frame fB according to the time-triggered communication schedule. Node ‘B’

sets the membership flag of ‘A’ to 1, if frame fA is correctly received on one

of the redundant channels. Otherwise, the membership flag of node ‘A’ is set

to 0. The new membership vector with the operational state of node ‘A’ is used

to send frame fB.

• Node ‘A’ receives the frame fB and learns about the view of node ‘B’ on the

operational status of node ‘A.’ If the CRC is correct, node ‘A’ knows that node

‘B’ classified node ‘A’ as correct. If the CRC is incorrect, node ‘A’ deter-

mines whether the CRC would be correct in case of node ‘A’ classified as

non-operational. If the CRC is now correct, nodes ‘A’ and ‘B’ disagree on the

operational state of node ‘A.’ This means that either node ‘A’ is faulty (e.g.,

outgoing link failure) or node ‘B’ is faulty (e.g., incoming link failure). To

distinguish between the two cases, node ‘A’ evaluates the frame of the next

node ‘C’ in the time-triggered communication schedule. If the CRC remains

incorrect despite the assumption of node ‘A’ being non-operational, node ‘B’

is considered to be non-operational by node ‘A’ and node ‘C’ becomes the

successor node.

• Node ‘A’ receives the frame fC and learns about the view of node ‘C’ on the

operational status of node ‘A.’ If the CRC of fC is correct, node ‘A’ resolves the

disagreement between nodes ‘A’ and ‘B’ by classifying itself as operational.

The reason for this decision is that a majority of two nodes classify node ‘A’ as

operational, namely nodes ‘A’ and ‘C.’ If the CRC of fC is incorrect, node ‘A’

determines whether the CRC would be correct in case of node ‘A’ classified

as non operational. If so, node ‘A’ resolves the disagreement with node ‘B’

by classifying itself as non-operational. There is now a majority of two nodes

classifying node ‘A’ as non-operational, namely nodes ‘B’ and ‘C.’ If the CRC

remains incorrect despite the assumption of node ‘A’ being non-operational,

node ‘C’ is considered to be non-operational by node ‘A’ and the next node

(i.e., node ‘D’) becomes the second successor node.

The design principle that a node ‘A’ assumes to be correct until at least two other

nodes indicate the failure of node ‘A’ is denoted as the self-confidence principle. As

long as this disagreement between two nodes persists (i.e., until the disagreement is

resolved by a third node), receivers classify a frame as tentative in the frame status

field (cf. Section 5.2.1.3). Thereby, the application can delay the use of the frame

until it is known whether the sender is operational.

If a node learns that it was classified as non-operational by two receivers, the node

104 Time-Triggered Communication

increases a counter of acknowledgment failures. In case this acknowledgment failure

counter exceeds a configurable threshold value, an acknowledge error is raised and

the controller enters the freeze state (cf. Section 5.5).

5.2.4.3 Clique Detection

The clique detection and avoidance in TTP [27] has the goal of avoiding the parti-

tioning of a cluster into cliques that are not able to communicate with each other. The

clique avoidance algorithm selects the largest partition (clique) as a winner, while the

nodes of other partitions are shut down by entering the freeze state.

In every TDMA round, the communication controller determines whether it is

in agreement with the majority of the other nodes concerning the controller state.

For this purpose, the communication controller counts the number of round slots

where the frame status is correct, as well as the number of round slots where the

frame status is incorrect or invalid. In the pre-send phase of its own transmission

slot, a node checks whether the value of the failed slots counter is larger than the

agreed slots counter. In this case, a clique error is detected and the communication

controller transits into the freeze state.

5.2.4.4 Communication System Blackout Detection

A communication system back out is detected, if only null frames are received during

a TDMA round. This means that no correct transmission from other nodes occurred.

The communication controller raises a communication blackout error and enters the

freeze state.

5.2.5 Fault Isolation

The TTP protocol was designed to isolate and tolerate an arbitrary failure of a single

node during synchronized operation [178]. After the error detection and the isolation

of the node, a consecutive failure can be handled. Given fast error detection and

isolation mechanisms, such a single fault hypothesis is considered to be suitable in

many safety-critical systems [237]. The fault hypothesis assumes an arbitrary failure

mode of a single node. TTP does not guarantee to tolerate two independent node

failures, i.e., a second failure before the detection and isolation of the first failure.

Such a scenario is considered very unlikely and addressed by the so-called Never-
Give-Up (NGU) strategy [174]. If failures outside the fault hypothesis are detected,

the communication system informs the application. Depending on the application,

a safe-state can be entered (e.g., setting all signals to red in a railway application).

Assuming transient faults, a restart of the TTP cluster can be performed in a fail-

operational system.

In order to tolerate timing failures, a TTP cluster uses local or central bus
guardians. In addition, the bus guardian protects the cluster against slightly-off-

specification faults [1], which can lead to ambiguous results at the receiver nodes.

A local bus guardian is associated with a single TTP node and can be physically

implemented as a separate device or within the TTP node (e.g., on the silicon die of

Time-Triggered Protocol (TTP/C) 105

Message (Transmission Duration)

Send Instant

Bus Guardian Window

Receive Window of Nodes

Real-Time

FIGURE 5.6
Bus Guardian Window and Nodes’ Receive Window

the TTP communication controller or as a separate chip). The local bus guardian uses

the a priori knowledge about the time-triggered communication schedule in order to

ensure fail-silence of the respective node. If the node intends to send outside the

preassigned transmission slot in the TDMA scheme, the local bus guardian cuts off

the node from the network. In order to avoid common mode failures of the guardian

and the node, the TTP protocol suggests the provision of an independent external

clock source for the local bus guardian.

The central bus guardian is always implemented as a separate device, which

protects the TDMA slots of all attached TTP nodes. An advantage compared to the

local bus guardians is the higher resilience against spatial proximity faults and the

ability to handle slightly-off-specification faults.

In safety-critical systems, a TTP cluster is deployed with two independent bus

guardians for the two redundant TTP channels. The failure mode of a central bus

guardian is assumed not to be arbitrary. According to the fault hypothesis of TTP,

the failure of a central guardian only leads to the transmission of frames that are

detectably faulty at the receivers. In the time domain, a failure of a guardian can

lead to untimely frames that are perceived at the receiving nodes outside the slots

defined by the TDMA scheme. In the value domain, a faulty guardian can produce

frames with an invalid CRC. According to the fault hypothesis, the guardian may

not generate incorrect frames with valid CRCs and correct timing. The reason for

this assumption is that nodes would receive two different frames from the redundant

communication channels with correct CRCs and timing. Hence, the receiving nodes

would be unable to determine which frame is the correct one and should be provided

to the application. In order to justify this fault assumption, implementations of the

central bus guardian contain no logic for the generation of CRC codes. TTP addresses

the replaying of old frames by including the global time in controller state, which is

used together with the application data in the CRC calculation.

Both central and local guardians use a bus guardian window in order to ensure

timely frames (cf. Figure 5.6). The bus guardian window enables access to the com-

munication system for the node at the specified time and for the complete slot du-

106 Time-Triggered Communication

ration, but prevents any transmission from the node for the remaining duration of

the TDMA round. The start instant and the end instant of the bus guardian window

take into account the different views on the global time, which are bounded by the

precision of the clock synchronization.

In order to avoid slightly-off-specification failures, the bus guardian uses a bus

guardian window that is shorter than the receive windows used by the receiver nodes.

This means that the bus guardian is more restrictive concerning the time of a frame

transmission than any receiver node. The bus guardian limits the frame transmission

in such a way that frames transmitted too early or too late are blocked or truncated,

thus resulting in an invalid transmission for all receivers. Thereby, the bus guardian

protects the communication system from a node transmitting a correct frame with a

temporal deviation close to the precision. Such a transmission can result in an incon-

sistently perceived failure (i.e., so-called Byzantine fault) when the frame is received

correctly by some nodes and incorrectly by other nodes. A detailed discussion of the

dimensioning of bus guardian windows can be found in [283].

5.2.6 Configuration Services

TTP supports the switching between predefined static modes in order to adapt to

changing environment conditions. Furthermore, TTP includes basic configuration

capabilities in order to update the MEDL and download the application software.

5.2.6.1 Mode Changes

TTP supports the switching between predefined static configurations called cluster
modes. The rationale for this protocol service is that many applications exhibit mu-

tually exclusive modes of operation. For example, the flight control system of an

airplane can support different modes such as on-ground, take-off, low-altitude and

landing [40]. Likewise, cars can exhibit different modes of operation such as a nor-

mal mode and a limp-home mode [24, 333].

At any time, all nodes of the cluster must be in the same cluster mode. The cluster

mode is part of the controller state, thus a divergence of cluster modes is detected by

the CRC calculation. Every cluster mode must also possess the same sequence of

TDMA slots.

A host can request a mode change using the control area of the Communication

Network Interface (CNI). In the next pre-send phase, the communication controller

checks this request against the mode change permissions in the MEDL. If the mode

change is permitted by the MEDL, information about the new mode is included in

the next sent frame.

Receiving nodes act on this mode change information in the post-receive phase.

The communication controller of a receiver node also checks whether the sender is

allowed to request the new mode according to the mode change permissions in the

MEDL. If the request is permitted, the new mode will become active at the beginning

of the next cluster cycle. The ongoing cluster cycle is not preempted.

If another mode change request arrives before the end of the cluster cycle, then

Time-Triggered Protocol (TTP/C) 107

the new one overwrites the previous one. Nodes can also cancel a pending mode

change request by sending a special value for the mode change request. In this case,

the mode of the current cluster cycle remains in place.

5.2.6.2 Boot Loader

TTP nodes use a boot loader [326], which supports the startup of the node and the

download of a new MEDL or an application image. When the node is powered up,

the boot loader determines whether download frames are exchanged on the network.

If so, the boot loader switches the TTP controller to the await and download states.

The implementation of the boot loader depends on the type of the TTP controller.

In case of a TTP controller with flash memory (e.g., C2), the MEDL is directly

downloaded to the memory of the TTP controller. If a TTP controller without flash

memory is used (e.g., C2NF), then the MEDL is attached to the application image

during download. During each startup, the boot loader passes the MEDL from the

host’s flash to the RAM of the TTP communication controller.

During the download, the boot loader acquires Application Descriptor Blocks

(APDBs), each containing a header with version information and an identification of

the target node, as well as an application image and/or a MEDL. Since TTP nodes

can support multiple applications, APDBs can also be linked (see Figure 5.7).

APDB 1

Application
Image 1

MEDL 1

APDB Identification
APDB Version
APDB Timestamp
Application Startpoint
Application Length
Application CRC
Application Identification
Application Flags
Application Entry Point
Input/Output Configuration
Error Handling Hook
Address of MEDL
Node Number
Watchdog Configuration
Next APDB
CRC

APDB 2

Application
Image 2

MEDL 2

APDB 3

Application
Image 3

MEDL 3

APDB Header Fields

FIGURE 5.7
Application Descriptor Blocks

A TTP cluster uses a special TTP node called the download master node to send

the download frames. Download master nodes with an Ethernet interface are avail-

able in order to acquire the application images and MEDLs [325].

108 Time-Triggered Communication

5.3 Protocol Parameterization
5.3.1 Message Descriptor List

The MEDL is the central configuration data structure in the TTP protocol. Each

node possesses its own MEDL, which reflects the node’s communication actions

(e.g., sending of frames, clock synchronization) and parameters (e.g., delays to other

nodes). At design time, TTP development tools [339] are used to temporally align

the MEDLs of the different nodes with respect to the global time-base. For example,

the period and phase of a frame transmission is aligned with the respective frame

receptions taking into account propagation delays and jitter.

Coldstart Allowed Flag (CF)

Coldstart Integration Allowed Flag (CIA)

Allow External Rate Correction Flag (AR)

Minimum Integration Count (MIC)

Maximum Coldstart Entry

Macrotick Generation Parameters

Precision/Receive Window/Clock Correction Limit

Communication Bit Rates

Startup Timeout

Listen Timeout

Send Delays

Startup

Parameters

Clock Synch.

Parameters

Communication

Parameters

Flag Position in Membership Vector

Maximum Acknowledgment Failure Count (MAFC)

Diagnostic
Parameters

Identification

Section
Cluster Schedule Identification

Application Identification

Sending Slot Flag
(SS)

CNI Addresses of
Frames

Slot Duration

Transmission
Phase Duration

Delay Correction
Terms

Perform Clique-
Avoidance (PC)

Frame Type

Mode Change
Permission

Clock Synchr.
Flag

Synchronization
Frame Flag

Application Data
Length

Slot 0 of Mode 0

Slot 1 of Mode 0

Slot 0 of Mode 1

Slot 1 of Mode 1

Slot 0 of Mode n

Slot 1 of Mode n

Control

Parameters

Temporal

Parameters

Frame

Information

Entries for a Slot in the MEDL

Communication

Slots

FIGURE 5.8
Layout of the Message Descriptor List

The contents of the MEDL are depicted in Figure 5.8. The actual memory layout

depends on the implementation of the communication controller and is not fixed by

the TTP protocol. For example, the memory layout of the TTP controller C2 can be

found in [337].

For each node, the MEDL includes several start-up parameters. The MEDL de-

fines whether a node is allowed to send a frame during a coldstart (so-called coldstart

frames). If so, the listen timeout defines how long the node waits for frames on the

communication channels before starting with the transmission of a coldstart frame.

Time-Triggered Protocol (TTP/C) 109

The maximum number of attempts of the node to send a coldstart frame is bounded

by a threshold value: the maximum coldstart entry. The startup timeout provides a

node-specific unique timeout value in order to avoid repeated collisions. In addition,

the MEDL specifies whether a node is allowed to integrate on a coldstart frame. Oth-

erwise, a normal frame with an explicit controller state is required for integration. A

threshold value in the MEDL (called minimum integration count) denotes the mini-

mum number of correct frames that need to be received before a node considers itself

to be integrated and starts transmitting frames. This threshold prevents a node from

integrating based on a single faulty frame.

Another group of entries in the MEDL are clock synchronization parame-
ters. They define whether the external rate correction is enabled. Also, the mi-

crotick/macrotick ratio and the precision of the global time-base are specified. Ac-

cording to the reasonableness condition [169, p. 52] of a global time-base, the dura-

tion of a macrotick must be smaller than the precision in order to guarantee that the

timestamps assigned to the same event at two nodes differ by at most one macrotick.

The clock synchronization parameters are used to configure most of the TTP ser-

vices, e.g., the duration of the receive windows or the maximum clock correction

term.

Another group of entries in the MEDL are communication parameters such as

the communication bitrate and the send delay. The send delay depends on the propa-

gation delay and ensures that no correctly synchronized node receives a frame before

the action time.

The diagnostic parameters define the node’s position in the membership vector

and the maximum number of acknowledgment failures before entering the freeze

state.

An identification section consists of an identifier of the MEDL (called cluster

schedule identification) and an application identification, which names the host ap-

plication. The identification section can be used by the application to determine if a

correct MEDL is deployed in the TTP node.

Thereafter, the MEDL provides a description of the slots of the TDMA scheme.

The TDMA scheme consists of TDMA slots, each of which can be used by a TTP

node for the transmission of a frame. TTP supports different modes, each of which

can have a different layout of TDMA slots.

For each TDMA slot, the MEDL defines the required actions of a node, the tem-

poral parameters of the slot and the frame that is exchanged during the slot.

• Control parameter. Possible actions in a slot are the sending of a frame, the

execution of the clique avoidance algorithm and the synchronization of the

clock. For the clock synchronization, the control parameters define whether

the receive instant of a frame shall be used for synchronization and whether

a correction term shall be computed in the slot. Finally, the mode change per-

mission denotes if a mode change can be accepted in this slot.

• Temporal parameters. The maximum duration of the frame transmission in the

slot is provided, while considering the delay on the communication channel

and communication jitter. The sum of this transmission phase duration, the

110 Time-Triggered Communication

pre-send phase and the post-receive phase gives the minimum for the slot du-

ration. The slot duration is the length of the TDMA slot in macroticks. If a

node receives during the TDMA slot, a correction term is given in order to

compensate for the propagation delay from the sending node.

• Frame information. This section of the MEDL describes the frame. Firstly, the

frame type is given, such as a frame with implicit or explicit controller state.

Also, the number of bytes of application data in the frame is specified. In order

to enable the processing of frames, an address in the CNI is associated with

the TDMA slot. In case of a frame reception, the application data is written to

this CNI address. If a frame is transmitted, the application data is read from

the CNI address.

5.4 Communication Interface
The communication interface between the host and the communication controller is

called the Communication Network Interface (CNI) in TTP. The CNI is a memory

area that is structured into three parts: a status area, a control area and a message

area.

The host’s access to the status and control area is constrained in order to en-

sure consistency (e.g., no transmission of a partially updated message). The host is

allowed to access the status and control information in the CNI during the transmis-

sion phase and the idle phase. The message area of the CNI can be read or modified

during the transmission phase except for the frame under transmission or reception.

5.4.1 Status Area

The status area provides access to the global time, diagnostic information and the

status of the communication controller. The specific memory layout is not fixed by

the TTP specification and depends on the implementation. For example, Figure 5.9

depicts the layout of the status area for the TTP communication controller C2 [338].

The status area contains the current state of the communication controller (i.e.,

the controller state) with the following information:

• Global time: The global time in the status area denotes the point in time of the

next frame transmission in macroticks. The global time is updated during the

pre-send phase before the next sending slot of a node.

• Cluster mode: The status area provides information about the cluster mode at

which the TTP system is operating. In case a mode change is requested in the

next cluster cycle, this condition is indicated by the field Deferred Pending

Mode Changes (DMC).

Time-Triggered Protocol (TTP/C) 111

Global Time (of next Transmission Phase)

Current Cluster Mode / Round Slot

Membership Word 0 (Nodes 0-15)

Membership Word 1 (Nodes 16-31)

Membership Word 2 (Nodes 32-47)

Membership Word 3 (Nodes 48-63)

DMC

Agreed Slots Counter Failed Slots Counter

Membership Failure Counter Coldstart Counter

Clock State Correction Term

Error Flags

Measured Time Difference (Channel 0)

Measured Time Difference (Channel 1)

Failed Frame Counter Channel 0 Null Frame Counter Channel 0

Failed Frame Counter Channel 1 Null Frame Counter Channel 1

Cluster and Node ID

Controller ID

Protocol Version

Schedule ID (Word 0)

Schedule ID (Word 1)

Schedule ID (Word 2)

Application ID

Application Version

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
r

S
ta

te
(C

-S
ta

te
)

D
ia

gn
os

tic
In

fo
rm

at
io

n
Id

en
tif

ic
at

io
n

In
fo

rm
at

io
n

Bus Guardian
Error
Clique
Error

Synchronization
Error

Membership
Error

Communication
System Blackout

Download
Completed

Slot Occupied
Error

Mode Violation
Error

Frames
Not Ready

Concurrency
Control Error

Error Flags

FIGURE 5.9
Layout of Status Area in the CNI of the TTP Communication Controller C2 [338]

• Round slot position: The status area contains the current position in the time-

triggered communication schedule as defined in the MEDL.

• Membership vector: The membership vector provides consistent information

about the operational state of the nodes (cf. Section 5.2.4).

In addition to the controller state information, the status area includes diagnostic

information:

• Agreed and failed slot counters: The agreed slots counter counts in each

TDMA round the number of nodes that have sent at least one correct frame.

Adversely, the failed slots counter counts in each TDMA round the number of

nodes sending at least one failed frame but no correct frame. The agreed slots

counter and the failed slots counter are used for the clique avoidance algorithm.

• Membership failure counter: The membership failure counter (also called ac-
knowledgment failure counter) is used by the acknowledgment algorithm and

counts the number of successive acknowledgment failures. If a threshold value

112 Time-Triggered Communication

is exceeded, a node is considered to exhibit a permanent failure and terminates

its operation. The threshold value is contained in the MEDL and called the

maximum acknowledgment failure count.

• Coldstart counter value: The coldstart counter value is a value used by the

startup algorithm (cf. Section 5.2.3). It counts the number of coldstarts exe-

cuted by the communication controller. A node only sends coldstart frames,

if the coldstart counter value does not exceed a threshold for the maximum

permitted coldstarts as specified in the MEDL.

• Clock state correction term: The clock state correction term is computed by

the clock synchronization algorithm. This field can be used for external clock

synchronization (e.g., to GPS). The granularity of the clock state correction

term are microticks of the communication controller.

• Error flags: The error flags denote internal protocol errors and host failures

detected by the communication controller.

– The bus guardian error shows that a local bus guardian detected a bus

access violation such as an attempt to send outside the time interval spec-

ified in the time-triggered communication schedule.

– The clique error occurs if the controller state of the communication con-

troller is different to the majority of the cluster.

– An error in the clock synchronization subsystem is indicated by a syn-
chronization error. For example, a computed clock correction term larger

than Π/2 (where Π is the precision of the global time) leads to such an

error.

– If the number of successive membership failures has exceeded the thresh-

old in the MEDL (i.e., maximum membership failure count parameter),

this condition is recorded in the membership error field.

– A communication system blackout occurs in case no bus activity is per-

ceived except for the own transmission of the node during the duration

of a TDMA round.

– The download completed flag informs the host that the download of the

MEDL into the communication controller has been completed. This flag

is usually used by the controller for a restart.

– A slot occupied error is raised if the slot of a node is already used by

another node (as indicated by the membership vector).

– A mode change request by a host leads to mode violation error in case it

violates the mode change permissions.

– Prior to the transmission of a frame by the communication controller, the

host must set a flag that is associated with the frame. Thereby, the host

confirms that the frame is ready for transmission. The failure to set this

flag leads to a frames not ready error.

Time-Triggered Protocol (TTP/C) 113

– The concurrency control error records a violation of the non-blocking

write protocol [184].

• Time difference values: For every communication channel, the status area also

contains values denoting the difference between the expected arrival time and

the actual arrival time of the most recent received frame. Due to the reasonable-

ness condition of the global time-base [169, p. 52], this value must be between

−2Π and +2Π (where Π is the precision of the global time-base).

• Null frames and failed frames: Further diagnostic information consists of a

counter for the number of null frames and failed frames (i.e., invalid or incor-

rect) for each communication channel during the last TDMA round.

The third part of the status area is comprised of identification information. This

part provides an identification of the node, controller and communication schedule,

as well as version information about the protocol and the application.

5.4.2 Control Area

The control area of the CNI is used by the host to control the operation of the commu-

nication controller. Firstly, the host can switch on and switch off the communication

controller using the controller on flag. At power-on and after a critical failure of the

communication controller the controller on flag is set to zero. Using the flag, the host

can start or restart the operation of the communication controller.

The control area is also used by the host to provide the periodic life-sign. By

writing the life-sign entry, the host demonstrates that it does not exhibit a crash fail-

ure (cf. Section 5.2.4). If the life-sign is not set by the host within a TDMA round,

the communication controller does not send frames and transits into passive mode.

Frame transmission is only continued when the host updates the life-sign again.

The external rate correction field of the control area serves for the implemen-

tation of external clock synchronization. External clock synchronization links the

global time of the TTP cluster to an external time base. This synchronization is uni-

directional and periodically adjusts the rate of the global time in the TTP cluster

to bring it into agreement with the external time-base. The difference between the

occurrence of a significant event in the external time-base (e.g., the start of the full

second) and the occurrence of the related significant event in the global time of the

TTP cluster, is measured by using the microticks of a time gateway. The necessary

rate correction term is then computed and written into the external rate correction

field of the control area. This field specifies the number of microticks that shall be

added to the correction term during the next resynchronization interval.

The mode change request field can be used by a host to request a mode change

to a new time-triggered communication schedule in all nodes of a cluster. Mode

changes enable different operating modes and adaptability to different environmental

contexts. A mode change request is broadcast to all other nodes of the cluster at the

next scheduled send instant of the node.

The timer field enables the host to select a periodically recurring point in time at

114 Time-Triggered Communication

which a control signal is generated by the communication controller. When the global

time reaches the value of the timer field, a timer interrupt is generated. Using such a

programmable timer, which is synchronized to the global time of TTP, it is possible

to periodically trigger the dispatcher of a time-triggered operating system [324]. On

its behalf, the dispatcher can control the execution of processing tasks according to

a time-triggered task schedule to establish synchronization with the communication

activities of the TTP network. Thereby, the operating system implements implicit

synchronization as introduced in Section 2.5.3.

The host can determine which events should trigger an interrupt by writing the

interrupt enable field. Examples of supported events are the timer expiration as re-

quested by the timer field and error conditions such as BIST errors (e.g., CRC error

of protocol code), protocol errors (e.g., clock synchronization error) and host errors

(e.g., no host life-sign). In addition, interrupts can indicate changes of the cluster’s

status such as an update of the membership vector or a mode change.

The final entry of the control area is the time startup field, which contains the

controller state time that is broadcast during cluster start-up. This field is useful to

establish initial synchronization to an external time-base. A time gateway can use

this field to initialize the cluster with the current external time.

5.4.2.1 Message Area

The message area contains the frames that are sent and received at the TTP net-

work. The structure of the message area depends on the time-triggered communica-

tion schedule. As depicted in Figure 5.10, each frame consists of application data, a

status field and an optional diagnosis field. In case of a frame that is sent by the TTP

node, the status field is a send status flag that denotes whether the application data of

the frame is valid for transmission. This flag is called the Ready Status (RS) flag. For

a frame that is received by the TTP node, the status field shows different types of de-

tected communication failures. Possible failures are no traffic on the communication

channel, coding errors, CRC errors, disagreement of the controller state and a request

for a mode change that is not permitted according to the mode change permissions

in the MEDL. The diagnosis field is optional and stores the CRC and the header of

a received frame. The MEDL defines whether the diagnosis field is appended to a

particular frame in the message area.

5.5 Protocol States
The TTP protocol distinguishes nine protocol states as depicted in Figure 5.11. The

init state is the first state after the TTP controller has been switched on by the host.

After the TTP controller has set its internal data structures to the initial values and

the MEDL has been checked, it transits to the listen state. The listen state serves for

the integration of the node when receiving a frame with explicit controller state from

Time-Triggered Protocol (TTP/C) 115

Code

Message area entry for the application data of one frame

DescriptionFrame Status

Application Data (1-120 16 bit words)Frame Status Field opt. Frame Diagnosis Field

Concurrency Control Field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frame Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frame Header

Frame CRC (24-8)

Frame CRC (7-0)

3 2 1 0

Null frame No traffic on the channel

Invalid frame Coding error, wrong length

Incorrect frame CRC failed, C-state disagreement

Other error Mode change permission violated

Tentative frame C-state/CRC without own membership ok

Correct frame C-state/CRC with own membership ok

RS flag set Data valid for transmission (sending only)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 0

1 X X X

Frame Status Field

Frame Diagnosis Field

Frame Status

FIGURE 5.10
Application Data and Status Fields in the Message Area [338]

another node. If the node receives such a frame, it enters the passive state. The active
state is reached when the node sends a frame during its slot. The preconditions for

becoming active are the setting of the host life-sign by the host and the reception of a

minimum number of correct frames. The transition from passive to active state is also

called the slot acquirement. After the slot acquirement, the node has sent successfully

and is active in the membership.

If the node receives no frame in the listen state and it is allowed to send cold-

start frames, it enters the coldstart state. In this state, the controller actively initiates

the startup of the cluster by sending coldstart frames as described in Section 5.2.1.3.

The coldstart state is replaced by the active state as soon as a correct frame is re-

ceived from another node and thus two nodes are alive in the cluster. If the maximum

number of coldstart frames is exceeded or if a frame is received during the startup

timeout, the controller transits back to the listen state.

In order to configure the TTP cluster, the host can set the controller in the await
state. After frames with download information arrive, the download state is entered

and the configuration of the controller (i.e., MEDL) and the application code of the

host are programmed into the node.

The test state serves for the execution of the built-in-self test by the TTP con-

troller. The actual tests (e.g., memory test) depend on the controller implementation.

116 Time-Triggered Communication

Freeze

Init TestAwait
Down-
load

Active

PassiveCold
Start

Listen

Completed
initialization

Error
in MEDL
detected

Host
turns on

controller

Download
completed

Host
turns off

controller

Frame with
download

information

Test
completed

Host error, protocol error or
turned-off TTP controller

Host error, protocol error or
turned-off TTP controller

BIST request
by host

Controller in
majority clique

Frame with controller state

Frame with download
information

Config. request
by host

Lifesign not
updated

Controller in majority clique and missing life-sign

Listen timeout
expired

Max. Coldstart
Frames Exceeded

Node slot
is acquired

FIGURE 5.11
Protocol States

5.6 Validation and Verification Efforts
In the following, the verification of TTP and its algorithms by means of formal anal-

ysis and fault injection is described. The goal of these activities was to determine

the correctness of the core algorithms of TTP and to show that an acceptable level of

service is provided given the satisfaction of the fault hypothesis. For the users of TTP

these results provide valuable assurance on the claims of TTP concerning reliability

and suitability for safety-critical systems.

5.6.1 Formal Analysis of Clock Synchronization Algorithm

The clock synchronization algorithm of TTP is a specialization of the Welch-Lynch

algorithm for tolerating a single fault by using four clock readings and no dedicated

wires to communicate the clock readings. No dedicated wires are needed, because

Time-Triggered Protocol (TTP/C) 117

the deviations between the actual and the expected receive instants of frames at the

TTP network provide the input to compute the clock differences. Also, the clock

synchronization algorithm of TTP considers only nodes marked as having accurate

oscillators.

Using the PVS theorem prover [243] the TTP clock synchronization algorithm

was formally verified in [256] based on the verification of the Welch-Lynch algo-

rithm [225].

The remaining challenges for the formal verification of the clock synchronization

in TTP are pointed out in [285], e.g., the introduction of a hybrid fault model consid-

ering manifest faults and symmetric faults in order to model systems with fewer than

four correct clocks. Although the requirements for handling arbitrary faults are no

longer met with fewer than four clocks, insights into the behavior in these scenarios

would be valuable as part of a never give up philosophy. In a safety-critical system,

the computer system should never give up, even if the fault hypothesis is violated by

reality. In a properly designed fault-tolerant system, chances are high that a violation

of the fault hypothesis is caused by a correlated shower of external transient faults or

by a Heisenbug and that a fast restart of the system will be successful [174].

5.6.2 Formal Analysis of Fault Isolation and Consistency

The time-triggered communication schedule temporally coordinates the frame trans-

missions of nodes in order to avoid collisions. The central and local guardians in TTP

ensure fault isolation in case a node does not comply to the predefined send intervals

defined in the communication schedule. Since clocks cannot be perfectly synchro-

nized (e.g., due to drift rates), the permitted send intervals at the guardian take into

account the inevitable difference of the local clocks bounded by the precision Π
(cf. Section 5.2.5).

Based on the fault isolation of the guardians, TTP ensures the properties of agree-

ment, validity and separation. Agreement requires that all correct nodes receive a

frame if one correct node receives the frames. Validity is satisfied if all correct nodes

receive a frame if the frame is sent by a correct sender node. Separation is satisfied

when the temporal order of the frame receptions is equal to the order of the slots in

the time-triggered communication schedule. This means that a frame sent by a cor-

rect node via a correct guardian arrives after the frame from the previous slot and

before the frame from the next slot in the TDMA scheme.

The properties of agreement, validity and separation were formally verified using

PVS in [283].

5.6.3 Formal Analysis of Membership Service and Clique Avoidance

The membership service presents to the host application in each node a consistent

view of the operational state of all nodes in the cluster. This diagnostic informa-

tion facilitates the construction of dependable systems and the implementation of

application-level fault-tolerance.

In addition, the membership service is used by other algorithms in TTP for tol-

118 Time-Triggered Communication

erating multiple subsequent node failures. For example, the clock synchronization

uses the membership information for selecting the nodes that provide the clock val-

ues. Thereby, the clock synchronization becomes ready for tolerating a second node

failure after the exclusion of the first failed node from the membership. The under-

lying fault assumption is that two subsequent node failures are at least two rounds

apart.

The membership service of TTP is designed to provide the properties of agree-

ment and validity [107]. The agreement property requires that the membership vector

of all correct nodes be identical. Validity demands that all correct nodes are classified

as such in the membership vector of correct nodes. In addition, at most one faulty

node may be classified as correct in the membership vector at any given point in

time.

These properties were verified in [255]. In this work, a set of disjunctively con-

nected formulas is used, where each disjunct represents a particular configuration that

the membership algorithm can reach. The correctness of the membership algorithm

was proven by verifying that the system is always in one of these configurations.

The clique avoidance builds on top of the membership algorithm and tolerates

asymmetric faults. In [43] the clique avoidance was verified by building a model for

the algorithm in the language of ALV [45] and verifying the convergence to a single

clique after precisely two rounds after the occurrence of a failure.

5.6.4 Fault Injection Experiments

Fault injection experiments were performed to validate TTP by testing its fault

handling capabilities. Different configurations of TTP clusters were exposed to

Software-Implemented Fault Injection (SWIFI) [132], pin-level fault injection [159],

electromagnetic interference [159] and heavy-ion fault injection experiments [301].

In an experimental setup, which comprised a cluster with two redundant com-

munication channels in a bus topology and local bus guardians, error propagation

was observed due to the spatial proximity of the TTP communication controllers and

the bus guardians. The central guardian, on the other hand, was effective in the con-

tainment of slightly-off-specification (SOS) failures, reintegration errors, asymmetric

faults and babbling idiot failures [2].

In [253] fault injection was performed to judge whether the status information

provided by the TTP controller is sufficient for the detection of connector faults. The

derived results constitute an important input for maintenance-oriented online analy-

sis mechanisms. The fault injection experiments have shown that the frame status in-

formation is a suitable indicator. Component-external faults and component-internal

faults were simulated using electromagnetic interference, while a disturbance node

was used for the simulation of connector faults.

Time-Triggered Protocol (TTP/C) 119

5.7 Example Configurations and Implementations
TTP has been integrated into a number of commercial applications. In the railway

domain, Thales Rail Signalling Solutions has used TTP for realizing the electronic

interlocking system LockTrac 6131 ELEKTRA [157]. This system has been certified

according to CENELEC standards with Safety Integrity Level 4 (SIL4). The ELEK-

TRA system supports the basic interlocking functions, as well as additional features

such as local and remote control, automatic train operation, blocking functionality

and diagnosis capabilities.

In the aerospace domain, TTP was deployed for the FADEC (Full Authority Dig-

ital Engine Control) systems. Honeywell used TTP as the backplane bus in an elec-

tronic controller for General Electric’s F110 jet engine on the Lockheed Martin F-16

fighter aircraft. In addition, Honeywell deployed TTP on Honeywell’s F124 engine in

the M-346 fighter-trainer of the aircraft manufacturer Aermacchi [232]. In the Airbus

A380 TTP serves as the communication system for the cabin pressure control system.

In the Boeing 787 Dreamliner, Hamilton Sundstrand Corporation and TTTech devel-

oped the communication system based on TTP for the electric and environmental

control system [214]. Parker Aerospace selected TTP for a new generic fly-by-wire

actuation platform, which will be initially used on the Bombardier CSeries and Em-

braer Legacy 450/500 aircraft programs [332].

Furthermore, prototypes of off-highway vehicles use TTP [91]. For example,

Eaton Corp. introduced controllers for electrohydraulic systems that are designed

for applications where control loop times are critical. These controllers meet SIL 2

and 3 requirements of the off-highway industry [138].

6
FlexRay

C. El Salloum
Vienna University of Technology

K. Bilic
Vienna University of Technology

CONTENTS

6.1 Protocol Overview . 122

6.2 Protocol Services . 122

6.2.1 Communication Services . 122

6.2.1.1 Temporal Structuring of Communication 123

6.2.1.2 Frame Format . 126

6.2.1.3 Coding and Decoding . 129

6.2.2 Protocol Operation Control . 130

6.2.3 Clock Synchronization . 132

6.2.3.1 Global and Local Time . 132

6.2.3.2 Synchronization Process . 132

6.2.4 Wakeup and Startup . 134

6.2.4.1 Wakeup . 134

6.2.4.2 Startup . 135

6.3 Diagnostic Services and Fault Isolation . 137

6.3.1 Redundant Communication Channels . 137

6.3.2 Bus Guardians . 137

6.3.2.1 Local Bus Guardian . 138

6.3.2.2 Central Bus Guardian . 139

6.3.3 Checks on the Reception of a Frame . 139

6.4 Protocol Parameterization . 140

6.4.1 Cluster Parameters . 140

6.4.2 Node Parameters . 141

6.5 Controller Host Interface . 142

6.5.1 Overview of the E-Ray IP Module . 142

6.5.2 Programmers Model . 144

6.5.2.1 Assignment of Message Buffers 144

6.5.2.2 Structure of the Message RAM 145

6.5.2.3 Message Handling . 146

6.6 Example Configurations and Implementations . 148

121

122 Time-Triggered Communication

6.6.1 Topology and Layout of a FlexRay Network 148

6.6.1.1 Passive Bus Topology . 148

6.6.1.2 Active Star Topology . 149

6.6.1.3 Hybrid Network . 149

6.1 Protocol Overview
FlexRay is a deterministic, scalable and fault-tolerant digital serial bus system de-

signed for automotive applications. It was specified and developed by the FlexRay

consortium, which was a cooperation of automobile manufacturers and leading sup-

pliers that existed from the year 2000 to the year 2009. The FlexRay consortium has

concluded its work with the FlexRay specification Version 3.0.1

A major design driver of FlexRay was to keep costs low while delivering high

performance in a rugged environment. Nodes are interconnected by using unshielded

twisted pair cabling supporting either single-channel or dual-channel configurations.

Dual-channel configurations can be used for increased (doubled) bandwidth or for

fault-tolerance by sending redundant data over each channel. The effects of external

noise on the network is reduced by employing differential signaling on each twisted

pair [146].

FlexRay is a flexible protocol that provides both deterministic communication,

where data is sent and received in predictable time-frames, and dynamic event-driven

communication like in CAN [151] networks. This hybrid approach is accomplished

by a communication cycle that provides pre-defined time intervals for dynamic and

static data.

6.2 Protocol Services
This section describes the services of the FlexRay protocol.

6.2.1 Communication Services

As mentioned above, FlexRay supports both deterministic time-triggered communi-

cation and flexible event-triggered communication in a single communication proto-

col. In this section, we give a detailed overview of the protocol including communi-

cation modes, media access control, frame format, and coding and decoding on the

physical layer.

In FlexRay, media access control is based on a recurring communication cycle

1www.flexray.com

www.flexray.com

FlexRay 123

which is the fundamental element of the media access scheme. The communication

cycle is defined by a timing hierarchy encompassing four levels (see Figure 6.1 [64]).

t

static seg. dynamic seg. symbol window
network
idle time

cycle level

static slot static slot minislot minislot
arbitration
grid level

macrotick
level

microtick
level

microtick

action point

macrotick

FIGURE 6.1
FlexRay Timing Hierarchy

• The highest level is the communication cycle level. This level defines the com-

munication cycle and contains the static segment, the dynamic segment, the

symbol window and the network idle time.

• The second level is called the arbitration grid level and forms the backbone of

the arbitration in FlexRay. In the static segment the arbitration grid consists of

the static slots, and in the dynamic segment of the minislots.

• The third level is the macrotick level. Macroticks are synchronized on a cluster-

wide basis, and selected macroticks define action points, which are specific

instants at which transmissions shall start or end.

• The lowest level is the microtick level which describes the time units that are

directly derived from the communication controller’s oscillator clock tick, op-

tionally using a prescaler.

6.2.1.1 Temporal Structuring of Communication

The communication in FlexRay is organized in cycles, where each cycle consists of

four segments: (1) the static segment, (2) the dynamic segment, (3) the symbol win-
dow and (4) the network idle time. A communication cycle always contains a static

segment, while the dynamic segment is optional. The symbol window is also op-

tional and contains a configurable number of macroticks. The network idle time is

mandatory and contains the remaining number of macroticks within the communi-

cation cycle that are not allocated to the static segment, dynamic segment or symbol

window. The network idle time is a communication-free time window used for clock

corrections and to calculate and perform offset correction.

124 Time-Triggered Communication

After the startup phase, the communication cycle is executed periodically. Com-

munication cycles are numbered from 0 to 63. Each node shall maintain a cycle
counter that represents the number of the current communication cycle.

Static Segment

Message transmission in the static segment is coordinated with the time division

multiple access scheme. The static segment consists of a defined number of equally

sized static slots, where each static slot is statically assigned to a unique frame via

the frame ID. A frame is always sent in the slot of which the slot number is equal

to the frame ID. On each channel, each frame ID is assigned to at most one node. A

node is obliged to transmit a frame in all of its static slots. In case the node does not

need the current slot because it has no new data, it has to send a nullframe, which is

an ordinary frame with no data in the payload segment.

For a single node and a single slot, the following transmission patterns are possi-

ble (see Figure 6.2 [64]): (1) A node can send a frame on channel A and on channel

B, (2) a node can send a frame only on channel A, (3) a node can send a frame only

on channel B and (4) a node can send no frame at all during the slot. The major

constraint is that in each slot on a given channel at most one node shall transmit a

frame.

t

frame ID 1channel A

frame ID 1channel B

static slot 1 static slot 2 static slot n

gNumberofStaticSlots in the static segment

1

1 2

n

n

slot counter for channel A

slot counter for channel B

frame ID 2

frame ID 3

3

static slot 3

FIGURE 6.2
Structure of the Static Segment in FlexRay

All slots in the static segment consist of an equal number of macroticks, which is

a global constant of the entire cluster. Within each slot there is an action point where

the transmission of a frame should start. This action point is defined by a cluster-

wide parameter which denotes the number of macroticks contained in the offset of

the action point from the start of the slot [64]. At the action point, the channel is active

and the transmission of a frame starts. After the transmission of a frame, there is an

FlexRay 125

idle time before the next slot begins. The silence intervals within a slot are required

to compensate for the clock drift of the nodes in order to establish a consistent view

in the cluster. All nodes should observe the transmission of a given frame in the same

slot.

Dynamic Segment

If configured, the dynamic segment starts after the static segment. It provides event-

triggered communication based on a dynamic minisloting scheme used to arbitrate

transmissions. Figure 6.3 depicts the structure of the dynamic segment within two

FlexRay channels [64]. The dynamic segment consists of a definable number of

equally sized minislots.

t

frame ID m
channel

A
frame ID m+n-k

frame ID
m+1

channel B

gNumberofMinislots in the dynamic segment

m

m

m+1

m+3

m+n-k

m+n-2-l

slot counter for channel
A

slot counter for channel B

dynamic slot with transmission

m+1 m+2

m+2

m+n-1-l m+n-l

transmission start only withinpLatestTxminislots

dynamic slot without transmission

FIGURE 6.3
Structure of the Dynamic Segment in FlexRay

Based on the grid formed by the minislots, FlexRay defines so-called dynamic
slots. In contrast to static slots, the duration of dynamic slots may vary to support

frames of variable size. Each dynamic slot consists of one or more minislots. The

dynamic slots in a communication cycle are enumerated in an ascending order start-

ing with the ID of the last static slot + 1 (i.e., the numbering of slots continues in

the dynamic segment). As in the static segment, a frame is statically assigned to a

dynamic slot via the frame ID, and a frame ID is statically assigned to a unique node

for each channel.

In contrast to the static segment, where each node is obliged to send a message

in its static slot, a node will use its dynamic slot only when it has new data to send.

A node is allowed to send a given frame when the actual number of the dynamic slot

corresponds to the ID of that frame.

For arbitration, each node maintains two slot counters, one for each channel. A

126 Time-Triggered Communication

node’s slot counter for a given channel is incremented by one at the end of every

dynamic slot that has occurred on that channel.2 If the value of a node’s slot counter

of a given channel equals the frame ID of a frame that has been assigned to that

node for that channel, the node has the opportunity to send the corresponding frame.

If the node does not start to transmit the frame (i.e., the channel is idle throughout

the entire minislot), the duration of the dynamic slot is only one minislot, and the

next dynamic slot starts at the next minislot. If the node starts the transmission of the

frame, the length of the dynamic slot will be prolonged by additional minislots until

the transmission of the frame is finished.

Frames with a lower frame ID are sent earlier in the dynamic segment, and thus

have a higher priority. It might happen that a frame with a low priority (i.e., a high

frame ID) cannot be sent before the end of the dynamic segment has been reached.

In this case, the corresponding node has to wait for the next communication cycle

for a new chance to transmit the frame. The slot counters will always be reset to zero

when the end of the dynamic segment has been reached.

As for the static slots, the minislots contain an action point offset defined by a

global parameter. In contrast to the static segment, where frame transmission only

starts at the action point offset, the frame transmission starts and stops at the action

point offset of the corresponding minislots.

Symbol Window

The symbol window can be used to transmit specific symbols (e.g., a media test sym-

bol to test the local bus guardian). FlexRay does not provide arbitration for multiple

nodes within the symbol window. If this is required, it has to be implemented on a

higher level. The number of macroticks within the symbol windows is a cluster-wide

parameter.

Network Idle Time (NIT)

The network idle time is comprised of the remaining number of macroticks of the

communication cycle that are not allocated to the static segment, the dynamic seg-

ment or the symbol window. During this time interval, each node calculates and

applies clock correction terms.

6.2.1.2 Frame Format

A FlexRay frame is divided into three segments, namely the header segment, the

payload segment and the trailer segment (see Figure 6.4 [64]).

FlexRay Header Segment

The FlexRay header segment is the first segment of the FlexRay frame and consists of

five bytes. It includes a reserved bit, the payload preamble indicator, the null frame

2In the dynamic segment, the slot counters of both channels do not necessarily have the same values.

FlexRay 127

Data n
Header

CRC
Payload
length

Frame ID
Cycle
Count

CRCCRCCRCData 0

S
yn

c
fr

am
e

in
di

ca
to

r
N

ul
l f

ra
m

e
in

di
ca

to
r

S
ta

rt
up

fr
am

e
in

di
ca

to
r

P
ay

lo
ad

pr
ea

m
bl

e
in

di
ca

to
r

R
es

er
ve

d
B

it

Header Segment Payload Segment Trailer Segment

24 bits5 bits + 11 bits + 7 bits + 11 bits + 6 bits = 5 bytes 0 - 254 bytes

FIGURE 6.4
FlexRay Frame Format

indicator, the sync frame indicator, the startup frame indicator, the frame ID, the

pay-load length, the header CRC and the cycle count.

Reserved bit: The reserved bit is not used by the protocol and shall not be used by

the application. It is reserved for future protocol use. There are two rules given

by the FlexRay specification which define this bit in the node environment:

• The transmitting node shall set the reserved bit to logical 0.

• The receiving node shall ignore the reserved bit.

Payload preamble indicator: If the payload preamble indicator is set to logical 1, it

indicates that an optional vector is contained within the payload segment of the

frame which is transmitted. If the payload preamble indicator is set to logical 0,

then no optional vector is transmitted in the frame. There are two rules for the

payload preamble indicator which distinguishes between the payload preamble

indicator in the static FlexRay segment and the payload preamble indicator in

the dynamic FlexRay segment.

• If the frame is transmitted in the static segment, the payload preamble

indicator indicates the presence of a network management vector at the

beginning of the payload.

• If the frame is transmitted in the dynamic segment, the payload preamble

indicator indicates the presence of a message ID at the beginning of the

payload.

Null frame indicator: The null frame indicator indicates whether the frame is a null
frame. A null frame is a frame which contains no useable data in the payload

segment of the frame. If the null frame indictor is set to zero, then the payload

segment contains data.

Sync frame indicator: If the sync frame indicator is set to logical 1, it indicates that

the frame is a sync frame. A sync frame is a frame which is used for system

wide synchronization of the communication between nodes in a FlexRay net-

work. If the sync frame indicator is set to logical 1, every receiving node shall

128 Time-Triggered Communication

utilize the frame for synchronization. The clock synchronization mechanism

makes use of the sync frame indicator.

Startup frame indicator: If the startup frame indicator is set to logical 1, it indi-

cates that the frame is a startup frame. Startup frames are special frames which

have an important role in the startup mechanism. The startup frame indicator

shall only be set to 1 in the sync frames of coldstart nodes. Therefore, a frame

with the startup frame indicator set to 1 shall also have the sync frame indicator

set to one. Since the startup frame indicator can only be set to 1 in sync frames,

every coldstart node can transmit exactly one frame per communication cycle

and channel with the startup frame indicator set to 1.

Frame ID: The frame ID is an 11 bit-field which defines the slot in which the frame

should be transmitted to a receiver. With these 11 bits it is possible to have

an ID range between 1 and 2047. The ID 0 is an invalid frame ID in FlexRay.

Every frame ID is only assigned to one frame and every frame has its own

frame ID.

Payload length: The payload length is a 7 bit-field which is used to indicate the size

of the payload segment. It defines the number of 16-bit words in the payload

segment. The upper limit of the payload length in the FlexRay protocol is 127

two-byte words.

The payload length shall be fixed and identical for all frames sent in the static

segment of the communication cycle. In the dynamic segment, the payload

length may be different for different frames of a communications cycle. It is

also possible that the payload length of a specific frame changes from cycle to

cycle and may also be different on each configured channel.

Header CRC: The header CRC is an 11 bit-field that contain a cyclic redundancy

check (CRC) code that is computed over the sync frame indicator, the startup

frame indicator, the frame ID and the payload length. The header CRC of

transmitted frames is not calculated online by the transmitting communica-

tion controller, but offline and is provided to the communication controller as

a configuration input. The header CRC of every frame which is received must

be calculated by the communication controller in order to check the header for

correctness.

For all configured channels, the CRC is computed in the same manner. The

initialization vector is 0x01A and the CRC polynomial is:

x11 +x9 +x8 +x7 +x2 +1 = (x+1)∗(x5 +x3 +1)∗(x5 +x4 +x3 +x+1) (6.1)

To compute the header CRC, the sync frame indicator must be shifted in first,

followed by the startup frame indicator, followed by the most significant bit

of the frame ID, followed by subsequent bits of the frame ID, followed by the

most significant bit of the payload length and followed by subsequent bits of

the payload length [64].

FlexRay 129

Cycle count: The cycle count is a 6 bit-field and represents the value of the node’s

cycle counter at the time of frame transmission. Valid values for the cycle

counter are between 0 and 63.

FlexRay Payload Segment

The FlexRay payload segment contains 0 to 254 bytes (0 to 127 two-byte words) of

data which can be transmitted between nodes in the FlexRay network.

In frames transmitted in the dynamic segment, the first two bytes of the payload

segment may optionally be used as a message ID field. With this message ID, the

nodes in the FlexRay network can filter data with a specific message ID.

For frames transmitted in the static segment, the first 0 to 12 bytes of the payload

segment may optionally be used as a network management vector. The length of

the network management vector could be between 0 and 12 bytes. The usage of the

network management vector is application-specific and not defined by the FlexRay

protocol.

FlexRay Trailer Segment

The FlexRay trailer segment is a 24 bit-field which contains a cyclic redundancy

check code (CRC) computed over the header segment and the payload segment of

the frame.

The same CRC polynomial is used on both channels but the initialization vector is

not the same for both channels. For channel A, the initialization vector is 0xFEDCBA

and for channel B, the initialization vector is 0xABCDEF. The polynomial used for

CRC calculation is given as follows:

x24 + x22 + x20 + x19 + x18 + x16 + x14 + x13 +
+x11 + x10 + x8 + x7 + x6 + x3 + x+1

= (x+1)2 ∗ (x11 + x9 + x8 + x7 + x5 + x3 + x2 + x+1)
(x11 + x9 + x8 + x7 + x6 + x3 +1)

6.2.1.3 Coding and Decoding

FlexRay employs Non Return to Zero (NRZ) coding for transmitting frames over

the communication channel. Every transmitted byte is pre-fixed with a high-bit and a

low-bit (see Figure 6.5 [64]). Therefore, the transmission of each byte requires 10 bits

on the physical medium. These preceding bytes are called the Byte Start Sequence
(BSS), and are used for bit synchronization between the sender and the receiver.

In addition, every frame is preceded with a Transmission Start Sequence (TSS),

which can be configured from 3 to 15 bits. The TSS is required for star couplers

which require a given activation time before they can forward the frames. Star cou-

plers can compensate this time by omitting some bits of the TSS.

The TSS is followed by a high-bit called the Frame Start Sequence (FSS). After

130 Time-Triggered Communication

BSS BSS FES

TSS

F
S

S

High
TxEN
Low

High
TxD
Low

FIGURE 6.5
FlexRay Coding

the FSS, the actual bytes of the frame are transmitted, starting with the header. The

last byte of the frame is followed by the Frame End Sequence (FES), which consists

of a low-bit and a high-bit.

6.2.2 Protocol Operation Control

The major state machine of the FlexRay protocol is called Protocol Operation Con-
trol (POC). The circles in the state diagram depicted in Figure 6.6 represent states or

superstates, which are collections of states [274]. The names of all states and super-

states in this state machine are prefixed with the sequence POC: (e.g., POC:ready).

The arrows represent transitions between these states.

After power-on, a communication controller is in the state POC:default config.

From this state, the host can trigger the transition to the state POC:config, where the

host is able to configure the communication controller. After the host has finished

the configuration of the communication controller, it can trigger the transition to

POC:ready. In this state, the controller cannot send or receive any messages and

waits for further commands from the host.

In the POC:wakeup state, the communication controller can wake up other

nodes, via transmitting a wakeup pattern over the network. The transition to the

POC:wakeup state is also triggered by the host. After the wakeup procedure is fin-

ished, the communication controller returns to the POC:ready state.

The POC:startup state is a superstate that consists of multiple states that are

relevant for startup. The transition from the POC:ready state to the POC:startup
state is also triggered by the host. If the startup was successful, the communication

controller enters the state POC:normal active.

POC:normal active is the major operational state, where a node sends and re-

FlexRay 131

POC: default
config

POC: config POC: ready

POC: halt

POC:
wakeup

POC:
startup

POC:
normal
active

POC:
normal
passive

POC: Operational

FIGURE 6.6
FlexRay Protocol Operation Control

ceives frames. If a failure occurs, the communication controller enters—depending

on its configuration—either the state POC:normal passive or POC:halt. In the state

POC:normal passive, a communication controller can still receive frames, but is not

allowed to send any frames. In the state POC:halt, all processes within the controller

are stopped. The only possible transition from the POC:halt state is to POC:default
config.

132 Time-Triggered Communication

6.2.3 Clock Synchronization

FlexRay employs a distributed clock synchronization mechanism in which each node

observes the timing of transmitted sync frames from other nodes and synchronizes it-

self to the cluster. The clock synchronization is based on the Fault Tolerant Midpoint
(FTM) algorithm.

6.2.3.1 Global and Local Time

According to the FlexRay specification, the term global time denotes a uniform no-

tion of time within a cluster. An absolute time or reference time is not defined. Each

node has its own local view of the global time called local time.

The local time of a node is the current value of its local clock. It is represented

by the cycle counter, the macrotick and the microtick, where the cycle counter and

the macrotick have to be visible at the application level. At the beginning of a cycle,

the update of the cycle counter and the macrotick is always atomic.

Every node executes a clock synchronization algorithm in order to adapt its local

time to the global time of the cluster. The maximum difference between the local

clocks of any two synchronized nodes within the cluster is the precision of the cluster.

6.2.3.2 Synchronization Process

In FlexRay, each node performs offset correction and rate correction of its local clock

[274]. Offset correction is concerned with adjusting the value of the local clock to

the value of the global time at a given point in time. Rate correction is concerned

with adjusting the frequency of the local clock to the frequency of the global time.

FrameSender

Receiver

ActionpointSlotstart Slotend

Frame

Actionpoint SlotendSlotstart

Clockdeviation

FIGURE 6.7
Deviation of Local Clocks

For offset correction, every communication controller uses an FTM algorithm

FlexRay 133

to calculate a correction term in order to adjust its local clock. For this purpose, it

measures the difference between the expected and the actual arrival times of sync

frames from other nodes (see Figure 6.7). A node’s offset correction term is derived

by the following steps:

1. Depending on the number of correctly received sync frames, a value k is de-

rived according to table 1.

Number of values k
1 - 2 0
3 - 7 1
>7 2

2. The k minimum and maximum measured values are removed (see Figure 6.8

[274]).

22
18
15
10
...
8
7
6
4

15 + 7 = 22 22 / 2 = 11

FIGURE 6.8
Fault Tolerant Midpoint Algorithm Used in FlexRay

3. The smallest and the largest of the remaining values are averaged, and the

resulting value is the offset correction term for a node.

In order to derive a node’s clock frequency deviation from the frequency of the

global time, the offset correction terms of two successive communication cycles are

used. The difference of two successive offset correction terms is the rate correc-

tion term, which indicates by how many microticks a node’s cycle length should be

changed.

As depicted in Figure 6.9 [64], the offset correction term is determined every

communication cycle while the rate correction term is determined every second com-

munication cycle. After the rate correction term has been derived, it is applied for the

next two communication cycles, by adding or removing microticks distributed over

the entire double cycle. Offset correction is only applied every second communi-

cation cycle in order not to disturb the calculation of the rate correction term. It is

performed during the Network Idle Time (NIT), by either shortening or enlarging the

NIT.

134 Time-Triggered Communication

static dyn sym NITstatic dyn sym NIT static dyn sym NIT static dyn sym NIT

rate correction rate correction rate correction rate correction

cycle n cycle n+1 cycle n+2 cycle n+3

MAC

MTG

CSP

MAC = media acces schedule

MTG = clock sync correction schedule

CSP = clock sync calculation schedule MTG

offset offset

measurement phase
rate correction
value calculation

offset correction
value calculation

measurement values

correction values

measurement values

FIGURE 6.9
Clock Synchronization in FlexRay

6.2.4 Wakeup and Startup

This section describes the wakeup and startup procedure of a FlexRay cluster.

6.2.4.1 Wakeup

There are different possibilities to switch the nodes of an embedded system into

an operational state. The simplest way would be to power-on all nodes of a system

at once via a central switch for the power supply of all ECUs. Such a solution is

simple from a technological perspective but involves a significant cabling overhead.

FlexRay provides a more advanced alternative, which is waking up the nodes via the

communication medium, thus evading the need for additional cabling [274].

Wakeup Pattern

The host of a node can initiate the wakeup procedure by commanding the com-

munication controller to transmit a Wakeup Pattern which consists of two or more

wakeup symbols. A wakeup symbol consists of a low phase, where the communica-

FlexRay 135

tion medium is set to LOW for 6 μs, followed by an idle phase of 18 μs (see Figure

6.10 [274]).

High
TxEN
Low

Wakeup Symbol

idle

FIGURE 6.10
FlexRay Wakeup Pattern

Wakeup Process

The entire wakeup procedure is application-specific and, to a significant part, con-

trolled by the hosts. It cannot be performed by the communication controllers and the

FlexRay protocol alone. In the following, we describe a possible wakeup scenario:

1. A node is woken up by some external event (e.g., the key of a car has been

turned), performs the configuration of its communication controller and makes

the transition to the POC:ready state.

2. After the communication controller has been initialized, the host enables its

bus drivers.

3. The host enters the POC:wakeup state. In this state, it will listen to the bus for

two consecutive communication cycles and, if no communication is ongoing,

it transmits the wakeup pattern on one channel. According to the specification,

a communication controller shall not send a wakeup pattern on both channels

at the same time, in order to prevent an erroneous communication controller

from causing a global communication failure.

4. The bus drivers of all other nodes that are attached to the channel on which the

wakeup pattern has been transmitted will wake up themselves and then wake

up their hosts.

5. The awakened hosts enable their communication controllers.

6.2.4.2 Startup

The purpose of the startup procedure is to establish an initial common notion of time

among the nodes of the FlexRay cluster which is a prerequisite for time-triggered

communication. In order to avoid single-points of failure, the startup procedure is

distributed and does not rely on a single master.

136 Time-Triggered Communication

With respect to startup, FlexRay differentiates between two types of nodes, cold-

start nodes and non-coldstart nodes [274]. The coldstart nodes may actively partici-

pate in the startup process while non-coldstart nodes may integrate themselves only

in a running cluster (i.e., after there are at least two synchronized coldstart nodes). A

leading coldstart node is the first node that sends a startup frame during the startup

process.

S S S S S

S S S S S

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Leading
Coldstarter

Channel

Following
Coldstarter

CAS

S

S

Clock Start
Node 1

Clock Start
Node 2

listening time

FIGURE 6.11
FlexRay Startup

After a coldstart node is initialized, it can begin with the startup procedure which

is initiated by the host via a dedicated command. The startup procedure consists of

the following steps (see Figure 6.11 [274]):

1. A coldstart node listens to the bus for at least two communication cycles. If

there is no ongoing communication, it starts its own clock and sends a so-

called collision avoidance symbol (CAS) which is a defined number of zero-

bits. By sending the CAS, the node becomes a leading coldstart node. The

CAS indicates to all other listening nodes that there is activity on the bus, and

that they have to wait again for at least two communication cycles before they

can become a leading coldstart node.

2. The leading coldstart node starts executing its time-triggered schedule, but dur-

ing the startup phase it will send only the frame that has the startup frame in-
dicator bit set to 1 in its header. Since every node can have at most one frame

configured as a startup frame, the leading coldstart node will send only one

frame per communication cycle during the startup phase.

3. The startup frames are received by the other coldstart nodes. Due to the frame

FlexRay 137

ID, which corresponds to the slot ID and the value of the cycle counter which

is also part of the frame, the listening coldstart nodes know the time of the

leading coldstart node.

4. The receiving nodes wait until they have received two successive frames, mea-

sure the time between the two frames and synchronize their clocks in the fol-

lowing way: (1) After the reception of the second frame, the node initializes

its local clock based on the slot ID and the cycle counter of the frame. (2) The

time difference between the two successively received frames should be equal

to the cycle time, and any deviation will be applied to perform rate correction

of the own local clock.

This way, the startup procedure accomplishes both state correction and rate
correction.

5. The clocks of the receiving coldstart nodes are now synchronized. Neverthe-

less, they have to wait for two more cycles, where they check whether they

stay in sync before they are allowed to send frames on their own.

6. Non-coldstart nodes may communicate after they have observed at least two

coldstart nodes that are in sync. Therefore, there have to be at least two cold-

start nodes in the system, but for fault-tolerance reasons it is recommended to

have more than two.

6.3 Diagnostic Services and Fault Isolation
FlexRay employs several services and mechanisms for diagnostics and fault isola-

tion, like redundant communication channels, local and central bus guardians and

validity checking of received frames. In this section, we will introduce these ser-

vices.

6.3.1 Redundant Communication Channels

FlexRay provides scalable fault-tolerance by supporting either single-channel or

dual-channel configurations. In safety-critical systems, dual-channel configurations

will be employed and safety-critical data will be redundantly transfered on both chan-

nels. If redundancy is not required, a node can either be connected to only one chan-

nel, or it can use both channels to transfer non-redundant data in order to increase

the bandwidth [146].

6.3.2 Bus Guardians

FlexRay supports two general types of bus guardians, the local bus guardian and the

central bus guardian.

138 Time-Triggered Communication

6.3.2.1 Local Bus Guardian

In an architecture with local bus guardians, every FlexRay node has its own bus

guardian that guards the sending behavior of the attached node. In order to do so,

it requires knowledge about the global time and the node’s sending schedule (i.e.,

allocated slots). Furthermore, it requires the ability to prevent a node’s access to the

communication medium.

FlexRay
Communication controller

Bus guardian

Transceiver

&

RxDTxDTxEN

ENABLE

FIGURE 6.12
Local Bus Guardian

Figure 6.12 [274] depicts a possible realization of a local bus guardian. Both the

transmit enable signal and the enable signal of the bus guardian are required to enable

the transmission on the medium. In [274] it is recommended to use different logical

levels for the two enable signals (e.g., LOW for the communication controller and

HIGH for the bus guardian) to prevent sending in the case of common mode failures

like short circuits.

The coupling of a bus guardian to the communication controller is a trade off

between cost and the level of protection. If the bus guardian has no own local clock,

but relies on the clock of the attached communication controller, it cannot detect

any failure of the node’s clock (rate or offset error). The only property that can be

checked is whether the node sends in its assigned slots with respect to its local clock.

If the bus guardian is able to receive frames and to perform clock synchronization

FlexRay 139

on its own, it can establish its own view of the global time. Such a bus guardian is

able also to detect faults in a node’s local clock.

6.3.2.2 Central Bus Guardian

A central bus guardian is based on an active star coupler and is able to perform clock

synchronization on its own. As depicted in Figure 6.13 [274], the bus guardian is

directly connected to all nodes.

Based on its view of the global time, it switches the transmission lines according

to the schedule of all attached nodes. If the schedule of the nodes in the network

is changed, the internal configuration of the bus guardian also has to be adapted. A

significant advantage of a central bus guardian compared to a local bus guardian is

that it can also protect the startup procedure and that it can prevent the formation of

cliques [274].

Scheduling table Synchronized
clock Frame reception

Configuration

Switch

Switch

1

1

1

1

Node 1
Node 2
Node 3
Node 4

Node 1

Node 2

Node 3

Node 4

FIGURE 6.13
Inner Structure of a Central Bus Guardian

6.3.3 Checks on the Reception of a Frame

The FlexRay protocol performs several syntactic and semantic checks upon the re-

ception of a frame [274]. The syntactic checks include verifying the Byte Start Se-
quence (BBS) of all bytes, the Transmission Start Sequence (TSS), the Frame Start
Sequence (FSS), the Frame End Sequence (FES), the Header-CRC and the Frame-
CRC. A frame that is syntactically incorrect is dropped.

The semantic checks include verifying the frame length, the frame ID and the cy-
cle count. The frame ID and cycle count in the frame header should match the current

slot ID and the actual cycle count. In addition, it is verified whether the transmission

of a frame did obey the slot borders.

140 Time-Triggered Communication

6.4 Protocol Parameterization
This section introduces the parameters of the FlexRay protocol. The FlexRay spec-

ification uses a uniform naming convention for all parameters that is based on two

prefixes [64]. The first prefix is one of six alphabetic characters, which are a, c, v, g,
p, z and have the following meaning:

• a: (Auxiliary Parameter) Auxiliary parameters are used for the definition or

derivation of other parameters or for the derivation of constraints.

• c: (Protocol Constants) They define characteristics of the protocol. These val-

ues are fixed and cannot be changed.

• v: (Node Variable) They describe values which vary due to the progression of

time or events.

• g: (Cluster Parameter) Cluster parameters must have the same value in all

nodes of a cluster. These values can only be changed in the POC:config state

of the communication controller.

• p: (Node Parameter) Node parameters may have different values in different

nodes of a cluster.

• z: (Local SDL Process Variable) These are variables used in the Specification
and Description Language (SDL) in order to facilitate the accurate represen-

tation of the required algorithmic behavior. Their scope is local to the process

where they are declared and their existence in any particular implementation

is not mandatory [64].

The second prefix is one of the two alphabetic characters d and s. This prefix is

optional and has the following meaning:

• d: (Time duration) The time duration parameter describes a duration between

two points in time.

• s: (Set) The set parameter describes a set of values such as variables, parame-

ters etc.

6.4.1 Cluster Parameters

The cluster parameters are used to describe properties of the entire cluster. There-

fore, they must have the same values in all nodes of the cluster. In this section, we

introduce the most relevant cluster parameters of the FlexRay protocol:

• Bus Speed: Currently, FlexRay only supports a bus with a speed of 10 Mbit/s.

Support for other bit rates is planned.

FlexRay 141

• gColdStartAttempts: Maximum number of attempts a node is allowed to try

to start the cluster by initiating schedule synchronization (2-31).

• gSyncNodeMax: Number of nodes which are allowed to send synchronization

frames (2-15).

• gdCycle: Is the length of one cycle (10-16,000 μs).

• gdMacrotick: Duration of the macrotick (MT) given in μs (1-6 μs).

• gChannels: The channels which are used by the cluster (A, B, A&B).

• gdStaticSlot: Duration of the static slot (4-661 MT).

• gdActionPointOffset: Number of macroticks the action point is offset from

the beginning of a static slot (1-63 MT).

• gNumberOfStaticSlots: Number of static slots in the static segment. The

number of static slots is defined between 2 and 1023. The minimum size of

two slots comes from the fact that two nodes are required for startup and syn-

chronization.

• gPayloadLengthStatic: Payload size for static frames in two-byte words (0-

127).

• gdMinislot: Duration of the minislot used in the dynamic segment (2-63 MT).

• gdMinislotActionPointOffset: Number of macroticks the action point is off-

set from the beginning of a minislot (1-31 MT).

• gNumberOfMiniSlots: Number of minislots used in the dynamic segment (0-

7986).

• gdSymbolWindow: Duration of the symbol window (0-142 MT).

• gdNIT: Duration of the Network Idle Time (2-805 MT).

• gdTSSTransmitter: Number of bits in the transmission start sequence (TSS)

(3-15 gdBit).3

6.4.2 Node Parameters

The node parameters can be different for each node in the cluster. In this section, we

list the most relevant parameters:

• pChannels: The channels to which the node is attached (A, B, A&B).

• pDelayCompensation[A], pDelayCompensation[B]: Value for the compen-

sation of the reception delay on the individual channels (0-200 microticks).

3Nominal bit time

142 Time-Triggered Communication

• pKeySlotId: ID of the slot used to transmit the startup or sync frame (1-1023).

• pOffsetCorrectionOut: Maximum permissible offset correction value (13-

15,567 microticks).

• pRateCorrectionOut: Maximum permissible rate correction value (2-1923

microticks).

• pMicroPerCycle: Number of microticks per communication cycle (640-

640,000).

• pWakeupChannel: Channel used to transmit the wakeup pattern (A, B).

6.5 Controller Host Interface
The controller host interface (CHI) is the interface between the host processor and

the protocol engine. The CHI depends on the actual implementation of the employed

communication controller. In this section, we give an overview of the CHI of the

E-Ray IP Module [112] which is a widely used communication controller developed

by the Robert Bosch GmbH.

6.5.1 Overview of the E-Ray IP Module

The E-Ray IP module is a FlexRay v2.1 communication controller developed by the

Robert Bosch GmbH. It can be realized as part of an ASIC, within an FPGA or as

a stand-alone device. It can store up to 128 message buffers and supports a payload

with up to 254 data bytes. Message buffers can be configured for static and dynamic

messages as well as part of a FIFO for incoming messages. The controller performs

all the required synchronization tasks for accesses of the host or the protocol unit to

the message RAM. The E-Ray IP module provides a generic 8, 16 or 32 bit CPU

interface and supports data rates of up to 10 Mbit/s on each channel.

Figure 6.14 [112] depicts a block diagram of the E-Ray IP module consisting of

the following components:

Generic Interface (GIF) The GIF is adaptable to different customer-specific CPUs

and supports 8, 16 or 32 bit interfaces.

Input Buffer (IBF) and Output Buffer (OBF) These buffers are used to synchro-

nize the read and write operations of the host to the message RAM.

FlexRay Protocol Units (PRT A and PRT B) The two protocol units execute the

FlexRay protocol and are connected to transient buffer RAMs for intermediate

message storage.

FlexRay 143

GTU

SUC

FSP

NEM

INT

TBF A

TBF B

IBF

OBF

PRT A

PRT B

Message Handler

Message
RAM

C
us

to
m

er
 C

P
U

 IF

G
en

er
ic

 C
P

U
 IF

RX_A
TX_A

RX_B
TX_B

Data
Addr

Control
Interrupt

Control

Physical Layer

FIGURE 6.14
Block Diagram of the E-Ray Controller

Transient Buffer RAM (TBF A and TBF B) The TBFs are realized as double

buffers and function as intermediate storage for frame transmission and re-

ception.

Message RAM (MRAM) The message RAM stores the message buffers and the

corresponding configuration data. It is realized as a single-ported RAM and is

directly accessed only by Message Handler.

Global Time Unit (GTU) The global time unit performs fault-tolerant clock syn-

chronization and timing control of the static and dynamic segment.

System Universal Control (SUC) The SUC controls the wakeup, startup and the

reintegration of a node in a cluster.

Frame and Symbol Processing (FSP) The FSP tests the syntactical and semantical

correctness of the received frames as well their correct timing.

Network Management Vector (NEM) The NEM handles the network manage-

ment vector.

Interrupt Control (INT) The INT controls the generation of interrupts.

144 Time-Triggered Communication

6.5.2 Programmers Model

The E-Ray IP Module allocates and addresses space of 2 KB. The registers are or-

ganized as 32-bit registers, but 8 or 16 bit access is also supported. The host can

access the messages in the Message RAM (MRAM) exclusively via the Input and

Output Buffer (IBF and OBF), as depicted in Figure 6.14. Write and read access to

the MRAM is exclusively controlled by the Message Handler (MHD) in order to

avoid conflicts between the accesses of the host, and receptions or transmission of

frames.

6.5.2.1 Assignment of Message Buffers

The assignment of message buffers is depicted in Figure 6.15 [112]. The maximum

number of message buffers is 128, while the available number of message buffers

depends on the configured payload length of the message buffers. The set of message

buffers is divided into three consecutive groups:

Static Buffers This group starts with message buffer 0 and contains only static mes-

sage buffers.

Static and Dynamic Buffers The message buffers in this group are either assigned

to the static or to the dynamic segment. These buffers can be reconfigured

during runtime from static to dynamic and vice versa.

FIFO The buffers in the third group form a single FIFO for incoming messages.

............

Message Buffer 0

Message Buffer 1

Message Buffer n

Message Buffer n-1

Static Buffers

Static + Dynamic
Buffers

FIFO

FIGURE 6.15
Assignment of Message Buffers in an E-Ray Controller

FlexRay 145

The separation of the message buffers into these three groups is configurable, but

can be configured exclusively in the POC:DEFAULT CONFIG or POC:CONFIG
state.

6.5.2.2 Structure of the Message RAM

The Message RAM is organized in 2048 32 bit words, where each 32 bit word is

protected by one parity bit. Thus, the size of the Message RAM is 2048*33 bit. In

order to efficiently support different payload sizes, the Message RAM is structured

in a Header Partition and a Data Partition (Figure 6.16 [112]).

Header MB0
Header MB1

Header MBn

unused

Data MBn

Data MB0

Data MB1

......
......

2038
words

33 bit

Data Partition

Header Partition

Message RAM

FIGURE 6.16
The Message RAM of an E-Ray Controller

The header partition consists only of the headers of the message buffers, where

each header has the same size of four 32 bit words (plus one parity bit per word),

and holds an 11 bit data pointer that points to the corresponding payload in the data

146 Time-Triggered Communication

partition. The data partition stores the data sections of the message buffers configured

in the header section. The number of data bytes for each message buffer can vary

from 0 to 254. The beginning and the end of a message buffers payload is determined

by the data pointer and the payload length, both configured in the message buffer’s

header.

6.5.2.3 Message Handling

The data transfer between the host and the Message RAM is controlled by the Mes-

sage Handler. The host can access the contents of the Message RAM only via the

Input Buffer and Output Buffer, which are both realized as a double buffer struc-

ture. One side of the double buffer is accessible by the host (Input Buffer Host

(IBF Host) / Output Buffer Host (OBF Host)) while the other side (Input Buffer

Shadow (IBF Shadow) / Output Buffer Shadow (OBF Shadow)) is accessible by

the Message Handler for data transfer between the Input and Output Buffer and the

Message RAM.

Writing Messages

The Input Buffer contains the header and data sections that should be transfered to

a selected message buffer in the Message RAM. The Input Buffer is used for two

purposes, (i) for updating the data section of a given message buffer and (ii) for the

configuration of the message buffers by writing the specific headers.

When the host wants to configure or update a specific message buffer, it writes

the header section or the data section or both sections in the host side of the Input

Buffer (IBF Host). By using the Input Buffer Command Mask Register (IBCM),

the host can set whether the header section, the data section or both sections should

be updated in the Message RAM.

When the host writes the number of the selected message buffer to the IBF Re-

quest Host register (IBRH[6:0]), the contents of IBF Host and IBF Shadow are

swapped as depicted in Figure 6.17 [112]. After the buffers have been swapped, the

Message Handler starts to transfer the selected data from the IBF Shadow to the Mes-

sage RAM. The controller indicates the ongoing transfer by setting the bit IBSYS
to 1. After the transfer between the IBS and the Message RAM is completed, the

controller sets IBSYS back to 0.

If a write access to IBRH[6:0] occurs while IBSYS is 1, the content of IBF

Host and IBF Shadow are not swapped immediately and the controller sets the bit

IBSYH to 1. After the ongoing transfer is finished, the controller swaps the contents

of IBF Host and IBF Shadow, sets IBSYS back to 0 and starts the next transfer of

the new content of the IBF Shadow to the Message RAM. IBSYS remains 1 until

the transfer is completed.

A write access to the IBF while IBSYH is 1 has no effect on the contents of the

IBF and is recorded by an error flag.

FlexRay 147

Host
Message

RAM
IBF
Host

IBF
Shadow

E-Ray

IBF = Input Buffer

FIGURE 6.17
E-Ray Controller: Input Double Buffer

Reading Messages

The Output Buffer contains the header and data sections that should be transfered

from a selected message buffer in the Message RAM to the host.

If the host wants to read the contents of a specific message buffer, it writes the

number of that message buffer to the register OBRS[6:0]. By setting the bit REQ to

1, the host triggers the transfer of the message buffer from the Message RAM to the

OBF Shadow. The bit OBSYS is automatically set to 1 while the transfer is ongoing,

and set to 0 after the transfer is completed. By setting the bit VIEW to 1, the contents

of OBF Host and OBF Shadow are swapped, and the host can read the contents of

the specified message buffer by accessing OBF Host (see Figure 6.18 [112]). REQ
and VIEW can only be set to 1 while OBSYS has the value 0.

FIFO Functionality

As mentioned above, a consecutive set of message buffers can be assigned to a FIFO

for incoming messages. Every valid message that is not matching any configured

static or dynamic message buffer and that passes the programmable FIFO Rejection

Filter (FRF) will be stored in the FIFO. If the FIFO is full, the new message will

overwrite the oldest message in the FIFO. The FRF can filter incoming messages

based on the channel through which the message was received, the Frame ID and the

cycle counter. The messages in the FIFO are read by writing the number of the first

message buffer that is assigned to the FIFO to the OBRS[6:0] register. Any read

request to that message buffer will read and consume the oldest message in the FIFO.

148 Time-Triggered Communication

Host
Message

RAM
OBF
Host

OBF
Shadow

E-Ray

OBF = Output Buffer

FIGURE 6.18
E-Ray Controller: Output Double Buffer

6.6 Example Configurations and Implementations
6.6.1 Topology and Layout of a FlexRay Network

This section gives an overview of the different network topologies and layouts that

are supported by the FlexRay protocol. With respect to topologies, FlexRay is very

flexible. It supports single-channel or dual-channel bus networks, single-channel or

dual-channel star networks or various hybrid combinations of bus and star topologies.

A FlexRay cluster consists of at most two channels, called channel A and channel
B. Each node in a FlexRay cluster can be connected to a single channel or to both

of them. A node that is connected to a given channel can communicate with every

other node that is connected to the same channel. A communication controller can

be connected to at most one cluster, and if a node should be connected to more than

one cluster, it requires a dedicated communication controller for each cluster.

In the following subsections, we will describe the different topologies supported

by FlexRay.

6.6.1.1 Passive Bus Topology

The example in Figure 6.19 [64] shows a dual-channel bus topology, with nodes

connected to both channels, nodes connected only to channel A and nodes connected

FlexRay 149

only to channel B. Bus topologies can also be realized with a single channel, in which

case all nodes in the network would be connected to this bus.

Node 1 Node 2 Node 3 Node 4

FIGURE 6.19
FlexRay Topologies: Passive Bus Topology

6.6.1.2 Active Star Topology

Another possible topology in FlexRay is the multiple star topology. As for the bus

topology, the multiple-star topology supports redundant communication channels.

The restriction is that there can be no more than two star couplers per network chan-

nel. Furthermore, FlexRay supports also cascaded stars (see the example in Figure

6.20 [64]).

6.6.1.3 Hybrid Network

Star and bus topologies can be combined to form a hybrid network. This approach

allows us to combine the ease-of-use and cost advantages of bus topologies with

the performance and the reliability of star topologies. The FlexRay Specification

describes two representative topologies among the large number of topologies that

are possible. Figure 6.21 [64] shows an example, where some nodes are connected

using a point-to-point connection to a star coupler, while other nodes are connected

via a bus, which is also connected to the star coupler.

150 Time-Triggered Communication

Node 7

Node 8

Star A1 Star A2

Node 5

Node 6

Node 3

Node 4

Node 1

Node 2

FIGURE 6.20
FlexRay Topologies: Cascaded Stars

FlexRay 151

Node 7

Node 8

Star A1 Star A2

Node 5

Node 6

Node 3

Node 4

Node 1

Node 2

Node 9

Node 10Node 11

FIGURE 6.21
FlexRay Topologies: Single Channel Hybrid Example

7
SAFEbus

M. Paulitsch
EADS

K. Driscoll
Honeywell

CONTENTS

7.1 SAFEbus . 154

7.1.1 Background . 154

7.2 Protocol Overview . 155

7.3 Protocol Services . 157

7.3.1 Communication Services . 157

7.3.1.1 Determinism and Partitioning 159

7.3.1.2 Data-Message Structure . 160

7.3.1.3 Bus Encoding . 161

7.3.1.4 Out-of-Band Signaling Pulses 162

7.3.2 Clock Synchronization . 163

7.3.3 Restart, Re-Integration, Integration . 164

7.3.4 Diagnostic Services . 169

7.3.4.1 Debugging Mechanisms . 169

7.3.5 Fault Isolation . 170

7.3.5.1 Babble Protection . 170

7.3.5.2 Byzantine Protection . 171

7.3.5.3 Availability vs. Integrity Trade-Off 171

7.3.5.4 Zombie Module Protection . 172

7.3.6 Configuration Services . 172

7.3.6.1 Frame Changes . 172

7.3.7 Protocol Parameterization . 173

7.3.7.1 Table Memory . 173

7.3.7.2 Frame Description Language 174

7.3.7.3 Table Versioning . 174

7.4 Communication Interface . 176

7.5 Validation and Verification Efforts . 178

7.6 Example Configurations and Implementations . 178

153

154 Time-Triggered Communication

7.1 SAFEbus
SAFEbus1 is the only backplane or local area network standard (ARINC 659) that

provides fail-op / fail-safe fault tolerance with near unity coverage for all of its com-

ponents — signal lines, terminations, interface electronics, clock sources and power

supplies. This coverage includes tolerating a Byzantine fault. SAFEbus provides a

time-based protocol that delivers messages with a precision on the order of 100

nanoseconds over a backplane network. The SAFEbus protocol can be implemented

in an integrated circuit or FPGA with just 70,000 gates.

7.1.1 Background

In the late 1980s, there was a push toward integration of multiple functions on a

common computing and I/O platform, also referred to as integrated modular avionics

(IMA). This push was due to the advantages of IMA systems over then prevalent fed-

erated architectures. The advantages are decreased size, cost and weight, increased

reliability, less-frequent maintenance and more flexibility. The success of an IMA

system hinges on a backplane bus connecting Line Replaceable Modules (LRMs).

The backplane bus must be designed to support the requirements of space and time
partitioning. These requirements are derived from the concept of “robust partition-

ing” that prevents functions on a common platform from adversely influencing each

other, even when some functions may be faulty. Honeywell designed SAFEbus as a

backplane for the Aircraft Information Management System (AIMS), which is the

IMA part of the avionics for the Boeing B-777 airplane.

Boeing provided some additional design requirements. One requirement was for

the number of days the Boeing 777 could be dispatched without maintenance follow-

ing a failure. The goal was to allow a plane with a failure in an AIMS component

to follow its normal schedule, which will eventually bring it to a maintenance base.

This requirement meant that individual components of the AIMS system had to be

reliable and that the system as a whole had to be fault-tolerant. A second design

requirement was that the backplane-bus interface not force complexity on the func-

tions in an LRM. Some LRMs might be high-performance processors, but others

might be simple hardwired logic. A third requirement, implicit in the notion of an

integrated cabinet, was that the design support a multiprocessor architecture. In par-

ticular, the backplane had to provide adequate net throughput for the initial set of

functions together with 50 percent extra capacity to allow for growth. Fourth, the

integrity requirements for the avionics system as a whole meant that the backplane

bus had to exhibit total fault containment. There had to be less than one chance in

a billion per hour of operation that an error occurring within the backplane system

would be passed undetected from or to application software. Finally, the design had

to be one that would support the certification of the system and the re-certification

of modified functions. In particular, the design could not be one that would force

1SAFEbus is a registered trademark of Honeywell International, Inc.

SAFEbus 155

the re-certification of all functions when only one function was modified. Honey-

well designed SAFEbus because no existing backplane bus met these requirements.

SAFEbus builds on the Multi-Processor Flight Control System (M2FCS) [80] re-

search done for the United States Air Force.

7.2 Protocol Overview
The SAFEbus protocol is heavily dependent on its hardware. In order to understand

the SAFEbus protocol, one needs to know the basic building blocks of the hardware

architecture. The SAFEbus interface logic within each LRM uses paired hardware;

each half of the pair consists of a Bus Interface Unit (BIU) ASIC, a Table Memory,

an Intermodule Memory (IMM) and Backplane Transceivers. This logic is paired to

provide immediate fault detection and containment. The backplane bus lines are con-

figured in a unique fault-tolerance topology that lies somewhere between quad redun-

dancy and dual-dual redundancy [82]. This topology simultaneously provides high

integrity and availability (see Figure 7.1). SAFEbus consists of two Self-Checking

Buses (SCBs), A and B, called bus pairs. Each SCB is itself composed of two buses,

x and y. Figure 7.2 presents a nomenclature of the different bus-related items. One

of the BIUs in an LRM transmits data on one of the buses in each SCB, and its

partner BIU transmits on the other bus within each SCB. The data on any two buses

which come from different BIUs are compared at each receiving LRM. Only bit-for-

bit identical data are written into the Intermodule memories. A transmitting LRM

checks its transmission using a local loopback. That is, the receiving circuitry in the

transmitting LRM also checks what is actually put on the bus for errors. Such self-

FIGURE 7.1
SAFEbus Interface Logic

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-000.jpg&w=334&h=158

156 Time-Triggered Communication

FIGURE 7.2
SAFEbus Nomenclature

checking ensures a babbling LRM will be self-detected and will remove itself from

SAFEbus. This removal is enforced within an LRM by having each BIU control the

other BIU’s drivers. If either BIU thinks it should not be transmitting, neither BIU

can transmit. Each bus consists of three wires, two for data and one for clock. Thus,

the entire SAFEbus set of buses uses a total of 12 wires. The data is transmitted syn-

chronously, two bits at a time, at 30 MHz (for throughput of 60 Mb/s). A “bit time”

is the time it takes to send one bit on one wire. Using multiple wires, two bits and

one dock cycle are sent during one bit time. For time, the term “bit time” is preferred

to “clock period” because there are multiple clocks within each BIU. SAFEbus uses

the “wired OR” capable Backplane Transceiver Logic (BTL) defined in the IEEE

1194 standard. The wired-OR drivers and the use of extended clock pulse-widths al-

lows SAFEbus to do some out-of-band signaling that supports some features of the

protocol.

Table 7.1 defines some SAFEbus terminology that is further described in this

paragraph. The bus time is divided into “windows” of design-time configurable sizes.

Each window is sized to contain either one message (of from 1 to 256 32-bit words),

or one synchronization pulse or some fixed idle time. A set of static cyclic sched-

ules defines the sequence of windows, the size of each window, which LRM(s) may

transmit during each window and which LRM(s) may receive a message from the

window. Each window ends with a small, fixed intermessage gap time. A typical in-

termessage gap is 2 to 4 clock periods (i.e., about 50 ns). Fixed idle time may be

inserted to adjust the duration of the full cycle or the time between messages, to a

precision of 33 ns.

Messages that are to be transmitted or have been received over the backplane are

placed in buffers in Intermodule memories, which are pseudo dual-port memories

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-001.jpg&w=334&h=177
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-001.jpg&w=334&h=177

SAFEbus 157

TABLE 7.1
SAFEbus terminology.

noitanalpxEmreT
BIU Bus Interface Unit

Command
Defines what a BIU does duringa Window (TX, RX, skip, sync, send
interrupt to host)

Frame

A cyclical repeatingsequenceof windows(NB: in SAFEbusand avionics
generally, "frame" refers to a repetition of an executioncycle; whereas,
in non avionicsdata communication,"frame" is often roughly
synonymous with "message"

IMM
Intermodule Memory (shared message buffer memory between the
BIU and its host)

IntermessageGap
The constant reserved minimum idle time between transmissions on
the bus

LRM Line Replaceable Module (a node on SAFE bus)

Message
A single, uniquetransmission of data on SAFEbus; has a length(in words)
fixed at designtime

Table
One or more sequencesof commands controlling one or more frames
plus their resync jump points, and a BIU Configuration area

Table Memory The nonvolatile memory that stores one or more tables

Window
The bus time reserved for a message, sync pulse or idle plus the trailing
intermessage gap; has aduration (in bit times) fixed at design time

shared by the host(s) and the BIUs. This organization permits a simple host interface,

because all the hosts can view SAFEbus as a shared multi-port memory.

7.3 Protocol Services
7.3.1 Communication Services

SAFEbus provides data communication with very low jitter (on the order of 100 ns)

that is fail-op / failsafe with near unity coverage, even with a Byzantine failure.

The data for a message that is to be transmitted over SAFEbus is calculated typ-

ically by independent self-checking pair Hosts. As with all self-checking pairs, this

data is bit-for-bit identical in the fault-free case. The Hosts write this data into buffers

in the Intermodule Memories. Associated with each buffer is a Buffer Control Word

(BCW). Whenever a host completes assembling a message buffer in the Intermodule

Memory, it sets a bit in the BCW to say that the buffer is ready for transmission.

The SAFEbus protocol is driven by sequences of commands stored in the BIUs’

Table Memories (see Section 7.3.7.1). Each command corresponds to a single win-

dow on the bus. The command indicates whether the BIU should transmit, receive

or ignore the message in that window. The BIUs in every LRM on SAFEbus are

158 Time-Triggered Communication

synchronized to equivalent points in their respective tables and mechanisms are pro-

vided to quickly attain synchronization if it is ever lost. The tables also contain the

local address (in the IMM) of the data to be transmitted or received. The commands

in each BIU’s Table are organized into multiple frames. Each frame controls a repet-

itive sequence of windows, and each frame has a fixed total period.

According to a schedule stored in its Table Memory, each BIU checks its In-

termodule Memory for the buffer assigned to the next time window. If that buffer’s

BCW says the buffer is ready for transmission, the BIU begins pre-fetching the mes-

sage from the Intermodule Memory. An LRM broadcasts its messages on the four

buses when it is scheduled to do so. The two BIUs in an LRM are sync’ed to within

two bit times of each other via the SAFEbus protocol on the buses (no “backdoor”

sync between them). Because a BIU doesn’t know if it is faster or slower than its

partner, it turns on its partner’s drivers two bit times before its first bit transmission

and off two bit times after its last bit transmission for each message. Off-line schedul-

ing ensures that messages from different sources never collide, taking into account

worst-case clock drifts, metastability behavior, resync intervals, read timing errors,

LRM positions along the bus (the speed of light does make a difference), etc. Time

windows for messages can be set up such that up to four LRMs share a time window

in a Master/Shadow arrangement, using a mini-slotting scheme to arbitrate for that

window.

Receiving BIUs write validated input data into buffers within each of their Inter-

module Memories. At the completion of a message, the BCWs associated with each

buffer are updated with status that includes whether the buffer has valid data and

what time it arrived. The fact that the BIUs are synchronized to protocol time allows

each of them to independently write identical BCW timestamps into each one of their

Intermodule Memories without doing an exchange of the received time between the

BIUs. Protocol time is measured in bit times from the first window transmitted. The

time of each SAFEbus event (e.g., message reception) is the protocol time of the

window for which it occurred.

One of the benefits of the table-driven protocol is extremely high efficiency. Con-

trol applications typically generate short messages, and most serial protocols perform

poorly when messages are short. Efficiencies of between 10% and 30% are typical.

In contrast, the SAFEbus protocol is over 89% efficient for a continuous stream of

32-bit messages. Ethernet messages with the same payload would be less than 5%

efficient. Because buffer addresses are kept in the tables, they do not need to be trans-

mitted on the bus. The use of transmit and receive commands in the individual tables

eliminates the need to send source or destination LRM addresses. Within a message,

all clock periods contain data (zero overhead). And, because transmissions are sched-

uled, no transmission time is consumed arbitrating between contending BIUs (with

the rare exception of the optional use of Master/Shadow that typically consume about

9 bit times per arbitration).

SAFEbus 159

7.3.1.1 Determinism and Partitioning

SAFEbus’ determinism and support for robust partitioning warrants more detailed

examination, since no other protocol provides these features to this extent. When a

system has functions with different levels of criticality, the functions must be par-

titioned both in space and in time. Space partitioning means that no function can

prevent another from obtaining adequate memory space and that the memory space

assigned to one function cannot be corrupted by the behavior of another function.

Memory-management units (MMUs) are usually adequate for simple uniprocessor

main memory. But, problems arise with multi-port memory (including network in-

terfaces) and ”memory” that must be shared (CPU registers, cache, I/O registers).

Time partitioning means that one function’s demand for shared hardware resources

will never prevent another function from obtaining a specified level of service and,

more importantly, that the timing of a function’s access to these resources will not be

adversely affected by variable demand or by failure of another function.

Any protocol that includes a destination memory address in a message is a space-

partitioning problem. It is extremely difficult to verify correct address usage in a

partitioned multiprocessor. To ensure correct usage, the BIU would have to duplicate

the typical processor MMU function. Then, a difficult protocol would have to be

implemented to ensure all BIUs used the same MMU information.

Protocols that use contention arbitration cannot be made strictly time-

deterministic. Such arbitration is meant to ensure that when two modules contend

for the bus, the one with the highest priority request is granted access. But minor

jitter in the execution of functions can change which modules contend for the bus on

any given bus cycle. As a result, the order in which the modules obtain access can

vary from one arbitration to another in ways that cannot be predicted at design time.

SAFEbus achieves both time and space partitioning by placing all message lo-

cation (IMM) and bus-timing information in its Table Memories that are frozen at

design time. This Table information is held in the BIUs’ Table Memories where it

cannot be corrupted by any errant software or communications errors. The contents

of these memories can be changed only by a very well guarded interface (see Sec-

tion 7.3.6).

To extend SAFEbus’ time determinism to include the functions’ software, the

software execution can be synchronized with the execution of the commands in the

bus Table. Thus, the software is at the same point during the same bus transmission

window in every frame. One benefit is that message latencies can be reduced to in-

significance. Results can be scheduled to be transmitted just after they are generated

and input data can be delivered just before it is needed (software never has to ask

for input data to be transferred over SAFEbus as data is sent autonomously). A sec-

ond benefit is that there is less latency jitter on cabinet outputs, which means that

a SAFEbus IMA can be used in tighter control loops. A third benefit is that double

buffering is rarely necessary because it is possible to schedule the transmission of a

data block for a time when it is known that software will not be reading it or modi-

fying it. The elimination of double buffers means the Intermodule memories can be

smaller and memory access faster. While the use of software synchronized to the bus

160 Time-Triggered Communication

FIGURE 7.3
Basic Message Structure

and single buffers is the preferred operation, SAFEbus does allow for asynchronous

software and double buffering.

7.3.1.2 Data-Message Structure

There are two data-message types: Basic and Master/Shadow. The Basic message

structure has been chosen to maximize the efficiency of data transmissions. The Mas-

ter/Shadow structure supports data transfers by redundant or aperiodic functions.

Basic and Master/Shadow Message Structures

Basic messages have a simple structure (see Figure 7.3). Each message consists of a

string of 1 to 256 32-bit data words followed by a programmable intermessage gap of

two to nine bit times. The Master/Shadow mechanism allows LRMs or applications

to be reconfigured or spared without disturbing the traffic pattern on the bus. Mas-

ter/Shadow windows are identified by a field in the associated Table command. As

many as four transmitters can be assigned to one Master/Shadow window. Time-slot

arbitration determines which of the transmitters actually gets control of the window.

If the Master is alive and has fresh data to send, it starts transmitting at the beginning

of the window. The first Shadow begins transmitting “delta” bit times into the win-

dow, only if the Master did not use its opportunity to transmit. The second Shadow

begins transmitting two delta bit times into the window, only if the Master and the

first Shadow did not use their opportunities to transmit. Finally, the third Shadow

begins transmitting three delta bit times into the window, only if none of the other

candidate transmitters use their opportunities to transmit. Delta is a programmable

value that is typically set at one bit time larger than the selected intermessage gap

(values from three to ten bit times may be selected). The selected value depends on

the propagation characteristics of the backplane. Examples of the transmission over

SAFEbus when the Master or third Shadow transmits are shown in Figure 7.4.

Time-slot arbitration could re-introduce non-determinism, but strict measures

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-003.jpg&w=334&h=131

SAFEbus 161

FIGURE 7.4
Master/Shadow Message Structure: (a) Master transmits; (b) Shadow 3 transmits

have been taken to eliminate this danger. First, the total size of a Master/Shadow

window is always the size of its message’s data plus three deltas, no matter what

happens during arbitration. Thus, the time window remains the same size no mat-

ter which transmitter “wins” the arbitration. Second, recipients of a Master/Shadow

message always place the data in the same memory location, no matter which trans-

mitter wins the arbitration. Third, delta can be made large enough to guarantee that

the candidate transmitters will never mistake a busy bus for an idle one and begin

transmitting in error. Fourth, recipients of a message from this window will be alerted

to the presence of this message at exactly the same time after the end of the window,

regardless of which LRM wins the arbitration. This allows completely transparent

redundancy among the Master and the Shadows.

The Master/Shadow mechanism also can be used for sharing bandwidth among

asynchronous functions. Of course, partitioning is not maintained in such Windows.

7.3.1.3 Bus Encoding

To improve error-detection coverage, data on the four SAFEbus serial lines are en-

coded in four different ways. Data on Bus Ax have normal polarity. Data on bus Bx

are inverted. On bus Ay, every other bit is toggled, starting with the second bit. Bus

By is the inverse of bus Ay. This is illustrated in Figure 7.5. This encoding can be seen

as a form of “encryption” in which the four buses Ax, Ay, Bx, and By are XORed

with the running keys “0000...”, “0101...”, “1111...”, and “1010...” respectively [81].

One type of failure that this encoding catches is bus-to-bus shorts. With identical

data on all four buses, a short between the buses could not be detected until another

failure occurred such that the failure propagated from the bus with the second fault

to the bus with which it was shorted. Having a first fault lay dormant for indefinitely

long periods of time and then to make its appearance exactly when a second failure

occurs, cannot be tolerated. This problem is largely ignored by homogeneous fault-

tolerant architectures. One way to mitigate this problem is to do periodic scrubbing

of the buses by putting different data on the buses that would ordinarily be the same

and see that they actually are received as different. There are a number of problems

with this approach. The scrubbing has to disrupt normal communication and it has

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-004.jpg&w=334&h=108

162 Time-Triggered Communication

to disable some of the fault tolerance features. The latter is dangerous and must be

invoked only with a complex set of interlocks. Because of these complications, scrub-

bing is not continuous and there is an engineering trade-off between the scheduling

of scrubbing vs. exposure time to these latent faults. The use of this bus encoding

detects these shorts within two bit times of the short onset and without requiring

scrubbing.

This encoding scheme can detect unipolar transient upsets that affect several data

lines simultaneously. It also allows quick detection of bus collisions caused by a mal-

functioning BIU pair (a specific dual-fault scenario that is beyond the basic SAFEbus

fault hypothesis). Because bus lines are “wired OR,” if a faulty LRM tries to transmit

at the same time as another LRM, illegal encodings appear within two bit times of

the LRMs starting to transmit differing data.

An additional virtue of this encoding scheme is that power consumption is in-

dependent of the data being transmitted. Two bus lines are always high and two are

always low (constant average DC power). When the data change, two of the buses

change state and two do not (constant average AC power). Because power consump-

tion is constant, the power supply does not have to be designed for a worst-case data

pattern. The fact that bus pair A and B are inverses of each other provides some of the

characteristics of differential signaling, without an additional doubling of the number

of signal lines required.

7.3.1.4 Out-of-Band Signaling Pulses

Because SAFEbus messages are pure data (no message-framing overhead) and all

data values are used, the only way that protocol specific information can be con-

veyed is through the use of out-of-band signaling. One method SAFEbus has for

out-of-band signaling uses the clock lines. For data transfer, the clock lines are al-

ternating low for one half bit time and high for one half the time (as depicted in

Figure 7.3). For out-of-band signaling, the clock lines are driven low for four bit

times, creating a uniquely identifiable pulse, called the Sync Pulse. There are four

possible variants of this signal depending on the values of the Data0 and Data1 lines

during this pulse. Two of these variants are used for synchronization, one of them is

used for a debugging mechanism (see Section 7.3.4.1), and one is not used.

The other out-of-band signaling method that the SAFEbus uses drives data lines

low while the clock lines remain high. Of the three variants that are possible with

this method, SAFEbus only uses one. It drives Data0 low to indicate Initial Resync

(see Section 7.3.3).

SAFEbus 163

Ax Ck

Ax Data 0

Ay Ck

Ay Data 0

Bx Ck

Bx Data 0

By Ck

By Data 0

0 1 0 0 0 1 1 1 0 1 1

Ax Data 1 1 1 1 0 1 0 1 1 1 0 1

Ay Data 1

Bx Data 1

By Data 1

Gap

FIGURE 7.5
Bus Encoding Example

7.3.2 Clock Synchronization

SAFEbus’ Long Resync and the Short Resync messages both perform precision (sub

bit time level) clock synchronization. The purpose of this synchronization mecha-

nism is to maintain separation of adjacent messages in the presence of oscillator drift

and keep the two BIUs in an LRM within two bit times of each other. Since the mech-

anism is the same for both and the Short Resync message is simpler, only the Short

Resync message will be discussed here. The additional functionality of the Long

Resync message is described in Section 7.3.3. The Short Resync message is shown

in Figure 7.6. It consists of the Sync Pulse on the clock lines and both data lines being

high. To provide availability, all LRMs transmit the Sync Pulse. The multiple drives

are combined into a single pulse by the “wired OR” action of the open-collector BTL

drivers. While all LRMs are scheduled to transmit this pulse at the same time, only

one needs to succeed. Because of clock drift, each of the LRMs might turn on its

driver at slightly different times. However, these resync pulses happen often enough

such that the drift can never be more than the width of the pulse. Thus, this pulse can

appear to be from four bit times up to eight times wide. When a BIU sees this pulse,

164 Time-Triggered Communication

Clock

Data 1 1 3

Short Resync Message Window

-
-

Short Resync Pulse GapHiZ

Data 0 0 2
-

-
-

Gap

-

FIGURE 7.6
Short Resync Message

it freezes its internal time, and at the end of the pulse it releases the freeze. It uses

an internal effective 4x clock to sample the clock lines. This is shown in Figure 7.7.

Because each BIU’s time was frozen, its time will have fallen behind real-time. The

BIUs then enter a catch-up phase where the internal time counters are incremented

at a 2x rate until the internal time has caught up with real-time (Figure 7.8). The du-

ration of this catch-up phase is equal to the freeze duration. This allows all BIUs to

have identical times after each resync event without ever causing time to go backward

in any BIU.

The aggregate effect of this resync mechanism is that the slower of the two BIUs

in the quickest LRM pace the system timebase. Each BIU maintains a counter (called

SAFEbus Time) driven by its synchronization-corrected oscillator. The synchroniza-

tion mechanisms make the values in these counters identical in all BIUs with respect

to the time that protocol events happen (e.g., the receipt of a message). The Time

value may be used to time stamp data.

7.3.3 Restart, Re-Integration, Integration

Synchronization States

Figure 7.9 shows the major synchronization states of a BIU and their transitions. The

major states are:

Initializing While in this state, the BIU performs such operations as Table Mem-

ory CRC checks, BIU Configuration Area loading and IMM tests. The Full-

resolution SAFEbus Time register value is not valid in this state. IMM access

is disabled during much of the initialization process, while the BIU performs

IMM pattern testing.

Out of Sync While in this state, the BIU hunts for resynchronization messages

transmitted over SAFEbus, and attempts to synchronize with them if they

are present. If enough time elapses without a synchronization message be-

ing seen, the BIU issues an Initial Sync pulse to start up the backplane. The

Full-resolution SAFEbus Time register value is not valid in this state.

SAFEbus 165

FIGURE 7.7
Resynchronization Pulse Timing

In Sync While in this state, the BIU executes command sequences out of a Table

Command Sequence Area in the Table Memory. It transmits when executing an

appropriate transmit command (and data is fresh), and receives data when exe-

cuting a receive command. Synchronization is maintained via the transmission

and reception of programmed synchronization messages. The Full-resolution

SAFEbus Time register value is valid in this state.

Halted This is a sub-state of the In Sync state. The BIU enters the Halted state when

it is executing in debug mode, and encounters a breakpoint, or completes a

single step operation.

Disconnected While in this state, the BIU suspends all transmission and reception

activity on SAFEbus. The Host may still read and write memory and BIU reg-

isters, but no backplane data will get written into memory. The BIU will enter

this state if commanded to by the host, or if initialization fails or if it receives

a Long Resync message with mismatching Version while in the Out of Sync

state. It leaves this state if commanded by the host or if an Initial Sync Pulse

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-005.jpg&w=334&h=289
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-005.jpg&w=334&h=289

166 Time-Triggered Communication

FIGURE 7.8
Time Adjustment

is detected on SAFEbus. The Full-resolution SAFEbus Time register value is

not valid in this state.

Synchronization Messages

Three uniquely identifiable transmission patterns are provided to support bit-level

and frame-level synchronization of the SAFEbus backplane. The Initial Sync Mes-

sage is used to initialize the SAFEbus after a power-up or in the pathological case

of a cabinet-wide loss of synchronization. The Short Resync Message is provided

to maintain bit-level synchronization between all BIUs in the cabinet by correct-

ing for oscillator drift between BIUs. The Long Resync Messages are provided to

allow lost modules to regain synchronization with an active bus. Long Resync Mes-

sages come in two variants. The Entry Resync variant is provided simply to allow

lost modules to resync to the current frame. The Frame Change variant is provided

to switch between different frame programs in the current Table. Both Versioned

and Unversioned forms of the Long Resync Messages exist. Long Resync Messages

also implement the bit-level resynchronization operation (as provided by the Short

Resync message).

Long Resync

The structure of the Long Resync Message (Figure 7.10) is separated into two distinct

sub-windows. The Long Resync Pulse sub-window starts with a unique Long Resync

pulse identified by a low level on the clock lines with all associated Data0 lines

low. The pulse is nominally four bit-times long followed by a Maximum Gap. The

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-007.jpg&w=334&h=197
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-007.jpg&w=334&h=197

SAFEbus 167

FIGURE 7.9
Synchronization State Diagram

Long Resync Pulse is transmitted by all BIUs that are executing either a Transmit or

Receive Long Resync command.

The second part of the Long Resync Message is the Long Resync Information

sub-window. A single, unique BIU must transmit in the Long Resync Information

sub-window. This consists of an 8-bit Resync Code (a value from 0 to 255), a 1-bit

Versioned Frame indicator, 1 bit of reserved space, a 4-bit Cabinet position, 7 bits of

reserved space, 43 bits containing SAFEbus Time and a 32-bit Table Version. The

Resync Code allows the BIU to determine which of 256 locations in the Table it

should jump to in order to align itself with the other BIUs. In software, this would

be called an indirect jump. The code indexes into a Resync Jump Table (see Fig-

ure 7.13) which contain addresses that point to the main Table Command Sequence

Area command that should follow this Long Resync message in the normal sequence

of command execution. The Version Frame indicator, Cabinet position and Table Ver-

sion are used as part of versioning enforcement as described in Section 7.3.7.3. The

SAFEbus Time field is used to supply this information to LRMs receiving this mes-

sage while not in sync.

Long Resync messages can be sent Master/Shadow, which combines the prop-

erties of both these message types. This benefits the multiway trade-off among fault

tolerance, bandwidth used and resynchronization latency.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-009.jpg&w=334&h=244
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-009.jpg&w=334&h=244

168 Time-Triggered Communication

FIGURE 7.10
Long Resync Message

Frame Change

A variant of the Long Resync message is the Frame Change message. The message

form is identical. The differences are in the way that it is used. In the Long Resync

message, the Resync Code points to the next command in the normal sequence. In

the Frame Change message, the Code points elsewhere, usually to another frame.

The Frame Change is a conditional jump. An LRM which is scheduled to transmit a

Frame Change cannot do so unless its host writes a code into the BIU which matches

the Frame’s code (a “lock and key” mechanism). A tightly controlled mechanism is

provided to switch between frames based on explicit commands generated by Level-

A operating system software using the “lock and key.” Normally, “lock and key”

fault-containment mechanisms are very weak. However, in the case of SAFEbus,

this mechanism is protected against hardware failures by the use of self-checking

pair hardware and it is protected against software failures through use of an MMU

which limits the lock’s access only to the Level A software.

If the Frame Change message is not transmitted, the ”jump” is not taken and

the command/window sequence continues with the command which is next after the

Frame Change in the table. If the Frame Change message is transmitted, the ”jump”

is taken and all LRMs fetch their next command from the location pointed to by the

Frame Change’s Resync Code. Use of this feature is described in Section 7.3.6.1.

Initial Sync

Initial Sync messages (Figure 7.11) are transmitted by an Out of Sync BIU that waits

longer than the Initial Sync Wait Limit without seeing any Resync Pulses on the

backplane. All BIUs which are out of sync at this point will use the Initial Sync

message to synchronize into an Unversioned Initial Frame. The Initial Sync message

starts with the Initial Sync Pulse. It has a unique pattern identified by a signal pair of

buses with a low level on the Data0 line and a high level on the clock line for at least

two bit times. In addition, for a bus to be considered part of an Initial Sync Pulse

signal pair, the Data0 line must have been high at one point during the time while

the BIU waited for the Initial Sync Wait Limit. The pulse is nominally four bit-times

long.

To more accurately resync the clocks, and to allow the BIU time to fetch the

command for the first message in the Initial Frame, the Initial Sync Pulse is followed

by a Long Resync message with no BIU transmitting the Information sub-window.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-011.jpg&w=334&h=60

SAFEbus 169

Clock

Data 0

Long Resync Pulse MaxGap

Data 1

HiZ

-
-

-

Long Resync Information Sub-windowLong Resync Pulse Sub-window

Initial Sync PulseHiZ

Initial Sync Pulse Window

MaxGap

FIGURE 7.11
Initial Sync Message

The missing information is assumed to be zero. In particular, the Resync Code is

zero and the SAFEbus Time is zero. The BIU will enter the In Sync state at the

first bit time of the Gap which separates the idle data portion of the Long Resync

message from the first window of the Initial Frame. The first bit time of the Initial

Frame occurs (106 + 6MaxΔ + 2MaxGap) bit times after the leading edge of the

Long Resync pulse which follows the Initial Sync Pulse.

7.3.4 Diagnostic Services

SAFEbus uses masking fault tolerance, which does not need the complicated diag-

nostic services required by other protocols, e.g., it does not need to keep track of

membership. However, it does supply a rich set of diagnostic mechanisms and infor-

mation for maintenance purposes. This includes full BIST capability via dual (x and

y) IEEE 1149.1 (JTAG) test buses. The x JTAG bus connects only to the x BIU and

the y JTAG bus connects only to the y BIU in order to prevent fault propagation from

the two sides of the self-checking pair. For commanded BIST, the BIU goes off line

and scans a set of pseudo-randomly generated test vectors into the logic, clocks it

through the logic and accumulates the result of the clocking into the BIST Signature

Result register. The BIST also includes scrubbing of all the critical fault-tolerant cir-

cuitry within the BIUs. For scrubbing protection mechanisms, hardware is invoked

to test if the protection mechanism is really invoked when a failure occurs.

7.3.4.1 Debugging Mechanisms

Another unique feature of SAFEbus is its ability to breakpoint and single step an

entire system, including the processors connected to SAFEbus. This is the same as

the breakpoint and single step functionality commonly seen in software debuggers,

but on a systemwide basis. The reason this is possible is because SAFEbus acts as

the central clock for the system, providing the timing ticks that the operating systems

of the processors attached to it use for dispatching tasks. If the SAFEbus freezes, so

do all of the processors.

A breakpoint can be set for any time within the global SAFEbus timeline. A

breakpoint can also be initiated by driving the Ck, Data0 and Data1 lines low si-

multaneously for at least four bit times. To resume from a breakpoint, some LRM

transmits a Short Resync pulse.

170 Time-Triggered Communication

Because setting a breakpoint can be dangerous during normal operation, break-

points are only enabled for special test table versions. This is indicated by the upper

two bits of the Table Version being “11.”

7.3.5 Fault Isolation

SAFEbus, with its self-checking approach, provides near perfect coverage. The

checking at the receiving end provides near perfect error detection coverage for many

faults, including Byzantine faults [78]. It provides better coverage than signature-

based error detection techniques (such as CRCs) [250] while simultaneously not in-

curring the overhead of these schemes.

Recapping Figure 7.1: SAFEbus consists of four buses (Ax, Ay, Bx, and By)

that connect several self-checking pair Line Replaceable Modules (LRMs). Each of

the four buses and each half of an LRM are independent fault containment zones.

If there are N LRMs, there are 2*N + 4 fault containment zones. Each of the BTL

bus interface parts is in its associated bus’ fault containment zone and gets its power

supply from that bus. Thus, the fault containment zone boundaries are between the

BTL parts and the BIU parts. Names ending in x and y denote redundant parts for

integrity. Bus names beginning with A and B denote redundant bus pairs for avail-

ability. The BTL drivers are connected such that BIUx transmits only on Ax and Bx;

and BIUy transmits only on Ay and By. Thus, a faulty BIUx can contaminate only

buses Ax and Bx; and a faulty BIUy can contaminate only buses Ay and By.

The dashed lines in this diagram are control signals. In particular, BIUx enables

BIUy’s bus drivers and BIUy enables BIUx’s bus drivers. Thus, an LRM can’t trans-

mit unless both BIUx and BIUy agree to do so. The set of buses is fail-op, fail-stop.

Each LRM is fail-stop. N redundant LRMs are N-1 fail-op, fail-stop. The major fail-

ure scenario that SAFEbus does not cover is two simultaneous active faults in the

same LRM that are somehow complementary to escape the bit-for-bit checking and

cross-coupled driver enables. This has a probability that has been calculated to be

much less than 10−10.

7.3.5.1 Babble Protection

To detect errors, the transmitting LRM checks what it actually puts on the bus. If

a BIU sees a miscompare, it stops transmitting and it disables its partner’s drivers.

The dual nature of this comparison ensures that a babbling module cannot stay on

the bus. This is an availability feature rather than an integrity feature. Integrity fault

containment is done by the receivers. This availability feature is only applicable to

Master/Shadow Windows. In order to prevent loss of resources due to transient fail-

ures, LRMs are allowed to restart for a limited time by implementation of a strike

counter. This strike counter is incremented for each fault found in a specific interval

(say a maximum of three failures are allowed within ten minutes). This ensures that

transient faults are dealt with in a constructive manner and permanent or intermittent

faults are isolated after the LRM has hit the strike counter limit.

SAFEbus 171

7.3.5.2 Byzantine Protection

SAFEbus has a unique way of tolerating Byzantine faults. Because the transfer of a

message from one LRM to another LRM uses four fault zones, it is possible for it to

tolerate one Byzantine fault. The BTL receivers are cross-linked to the two BIUs such

that each receiving BIU gets a copy of the message from all four buses. This can be

seen as the first round of the classical Byzantine exchange. Each BIU creates two 4-

bit status vectors, collectively called the “syndrome,” for each 16 bits received within

a message.2 The first vector has a bit for each bus saying whether anything came in

from that bus. The second vector is the result of the comparisons: Ax = Ay, Bx =

By, Ax = By, Ay = Bx. The BIUs exchange their syndromes. From these eight bits,

the two BIUs can determine which (if any) of the data bus inputs have arrived error

free. If there is such an error-free source, both BIUs select it as the source data. This

can be seen as the second round of the classical Byzantine exchange. This prevents

Byzantine failures arriving from outside a pair from confusing a pair into thinking

that one of the halves of the pair is faulty. If a message arrives with uncorrectable

errors, the BCW associated with its buffer is updated to that status. A self-checking

pair host reading a BCW status that indicates an error is not allowed to read the data

buffer because differing data in the two Intermodule Memories could cause the host

pair to split.

While the syndrome exchange prevents a Byzantine fault from splitting a pair,

an additional mechanism is needed for Byzantine agreement among pairs. Before

SAFEbus, Byzantine algorithms either did a full exchange of an entire message’s

content or used signatures. The problem with the former method is the large amount

of bandwidth it requires. The problem with the latter method is that it does not pro-

vide full coverage. SAFEbus introduced a new method: hierarchical Byzantine agree-

ment. In this method, a lower-level agreement prevents Byzantine faults from affect-

ing a pair, as described above. An upper-level agreement only needs to send one bit

of information from every receiving LRM of the message. This bit would indicate

whether the LRM rejected the message as being faulty or not. Because the SAFEbus

granularity is 32 bits, it can send 32 bits just as well as one bit. Using 32 bits allows

this upper level of exchange to be implemented with no additional hardware and with

no software. All that is done is to have the buffer for this upper-level round of ex-

change be placed into the IMM such that the data word of this buffer overlaps with

the BCW for the original message. Thus, what is exchanged on this upper-level is the

BCW of the original message. If the original message was rejected, the BCW is zero.

7.3.5.3 Availability vs. Integrity Trade-Off

The syndrome exchange mechanism includes an option to select a preference for

availability or integrity, for those cases where there is not a generally applicable best

choice. For example, if Ax = Ay and Bx = By; but Ax �= By and Bx �= Ay. This

can only happen if there are at least two identical bit errors (after decode). A receiver

2The granularity of 16 bits was chosen as an engineering trade-off between the desire for a smaller

size to increase availability and the desire for larger size to minimize metastability errors and to make it

easier to meet timing constraints on the exchange between the BIUs.

172 Time-Triggered Communication

cannot tell if pair A or pair B is correct. For integrity, both have to be thrown out

because neither can be trusted. For availability, either A or B could be arbitrarily

chosen.

7.3.5.4 Zombie Module Protection

Each LRM that plugs into SAFEbus must contain a Table of commands that is com-

patible with all other LRMs on that SAFEbus. One mechanism for preventing LRMs

with an incompatible Table would be to have the LRMs exchange Table version in-

formation at startup. However, such a scheme would not cover the scenario where an

LRM is dead or comatose at startup and then “wakes up” in the middle of a critical

operations with an incompatible Table. This is called the “zombie module” problem.

To solve this, SAFEbus requires all LRMs joining a SAFEbus that has active traffic

to compare the Table version information in a Long Resync message to its own. It is

allowed to join the network only if the versions are compatible. See Section 7.3.7.3

for details on version enforcement.

7.3.6 Configuration Services

The SAFEbus Tables are loaded into each BIU’s Table Memory using the same dual

IEEE 1149.1 (JTAG) test buses that are used to support BIST. These Table Memory

images can contain multiple tables so that one LRM can play several different roles

depending on which slot and in which cabinet the LRM is located. This mechanism

can reduce the number of spares required to be held in maintenance facilities. For

example, the Boeing 777 AIMS cabinets had one I/O module (IOM) design that

was used in eight places. This reduced the number of types of spares required from

eight down to one, and reduced the total number of spares needed to be held in the

logistics pipeline. In theory, this could also allow for on-board sparing and manual

reconfiguration. Each slot in every SAFEbus cabinet has five slot ID pins that can

allow up to 32 slots per cabinet. To prevent wrong-ID masquerade faults, these pins

are protected by parity and cross compare between the two halves of a pair. Each

cabinet also has a Cabinet ID. To eliminate the need for Cabinet ID pins on every

slot, SAFEbus allows some subset of LRMs within the cabinet to have these pins and

then these LRMs broadcast this cabinet identification in their Long Resync messages’

Cabinet Position field. With the existing four bits of Cabinet Position and five bits

four slot ID, SAFEbus can currently accommodate up to 512 slots systemwide. The

Long Resync message has seven spare bits adjacent to this field that could be used to

expand this to a total of 65,536 systemwide slots.

After the tables have been loaded, SAFEbus can be used to download software

and other data. To optimize bandwidth usage, special frames can be used for these

downloads (as described in Section 7.3.6.1).

7.3.6.1 Frame Changes

This section provides an example for frames to do hardware initialization, software

initialization, data loading, built-in self test (BIT) and normal application commu-

SAFEbus 173

nication; plus, the Frame Change transitions between them. The following is a brief

textual description of each frame.

1. The Hardware Initialization (HW Init) frame follows Arinc 659’s definition for

the Initialization frame and, as such, is an Unversioned frame. The only data

traffic during the HW Init frame is the transfer of Version Messages from all

LRMs. The HW Init frame is approximately 117 microseconds in duration.

2. The Software Initialization (SW Init) frame provides time for the processors’

environment to be setup before the functional partitions are dispatched in the

Flight frame.

3. The Built in Test (BIT) frame is a Versioned frame that provides time to per-

form power-up BITE.

4. The Flight frame is a Versioned frame that provides the data transfers for run-

ning software partitions.

5. The Dataload frame is a Versioned frame that provides the Dataload function,

using the majority of the SAFEbus bandwidth. While dataloading may be per-

formed in the Flight frame, a dataloading session using the Dataload frame is

much quicker.

Figure 7.12 shows these frames and possible transitions. Note that the Frame

Changes are unidirectional. This means, for example, that once the Flight frame starts

executing, it cannot be Frame Changed to any other frame. In order to go from the

Flight frame to another frame, the SAFEbus must be reset. This is an additional safety

precaution against accidental transitions out of flight frame.

7.3.7 Protocol Parameterization

7.3.7.1 Table Memory

As shown in Figure 7.13, a SAFEbus Table is divided into three areas: Resynchro-

nization Jump Table, Table Command Sequence Area and BIU Configuration Area.

The Resynchronization Jump Table is used by the BIU to rapidly locate the address

in the Table Memory corresponding to the Resync Code (see Section 7.3.3). The ma-

jority of the Table Memory is used for the cyclic command sequences that control

frames. More than one frame schedule can be present for different system “modes”

(such as system initialization, ground check-out, flight operation, software loading,

etc.), with each mode having a different schedule. The different frames for different

modes are contained within a single Table Command Sequence Area. Therefore, this

selection is in addition to the selection of different tables depending on location (slot

and cabinet) roles. The BIU Configuration Area contains information for BIU cus-

tomization options such as memory speeds, host interface characteristics, selection

of availability or integrity as preferred for those cases where one is not universally

preferred over the other, intermessage gap, Master/Shadow delta and SAFEbus Time

increment rate. The contents of the Table Memories which are associated with the

174 Time-Triggered Communication

FIGURE 7.12
Example Frames and Their Frame Change Transitions

two BIUs on a single module are bit-for-bit identical. However, the Table Memory

contents are different for each module on SAFEbus. This is because the local IMM

addresses can be different and the commands are different for TX versus RX, Master

versus Shadow, etc.

7.3.7.2 Frame Description Language

SAFEbus uses a Frame Description Language to define the contents of each frame.

This is an intermediary language that can be produced by off-line schedulers. A back-

end tool specific to each BIU design translates this FDL into a bit image that can be

loaded into Table Memories. This language has been standardized by ARINC 659

to allow decoupling between vendors of scheduling tools and vendors of BIU hard-

ware. For AIMS, a software tool parses a database of ICD information and generates

a schedule that has much more freedom than schedulers for most time-triggered pro-

tocols.

7.3.7.3 Table Versioning

The SAFEbus protocol includes a mechanism to ensure that only LRMs with compat-

ible tables are allowed to transmit on the bus. To support this mechanism, SAFEbus

uses two types of frames: Unversioned and Versioned. Unversioned frames allow

LRMs of any SAFEbus version to communicate. These frames are used for LRMs

to exchange their Table version information with each other. Such frames always op-

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-012.jpg&w=334&h=212
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-012.jpg&w=334&h=212

SAFEbus 175

FIGURE 7.13
Table Memory Structure

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-014.jpg&w=334&h=462
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-014.jpg&w=334&h=462

176 Time-Triggered Communication

erate with the maximum programmable gap size between messages in order to be

compatible with even the slowest LRM implementations.

After power on, all LRMs enter a standard Unversioned Initialization Frame in

which each of the possible 32 LRMs that could exist on one SAFEbus are given

a window in which to transmit their Table version information. Up to eight of the

LRMs are given the authority to do a Frame Change from the Initialization Frame

to either a Versioned frame or another Unversioned frame. The decision of which

Frame Change to do is an application dependent function which uses the gathered

Table Version information as input.

The Version field in the Frame Change command informs all BIUs of the desti-

nation frame’s version. BIUs with a Table Version that doesn’t match the destination

frame’s version cannot follow the Frame Change and will drop out of sync. BIUs with

a Table Version not matching a currently running frame are prevented from joining

the bus traffic because they can’t sync to the Versioned Long Resync messages. Most

normal application operations are done in a versioned frame.

7.4 Communication Interface
All data communications between modules on the SAFEbus backplane occur via

buffers stored in the Intermodule Memory address space. Two buffer formats are

provided: Controlled and Non-controlled.

The Controlled buffer memory format consists of a single buffer control word

(BCW) followed by one or two data sub-buffers (depending on whether the data

item requires double buffering) of up to 256 words each. See Figure 7.14.

When a BIU executes a command to transmit from a controlled buffer, it deter-

mines the buffer type from the command. The BIU then reads the Buffer Control

Word and checks the TX Fresh bit and the Ping/Pong bit (if the buffer type is double

buffered). If the TX Fresh bit is set, the BIU transmits the data and writes the BCW

back with the TX Fresh bit cleared to 0. If a transmission failure occurs, the entire

BCW is set to 0.

When a BIU executes a command to receive into a controlled buffer, it determines

the buffer type from the command. If the buffer type is double sub-buffered, the BIU

reads the BCW and tests the Ping/Pong bit to determine where to place the data. The

BIU then places the received and validated data into the stale sub-buffer (always Ping

for single sub-buffers) and then forms a BCW with the current SAFEbus time, Buffer

Valid is set, Master/Shadow winner bits set appropriately, Ping/Pong set to the buffer

just written and TX Fresh bit cleared to 0. If errors occur in reception after the BIU

modifies a location in the buffer, the entire BCW is set to 0. When the host reads a

controlled receive buffer, it must first read the BCW. If the BCW is 0, a self-checking

pair host cannot read any other words in the buffer because erroneous receive data

that causes the BCW to be set to zero is not guaranteed to be identical between the

x and y sides of the pair. If it is non-zero, the host can read the sub-buffer indicated

SAFEbus 177

FIGURE 7.14
IMM Buffer Structure

as freshest by the Ping/Pong bit. This bit is valid for both buffer types, since single

sub-buffered controlled buffers will always have the Ping/Pong bit set to Ping (0).

When the host writes a controlled transmit buffer, it must first read the BCW. If it

is non-zero, the host can write the sub-buffer indicated as not being the freshest by

the Ping/Pong bit. The host then sets the TX Fresh bit by requesting the BIU to do a

Set Ping or Set Pong operation depending upon the sub-buffer to be transmitted.

The Non-controlled format consists of 1 to 256 words without a BCW. No fresh-

ness indication or validity information is provided in such a buffer. If such indications

are required, they must be provided by the user in the data itself. The BIU considers

a Non-controlled buffer to be fresh whenever it attempts to transmit the contents of

the buffer.

The BIUs contain special “coincidence” circuitry to detect the case that the Host

pair is updating the BCW at the same time that the BIUs are trying to read it. Even

though these memories are only pseudo-dual port instead of true dual port, the in-

dependence of the clocks between the BIUs, and between the BIUs and the Host

pair means that read-write order can be different between the x and the y sides of

the pairs. The coincidence circuitry ensures that the BIUs see the same order. If this

were not done, it is possible that the two BIUs could disagree on whether a buffer

was ready to transmit. A coincidence mechanism similar to that used for the BCW on

transmit is also used on receive to prevent the Hosts from getting inconsistent data.

Synchronization of the bus schedule and the application-software’s execution is

done by embedding interrupt commands in the SAFEbus Tables. On receiving this

interrupt, the processor’s operating system releases an application task (or task set)

for execution. This interrupt takes the place of the clock or hardware timer other op-

erating systems (OS) or real-time executives employ. That is, this SAFEbus interrupt

becomes the OS’ real time clock tick. As part of the time and space partitioning,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-016.jpg&w=334&h=168

178 Time-Triggered Communication

FIGURE 7.15
Data Stream Time Partitioning

the tasks are grouped into sets of “partitions.” Tasks in one partition are guaranteed

not to interfere with tasks of another partition in a mechanism similar to processor

virtualization. See Figure 7.15.

7.5 Validation and Verification Efforts
SAFEbus was part of the Boeing 777 airplane certification and passed rigorous test-

ing for design requirements to support Level A applications, the highest level of

safety requirements. Newer versions of the Boeing 777 use upgrades to the original

SAFEbus BIU design, which also have been certified. Derivatives of SAFEbus have

been certified on several other aircraft.

7.6 Example Configurations and Implementations
SAFEbus is deployed in the various members of the Boeing 777 aircraft family, in

two generations of the Information Management System (AIMS). The AIMS system

consists of two redundant cabinets implementing seven primary airplane functions.

The functions integrated are a mix of hard real-time functions (data-conversion gate-

way, display system, flight data acquisition, flight management and thrust manage-

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-017.jpg&w=334&h=187
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-8&iName=master.img-017.jpg&w=334&h=187

SAFEbus 179

ment) and non-real time (central maintenance and data communication management)

with repetition rates ranging from 1 Hz to 80 Hz [51]. A derivative of SAFEbus is

used in Versatile Integrated Avionics (VIA) boxes on some Boeing 737 variants and

other aircraft.

Standardization

SAFEbus is standardized as ARINC 659 “Backplane Data Bus” [8]. This is in a

family of associated standards including: ARINC 653 Avionics Application Software

Standard Interface, ARINC 651 Design Guide for Integrated Modular Avionics, and

ARINC 650 Integrated Modular Avionics Packaging and Interfaces.

8
Time-Triggered Ethernet

W. Steiner
TTTech

G. Bauer
TTTech

B. Hall
Honeywell

M. Paulitsch
EADS

CONTENTS

8.1 Protocol Overview . 182

8.2 Protocol Services . 184

8.2.1 Communication Services . 185

8.2.1.1 Communication Modes . 185

8.2.1.2 Frame Formats . 187

8.2.1.3 Coding and Decoding . 190

8.2.1.4 Media Access Control . 190

8.2.1.5 Permanence Function . 194

8.2.2 Clock Synchronization . 196

8.2.2.1 Clock Synchronization Overview 196

8.2.2.2 First Step Convergence: Compression Master . . . 197

8.2.2.3 Second Step Convergence: Synchronization

Master . 200

8.2.3 Startup and Restart . 201

8.2.3.1 Integration . 203

8.2.3.2 Coldstart . 204

8.2.3.3 Restart . 205

8.2.3.4 Clique Detection . 205

8.2.4 Diagnostic Services . 206

8.2.5 Fault Isolation . 207

8.2.5.1 Central Guardian . 207

8.2.5.2 High-Integrity Design . 209

181

182 Time-Triggered Communication

8.2.6 Configuration Services . 210

8.3 Protocol Parameterization . 210

8.3.1 Physical Topology . 210

8.3.2 Protocol-Control Flow Parameterization . 211

8.3.3 Dataflow Parameterization . 211

8.3.3.1 Time-Triggered Parameters . 212

8.3.3.2 Rate-Constrained Parameters 212

8.3.3.3 Best-Effort Parameters . 213

8.4 Communication Interface . 213

8.5 Validation and Verification Efforts . 214

8.5.1 Formal Verification and Analysis . 214

8.5.2 Certified Development Process . 215

8.5.3 Model-Based Testing . 215

8.6 Example Configurations and Implementations . 216

8.6.1 Configurations . 216

8.6.1.1 Master-Based Configuration . 216

8.6.1.2 Dual-Fault Tolerant Configuration 217

8.6.1.3 System-of-Systems Configuration 217

8.6.2 Implementations . 219

8.1 Protocol Overview
Ethernet is the dominant network standard for local area networks (LAN). While

originally designed for classic office applications, the growing communication de-

mands in real-time systems led to adapting Ethernet for time-critical applications.

Today, we can find Ethernet variants everywhere: In industrial applications (Ether-

Cat, Ethernet Powerlink, ProfiNet, Ethernet IP), in aerospace applications (ARINC

664-p7), in military naval applications (Gigabit Ethernet Data Multiplex System), in

consumer audio/video systems (AVB), as well as in datacenters and cloud comput-

ing (DCB). All of these Ethernet variants aim to achieve a certain degree of Quality

of Service (QoS) such that end-to-end transmission guarantees can be ensured. In

this multitude of Ethernet-variants, TTEthernet introduces the deterministic time-

triggered communication paradigm in an Ethernet flavor, which allows the use of

standard Ethernet in safety-critical systems and systems with applications of mixed-

criticality.

TTEthernet is the industrial further development of the academic TT-Ethernet

research [179], conducted within a joint research project1 between the Vienna Uni-

versity of Technology and TTTech Computertechnik AG. The main objective of the

academic project has been the integration of time-triggered with event-triggered mes-

sages on a single physical Ethernet network: As event-triggered messages are not

1The FIT-IT project TT-Ethernet has been funded by the Austrian Ministry for Transport, Innovation,

and Technology (BM-VIT) under contract No 808197.

Time-Triggered Ethernet 183

synchronized, they typically result in conflicts with time-triggered messages at the

outgoing ports in a network switch. The solution proposed within the academic TT-

Ethernet project has been a preemptive switch. This TT-Ethernet switch [315] iden-

tifies the reception of a time-triggered message based on an identifier within the

message and preempts all event-triggered messages under transmission to free the

outgoing ports for the time-triggered message. The merit of this solution is twofold:

first the switch latency for time-triggered messages is constant with negligible error

and, secondly, the switch can be kept almost free from additional configuration data.

This academic TT-Ethernet research has been continued within a joint industrial

development between TTTech and Honeywell. Here, the objectives have been ex-

tended toward scalable fault-tolerance and a finer classification of event-triggered

messages into rate-constrained and best-effort traffic classes. The main driver for

these additional objectives has been a shift in the target application domain toward

safety-critical applications, in particular civil aerospace. Fault tolerance is a standard

requirement in these applications and the rate-constrained traffic class has been in-

tended as a compatible communication mode to ARINC 664 part 7, which specifies

an unsynchronized real-time Ethernet variant for airborne applications. Another key

differentiator to the academic version is a non-preemptive integration mode of event-

triggered and time-triggered messages to minimize the number of damaged Ethernet

frames on the network, thereby easing diagnosis. This industrial development has led

to Time-Triggered Ethernet in its current form which is called TTEthernet and will

be discussed in more detail in this chapter.

TTEthernet is intended as cross-industry communication infrastructure: origi-

nally designed according to aerospace standards, it is scalable in several directions.

As different industrial areas define and use different variants of real-time Ethernet

already, the nature of the TTEthernet technology is one of a set of services added

to existing standards rather than their replacement. The TTEthernet services are cur-

rently being standardized by SAE, and define realizations of the synchronization

concepts discussed earlier in this book, as well as how to communicate according to

the time-triggered paradigm. The SAE AS6802 standard is being developed at the

time of this writing, and is expected to be ready for balloting by the end of 2010. At

a minimum, a device has to implement the functionality as required by SAE AS6802

to be called a TTEthernet device.

In the next section, Section 8.2, we introduce the TTEthernet technology in

detail: Communication Services (Section 8.2.1) discusses the time-triggered, rate-

constrained and best-effort traffic classes and options on how to integrate them onto

a single physical network. We discuss the frame format of these traffic classes and

introduce protocol control frames (PCF) which are used for synchronization. As a

result of the non-preemptive traffic integration policy, PCFs are subject to network

jitter. As the quality of synchronization is directly proportional to the network jitter,

we present the permanence function as a means to transform most of this network

jitter into network latency. Section 8.2.2 discusses the two-step clock synchroniza-

tion approach realized in TTEthernet, and focuses on the compression function used

as convergence function in the first one of these steps. In Section 8.2.3, we introduce

the startup and restart algorithm and discuss its variant for dual-fault tolerance. Di-

184 Time-Triggered Communication

agnosis mechanisms beyond clique detection algorithms are considered in Section

8.2.4. In Section 8.2.5, the concept of high-integrity design is discussed in the form

of a COM/MON pair. Here, we also show the role of a central guardian in TTEth-
ernet for time-triggered and event-triggered messages. Finally, Section 8.2.6 briefly

discusses configuration and re-configuration options for TTEthernet devices. In Sec-

tion 8.3, we continue with the discussion of protocol parameterization with respect

to the different traffic classes. We introduce the concept of “porosity” as a property

of a communication schedule for time-triggered traffic, which directly influences the

dataflow performance of event-triggered messages. Section 8.4 discusses the com-

munication interface of TTEthernet in a generic way and the particular realization in

current TTEthernet products. The correctness of time-triggered protocols for safety-

critical and mixed-criticality systems is essential for successful mission operation.

The TTEthernet algorithms have therefore been subject to formal studies. Section 8.5

summarizes the results of the formal analysis. We conclude this chapter with some

example configurations in Section 8.6, and discuss TTEthernet implementations in

software and FPGA.

8.2 Protocol Services
A TTEthernet network consists of end systems and switches and bi-directional com-

munication links to connect these devices to each other. Furthermore, an end system

and a switch may be integrated into a single device. Figure 8.1 depicts an exam-

ple TTEthernet network consisting of five end systems (SM1..SM5) and two redun-

dant communication channels. Channel 1 consists of three switches (SC1,SC2,CM1),

while channel 2 uses one switch only (CM2). Current TTEthernet implementations

allow up to three channels.

The TTEthernet protocol defines three different roles for synchronization: the

Synchronization Master (SM), the Synchronization Client (SC) and the Compression
Master (CM). As depicted in Figure 8.1, the SM role is typically assigned to end

systems (SM1..SM5), while the switches act as CMs (CM1,CM2). As a minimum,

one component per channel is configured as CM. Both, switches and end systems,

can be configured as SCs.

Synchronization demands the exchange of information between the devices. In

the case of TTEthernet, this information is transported in standard Ethernet frames

that are called protocol control frames (PCF). From a top-level view, the TTEthernet
synchronization algorithm operates in two steps. In the first step, all SMs concur-

rently send PCFs to all CMs. From the received PCFs, each CM produces a new PCF

called the “compressed” PCF. In the second step, all CMs send their compressed

PCFs back to the SMs and SCs. In the SMs and SCs, the compressed PCFs are con-

solidated to derive a new reference point in time for synchronization. This two-step

clock synchronization process is periodically executed throughout the mission time.

The TTEthernet synchronization algorithms closely synchronize the local clocks

Time-Triggered Ethernet 185

Compression Master 1
(CM1)

Compression Master 2
(CM2)

Synchronization Masters

SM1 SM2 SM3 SM4 SM5

Synchronization Client
(SC1)

Synchronization Client
(SC2)

Channel 1

Channel 2

FIGURE 8.1
An Example TTEthernet Network Consisting of Two Channels and Five End Systems

in the end systems and switches, which enables time-triggered communication.

We collectively refer to the TTEthernet synchronization algorithms and the time-

triggered communication as “TTEthernet services.” The TTEthernet services are in-

tended to be realized on top of Ethernet as standardized in IEEE STD 802.3-2005.

8.2.1 Communication Services

8.2.1.1 Communication Modes

TTEthernet defines the term “traffic class” to differentiate communication modes.

The prime communication mode of TTEthernet is, of course, the time-triggered

traffic class (TT). Besides this mandatory traffic class, TTEthernet also names the

optional rate-constrained traffic class (RC) and the optional best-effort traffic class

(BE). TTEthernet is an integrative communication protocol capable of communicat-

ing frames of these three traffic classes on the same physical network. Figure 8.2

gives an overview of the different traffic classes and their relation to the common

internet protocols. As depicted in Figure 8.2, the TTEthernet services (TT Services)

complement layer two of the Open Systems Interconnection model (OSI model).

An end system that implements the TTEthernet services is able to synchronize its

local clock with the local clocks of other end systems and switches in the system. The

end system can then send messages at off-line planned points in this synchronized

global time. These messages are said to be time-triggered.

Time-Triggered (TT) messages are used when tight latency, jitter and determin-

ism are required. All TT messages are sent at predefined times. In cases where an end

system decides not to use one of its assigned timed slots, for example if there is no

new data to be sent, the switch recognizes the inactivity of the sender and frees the

186 Time-Triggered Communication

Ethernet 802.3

TT Services

UDP, TCP, ...

Application

Rate-Constrained
Traffic (RC)

Best-Effort
Traffic (BE)

Time-Triggered
Traffic (TT)

IPIP

UDP, TCP, ...

RC Services

FIGURE 8.2
Interaction of Standards (c© 2009 IEEE [309])

bandwidth for the other traffic classes. TT messages are optimally suited for commu-

nication in distributed real-time systems.

Rate-Constrained (RC) messages realize a communication paradigm that aims

at establishing well-shaped dataflows: successive messages belonging to the same

rate-constrained dataflow are guaranteed to be offset by a minimum duration as con-

figured. RC messages are used when determinism and real-time requirements are

less strict than provided by time-triggered communication. For RC messages, suf-

ficient bandwidth must be allocated such that delays and temporal deviations have

defined limits. In contrast to TT messages, RC messages are not sent with respect to

a system-wide synchronized time base. Hence, different communication controllers

may send RC messages at the same point in time to the same receiver. Consequently,

the RC messages may queue up in the network switches, leading to increased trans-

mission jitter and requiring increased buffer space. As the transmission rate of the RC

messages is bound a priori and controlled in the network switches, an upper bound

on the transmission latency can be calculated off-line and message loss is avoided.

The rate-constrained communication paradigm is used in ARINC 664 part 7.

Best-Effort (BE) messages implement the classic Ethernet approach. There is no

guarantee whether or when these messages can be transmitted, what delays occur and

if BE messages arrive at the recipient. BE messages use the remaining bandwidth

of the network and have lower priority than TT and RC messages. However, BE

traffic may be attractive, for example, during maintenance and configuration phases:

As during such phases no critical traffic in the form of TT or RC may be present,

the whole network bandwidth is available for BE traffic without explicitly changing

the network mode. RC messages will not be sent and bandwidth reserved for TT

messages is automatically reclaimed by the switches.

Time-Triggered Ethernet 187

8.2.1.2 Frame Formats

TTEthernet is fully compliant with the Ethernet frame format as standardized in IEEE

802.3. An overview of the fields in an Ethernet frame is given in Figure 8.3: The first

row lists the number of octets for a given field, the second row the field’s name. An

octet is an entity having exactly eight bits.

Preamble

7

SOF

1

Destination
Address

6 6

Type/
Length

Payload

2 46 - 1500

CRC

4

IFG

12

Source
Address

FIGURE 8.3
Ethernet Frame Format

An Ethernet frame starts with a preamble of seven octets followed by a start of

frame delimiter (SOF) of one octet. For addressing of the frame, Ethernet specifies

the Destination Address and the Source Address, each six octets long. Following

the address fields, Ethernet IEEE 802.3 specifies two octets that are either used as

a type (EtherType) or as a length field. By convention, a value from 64 to 1522

(decimal) of this field indicates its usage as length field; a value of 1536 (decimal)

and higher means that the field is used to reflect an EtherType. An example EtherType

is 0x0800, which defines the Ethernet frame to carry an Internet Protocol (IPv4)

packet. The address fields together with the EtherType/Length field is commonly

referred to as the MAC Header. The actual payload of an Ethernet frame has a size of

46 to 1500 octets. Ethernet specifies a 32-bit CRC which follows the payload field.

The minimum interframe gap (IFG) is 12 octets. As a result, the overall length of

an Ethernet frame, as a sum of the fields discussed above, is between 84 and 1538

octets.

0-15 16-31+

Integration_Cycle0

32 Membership_New

64 Reserved

96 Sync_Priority Sync Domain Reserved

Transparent Clock
160

192

128 Reserved

Type

FIGURE 8.4
Contents of a TTEthernet Protocol Control Frame

188 Time-Triggered Communication

TTEthernet encapsulates all protocol-related information in PCFs. A PCF is a

standard Ethernet frame with minimum payload (46 octets) whose Ethernet Type

field is set to 0x891d. Figure 8.4 depicts the contents of a PCF as carried in the

Ethernet payload field. We discuss these fields briefly below and in more detail in the

context of startup/restart and clock synchronization.

• Integration Cycle: In TTEthernet, time is represented cyclically with a period

called the cluster cycle. In order to provide integration on multiple points

throughout the cluster cycle, it is divided into integration cycles which are

numbered from 0 to max integration cycle − 1. The Integration Cycle field

carries the number of the current integration cycle. An integrating component

uses this information to set up its synchronized time. The timing hierarchy is

further discussed in Section 8.2.2.1.

• Membership New: This field is used to keep track of the TTEthernet devices

that provide synchronization messages for the clock synchronization process.

• Sync Priority: TTEthernet provides hooks for systems-of-systems synchro-

nization by means of priorities. The synchronization priority mechanism is

one way to deterministically synchronize multiple TTEthernet subnetworks to

each other.

• Sync Domain: Within a TTEthernet network, two or more synchronized time-

bases can coexist. In this context, we call one synchronized timebase a syn-

chronization domain. A TTEthernet device may belong to one or many syn-

chronization domains. Two TTEthernet devices belonging to different synchro-

nization domains will never synchronize to each other. The Sync Domain field

is used to differentiate PCFs of different synchronization domains from each

other.

• Type: The synchronization algorithms use different types of PCFs. Coldstart

frames (CS) and Coldstart Acknowledgment frames (CA) are used for startup

and restart, Integration frames (IN) are used for clock synchronization and

clique detection.

• Transparent Clock: This field is used to store the accumulated delay of a PCF

from its generator to the consumer. Time is represented as multiples of pi-

coseconds. The content of the Transparent Clock field is defined to be the ac-

cumulated transmission delay of the frame through the network in units of 216

nanoseconds. For example, one nanosecond is represented by 0x10000; 2.5

nanoseconds is represented by 0x28000. The use of the transparent clock is

further discussed in Section 8.2.1.5.

A particular Ethernet variant for avionics applications has been standardized by

ARINC as ARINC 664 part 7 (for short, ARINC 664). One particular aspect in AR-

INC 664 is the specification of “virtual links.” Figure 8.5 depicts the Ethernet Des-

tination Address field as used by ARINC 664. The address field is subdivided into a

Time-Triggered Ethernet 189

constant 32-bit field and a 16-bit field called the Virtual Link Identifier (VL ID). As

a rule, in the constant field the two least significant bits of the first octet must be 1.

All other bits may be selected by the user, but have to be fixed for all ARINC 664

frames in a given system. The Virtual Link Identifier is used as the actual addressing

scheme in an ARINC 664 network. Each VL ID relates a single sender to, potentially,

multiple receivers. ARINC 664 switches store these VL IDs in the form of statically

configured tables. A switch that receives an ARINC 664 frame on a given incoming

port knows from this statically configured table to which outgoing ports the frame has

to be relayed. Another specific of ARINC 664 is the implementation of a sequence

number that uses the last octet in the Ethernet payload. A sender uses the sequence

number to cyclically number the frames of a given virtual link. A receiver of a virtual

link uses this sequence number for redundancy management and integrity checking.

Destination Address 48 bits

xxxx xx11 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Constant Field 32 bits VL ID 16 bits

xxxx xxxx xxxx xxxx

FIGURE 8.5
Ethernet Destination Address is Used to Specify the Virtual Link Identifier (VL ID)

in ARINC 664 Part 7

The first realization of TTEthernet is implemented in the context of ARINC 664,

and we use the term TTEthernet/ARINC664 to refer to this realization. Succeeding

realizations of TTEthernet may be implemented on top of other industry-specific

Ethernet variants or just on plain Ethernet. TTEthernet/ARINC664 uses the ARINC

664 addressing mechanism for the time-triggered and rate-constrained traffic classes.

In the case of TTEthernet/ARINC664, the information of the PCF is also encoded in

the VL ID of the frame. Hence, a TTEthernet/ARINC664 device derives the PCF

payload from a locally stored lookup table indexed by the VL ID rather than from

the explicit fields carried in its payload.

As Ethernet itself keeps evolving, it is subject to extensions. We discuss one next:

the VLAN tags. The IEEE 802.1Q (IEEE Standard for Local and Metropolitan Area

Networks - Virtual Bridged Local Area Networks) defines “Virtual LANs (VLANs).”

A VLAN is identified by a VLAN identifier (VID), and characterizes a group of end

systems. One end system can be a member of several VLANs. Standard Ethernet

messages can be VLAN-tagged, via a four octet field before the EtherType/Length

field. The VLAN-tag holds a priority and the VLAN ID (VID). This priority is used

to derive the outgoing queue (and hence, Quality-of-Service) used for forwarding the

frame in switches implementing IEEE 802.1Q. The VLAN extension to Ethernet is

of particular interest to Audio/Video Bridging (AVB) activity which aims to enhance

Ethernet with Quality of Service (QoS). AVB and TTEthernet, both being standard

Ethernet compliant, can seamlessly co-exist in a single physical network from a pure

communication point of view. However, compatibility modes between TTEthernet

190 Time-Triggered Communication

and AVB that maintain the tight temporal guarantees across protocols are subject to

further development.

8.2.1.3 Coding and Decoding

The TTEthernet services operate on the MAC layer (layer two of the OSI reference

model). As such, they are largely independent of the underlying PHY layer. To sup-

port the independence between the MAC and PHY layers, the IEEE developed a

set of interface standards. The media-independent interface (MII) is used in a 100

Mbit/s Ethernet network to connect the MAC layer to the PHY layer. For 10 Mbit/s,

10 Gbit/s and 100 Gbit/s, the respective interface specifications are the Attachment

Unit Interface (AUI), the Gigabit Media Independent Interface (GMII) and the 10

Gigabit Media Independent Interface (XGMII). Although not explicitly stated in the

SAE AS6802 standard, it is expected that a TTEthernet device will also adhere to

these interface standards.

8.2.1.4 Media Access Control

The synchronized local clocks and the pre-configured schedule specify the temporal

position of the TT frames on the timeline. Intervals that are not assigned to TT frames

are free for RC or BE communication. Figures 8.6(a) and 8.6(b) present an example

TTEthernet network and an associated schedule for TT frames.

Figure 8.6(a) depicts an example topology of 20 TTEthernet end systems con-

nected to each other via bidirectional communication links. Each bidirectional com-

munication link can be decomposed into unidirectional dataflow links. In the figure,

these dataflow links are numbered from 1 to 50 (dataflow links 1..6 are shown). Fig-

ure 8.6(b) gives an example schedule for TT frames for the topology on the top.

In the schedule, the numbered dataflow links are listed on the x-axis. The y-axis

presents time in the granularity of slots. In this example, one cluster cycle is split

into 1200 slots. An appropriate integration cycle in this example can be 300 slots.

Hence, within one cluster cycle, an integrating component may integrate at any one

of four different integration points.

Time progresses from bottom to top, along the y-axis, and is cyclically repeated

afterward. A dot in the plot means that the respective slot on the given dataflow link

is uniquely assigned to a TT frame. The remaining bandwidth (positions not marked

for TT traffic) is free for RC and BE frames. The presented schedule is specifically

designed to accommodate unsynchronized traffic, like RC and BE, by concentrating

the TT traffic to several segments on the timeline. Schedule synthesis for TT traffic in

multi-hop networks is formally specified in [307], while static scheduling for mixed-

criticality systems is discussed in [308].

The integration of TT with unsynchronized traffic, like RC or BE, leads to access

conflicts on the dataflow links. For example, assume a scenario in which dataflow

link 5 is transmitting an RC frame received from dataflow link 1. Now, a TT frame

received from dataflow link 3 becomes ready that also has to traverse dataflow link

5. In this case, the switch connecting these dataflow links exhibits a conflict at its

outgoing port to dataflow link 5.

Time-Triggered Ethernet 191

12

3

4

5

6

(a) TTEthernet network consisting of twenty end systems connected in “snowflake” topology

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

S
lo

t P
os

iti
on

 in
 S

ch
ed

ul
e

[in
de

x]

Dataflow Links [index]

(b) Schedule for TT frames designed with blank intervals for RC and BE traffic. Time is depicted on

the y-axis in granularity of slots.

FIGURE 8.6
Example Network Topology and Assigned Schedule for the Different Traffic Classes

(TT, RC and BE)

TTEthernet addresses the collision problem associated with the integration of

synchronized and unsynchronized traffic by assigning each frame a priority. While

the SAE AS6802 standard does not require a particular priority scheme, it recom-

mends the following in decreasing order: PCF, TT, RC, BE. Within a traffic class,

TTEthernet allows multiple priorities.

If the conflict occurs between messages with equal priority, these messages will

be served in FIFO. When a high-priority message (H) is being served and a low-

priority message (L) becomes ready, L will be queued. The third case, though, is

of particular interest: there are three integration methods to resolve conflicts when

a low-priority (L) message is already in transmission and a new high-priority (H)

message becomes ready for transmission [309]. The three methods are preemption,

timely block and shuffling, and are depicted in Figure 8.7.

192 Time-Triggered Communication

Ongoing Low Priority
Transmission

New High Priority
Transmission

Output as produced
by preemption

Output as produced
by timely block

Output as produced
by shuffling

FIGURE 8.7
Integration Methods for High-Priority (H) and Low-Priority (L) Traffic

Preemption [179]

If an L message is being relayed by a switch when an H message arrives, the relay

process of the L is stopped. The switch establishes the minimum time of silence on

the channel and relays the H message an a priori specified duration later.

High Real-Time Quality: Preemption guarantees that the switch introduces an

almost constant and a priori known latency for an H message.

Generation of False Messages: As truncated messages are now systematically

generated by this mechanism, it has to be guaranteed that a truncated message does

not appear to a receiver as a correct message. This can be ensured by the preemption

mechanism to generate a signal pattern that violates the line encoding rules when a

message is truncated or to include the original message length within the message.

Hence, all receivers of this truncated message will identify a syntactically faulty

message.

Resource Inefficiency: If standard Ethernet components are to be supported,

each truncation action results in a loss of bandwidth, as the already transmitted frac-

tion of a message is discarded by the receiver and the whole message has to be

retransmitted. Add-on functionality to standard Ethernet that allows reconstruction

of fragmented Ethernet messages at a receiver [223] supports reclaiming of the lost

bandwidth, at least to some extent.

Timely Block

If the H message is a TT message, the switch in the network knows a priori when this

H message will arrive on which port, and to which ports (or an internal buffer) this

message has to be forwarded. Timely Block means that the switch will not forward

messages at those times when a TT message is expected.

High Real-Time Quality: Since the outgoing ports for an H message are sched-

uled to be free when the H message arrives, the integration-imposed delay is almost

constant.

Resource Inefficiency: When the message lengths of the L messages are not

Time-Triggered Ethernet 193

known, the timely block has to have a duration of at least the maximum possible

L message. For Ethernet, this means either 123.040μs for 100 Mbit/s or 12.304μs
for 1 Gbit/s. As the minimum-sized Ethernet frames are 6.72μs for 100 Mbit/s and

0.67μs for 1 Gbit/s, a single timely block may prevent up to 19 Ethernet frames

from being delivered. To overcome this resource inefficiency, the switch/end system

can act more intelligently, if the message lengths of the L messages are known or

transported in the messages themselves: At any point in time when an L message is

ready to be relayed, the switch will only relay this L message if it is guaranteed that

the L message is completely relayed before the H message has to be relayed.

Shuffling

If an L message is being relayed by a switch when an H message arrives, the H
message is delayed until the relay process of the L message is finished. Hence, in

the worst case, the H message is delayed for a maximum-sized L message. This

delay will also impact H messages that follow until the bandwidth required for the L
message is compensated for the sum of the inter-frame gaps between succeeding H
messages.

Resource Efficiency: In contrast to preemption and timely block, shuffling will

not truncate a message, nor block the outgoing ports for L messages. Hence, from a

utilization point of view, shuffling is an optimal solution.

Low Real-Time Quality: If the H message is a TT message, the good real-time

quality of time-triggered traffic is degraded. However, as time-triggered traffic is dis-

patched according to a synchronized timebase, this dispatch point in time is known to

the receivers a priori. Messages of other traffic classes can include a global timestamp

within the message to inform the receivers of their dispatch point in time. Hence, the

synchronized timebase mitigates the increased transmission jitter. Network latency,

on the other hand, cannot be mitigated: An H message will potentially be delayed

by at most one L message at each communication step. However, in a 100 Mbit/s

network, or 1 Gbit/s network, shuffling still gives sufficient real-time quality for a

broad range of applications, such as avionics or automotive applications.

In a standard Ethernet network with 100 Mbit/s, the frame lengths are be-

tween 6.72μsec and 123.36μsec; in a 1 Gbit/s network frame lengths are between

0.672μsec and 12.336μsec. Hence, shuffling may impose an additional communi-

cation delay of 123.36μsec or 12.336μsec, depending on the network speed. This

communication delay is also directly added to the transport jitter through the net-

work. For PCFs which are used to establish the synchronized timebase, we mitigate

this additional jitter by means of the permanence function which we discuss in the

following section. For other H messages (e.g., TT or RC frames), the actual trans-

mission jitter can then be mitigated by the synchronized time itself. TT frames have

an a priori specified dispatch point in time and RC frames may include a timestamp

of the synchronized timebase in their payload.

Interference with BE Traffic: As an H message may be delayed by an L mes-

sage in general, this is also true in particular for those cases where L is a BE message.

Though the influence of BE messages is bounded and guaranteed by TTEthernet,

194 Time-Triggered Communication

shuffling may not be acceptable in applications where BE messages are sent from

uncontrolled sources, e.g., a flight passenger connecting their laptop to a cabin net-

work, where alarm data is also communicated.

Increased Complexity in Composability/Scalability for TT: Shuffling requires

constraints on the scheduler of TT messages: The increased latency and jitter affect

the communication schedule. Incremental scheduling is only successful if changes of

the TT timing (due to RC and BE messages) are taken into account when creating the

initial communication schedule. However, there will be no issue for the application

and task-level scheduler if these constraints are taken into account right from the

beginning.

The TTEthernet/ARINC664 products realize the timely block and shuffling inte-

gration method. The preemption integration method is available in a prototype state.

For the integration strategy we define a priority scheme in decreasing order: PCFs,

TT dataflows, k priorities for RC dataflows and BE dataflows. Figure 8.8 presents an

example TTEthernet network consisting of three end systems and a single switch.

TT TTTT TT TTTT TT

3ms cycle

2ms cycle

3ms cycle 3ms cycle

2ms cycle 2ms cycle 2ms cycle

6ms Cluster Cycle

RC BE BE BE RC BE t

TT TT TT

elcycsm3elcycsm3 3ms cycle

BE BE BE t

TT TT TT

2ms cycle 2ms cycle
2ms cycle

BE BE RC BE

t

Sender 1

Sender 2

Receiver

Switch

FIGURE 8.8
TTEthernet – Example of Dataflow Integration (c© 2009 IEEE [309])

The example consists of two end systems that send frames, a switch that inte-

grates the frames from the two senders and a receiver that receives the integrated

dataflow from the switch. As depicted, Sender 1 sends a time-triggered frame (TT)

with a period of 3 milliseconds and best-effort frames (BE). Sender 2 sends a time-

triggered frame (TT) with a period of 2 milliseconds, best-effort frames (BE) and

rate-constrained frames (RC). The resulting integrated dataflow is depicted on the

right.

Time-Triggered Ethernet 195

8.2.1.5 Permanence Function

TTEthernet allows several applications of different criticality to share a common

network. Conceptually, the synchronization strategy itself can be interpreted as an

application of highest criticality and the timely transport of the PCFs is of highest

importance. The synchronization strategy cannot rely on the synchronized timebase

to resolve conflicts in the shared network. PCFs can be generated at points in time

when a TTEthernet device is already sending, receiving or relaying an unsynchro-

nized application’s message. When shuffling is used as a traffic integration method

(e.g., in TTEthernet/ARINC664), the conflicts of PCFs with application messages are

resolved by queuing, which introduces significant queuing delays. For the synchro-

nization of the local clocks in a system, it is essential that these delays are mitigated

and this is exactly the purpose of the permanence function.

Figure 8.9 gives an overview of the operation of the permanence function. In

this case the transmission of a PCF from an SM to a CM is depicted. The synchro-

nization module is the part of a TTEthernet device that executes the synchronization

algorithms. This part may be realized, e.g., in the form of a module on an FPGA or

as software running on an embedded CPU. At some point in time, the logic in the

synchronization module requires the dispatch of a PCF. This point in time is called

the dispatch point in time. As discussed above, there are several reasons that cause

a delay from this dispatch point in time until the first bit of the PCF is transmitted

on the wire (e.g., propagation of the signal through the software/hardware stack and

conflicts with unsynchronized traffic). We call this delay the send delay. Similar de-

lays occur in switches and the receiver of the PCF, and we call these delays the relay
delay and the receive delay, respectively.

Permanence
Module

Synchronization
Module

Synchronization
Module

Send
Delay

Receive
Delay

Relay
Delay

Permanence
Delay

DYNAMIC

~ CONSTANT

max_transmission_delay

FIGURE 8.9
The Permanence Function Transforms Network Jitter into Network Latency

TTEthernet uses the transparent clock mechanism to measure the actual end-to-

end transmission time of each PCF. This mechanism requires all devices to measure

and to add their delay (send delay, relay delay, receive delay) imposed on a PCF into

196 Time-Triggered Communication

its payload field pcf transparent clock. Static delays, such as wire delays, can

be compensated for by static configuration within the TTEthernet devices. The qual-

ity of the delay measurements is a key factor for the clock synchronization process.

In an FPGA-based realization, for example, it is possible to measure these delays

with the accuracy of one hardware-clock tick. Software-based solutions running on

low-cost embedded controllers may introduce much larger measurement errors.

Hence, within bounded measurement and digitalization errors, the receiver of a

PCF knows by the value of pcf transparent clock the actual transmission delay

of the received PCF. After reception of the PCF, the receiver makes the PCF perma-
nent by delaying it for the remaining difference to the maximum delay (depicted by

the permanence module in Figure 8.9):

permanence delay = max transmission delay−
pcf transparent clock (8.1)

max transmission delay is an off-line calculated parameter that defines the max-

imum one-way transmission delay for any PCF in the system (from any SM to any

CM or vice versa from any CM to any SM or SC).

In an ideal system, the permanence point in time of a PCF is

max transmission delay after its original dispatch point in time. Hence, the

transparent clock and the permanence function transform the actual dynamic

network delay into the constant maximum delay. In the real world, measurement

and digitalization errors occur, such that the permanence point in time will occur

within an interval around the nominal permanence point in time. This interval is

implementation-dependent (e.g., jitter through the physical layer, clock speeds of

different clock domains, etc.). In typical realizations of TTEthernet, this interval can

be on the order of several tens of nanoseconds and below. The TTEthernet services

do not correct for this uncertainty and account it as part of the precision in the

system.

8.2.2 Clock Synchronization

8.2.2.1 Clock Synchronization Overview

The clock synchronization algorithm in TTEthernet is illustrated in Figure 8.10. The

“cluster cycle” is the time frame for TTEthernet. It denotes one full cycle through the

schedule of time-triggered frames. Hence, the length of the cluster cycle is defined

by the least-common multiple of all time-triggered frame periods. For long cluster

cycles, it is necessary to re-synchronize, which means to execute the clock synchro-

nization algorithm more than once in order to keep the precision in the system small.

The period of clock synchronization is denoted by “integration cycle” and depicted

in Figure 8.10 numbered from 0 to n−1. Multiple integration cycles per cluster cycle

contribute to high-quality precision, and allow fast re-integration of a component that

has lost synchronization.

A TTEthernet device uses the local clock variable to cyclically count

Time-Triggered Ethernet 197

within an integration cycle and the local integration cycle to cyclically

count the number of integration cycles. Together, local integration cycle and

local clock represent the local view of a TTEthernet component of the synchro-

nized global timebase. TTEthernet devices typically also provide programmable

counters for applications that demand a longer time frame than one cluster cycle.

The clock synchronization algorithm is executed at the beginning of each inte-

gration cycle and can be separated into two steps. In the first step, the SMs send

PCFs to the CMs. The CMs execute a first convergence function, the compression

function. The compression function collects the PCFs and generates a compressed

PCF which is sent back to the SMs and SCs in the system. In the second step, the

SMs and SCs collect the compressed PCFs from different CMs and execute a second

convergence function. We discuss the compression function and the clock correction

in more detail next.

. . .

Step 1 Step 2

Synchronization
Master

Compression
Master

Synchronization
Master

Dispatch
Point in Time

Compressed
Point in Time

Scheduled Receive
Point in Time

Acceptance
Window

local_clock

(local_clock == 0)

Integration Cycle 0 Integration Cycle 1
Integration Cycle (n-1)

Cluster Cycle

FIGURE 8.10
The Timing Hierarchy in TTEthernet

8.2.2.2 First Step Convergence: Compression Master

Once synchronized, the SMs dispatch their PCFs at the same points in time (ac-

cording their local clocks) to the CMs. Due to drifts in the oscillators, the actual

dispatch points in the SMs and the resulting permanence points in time in the CMs

will deviate. Therefore, the CMs implement the compression function that runs un-

synchronized to the synchronized global time. The compression function collects the

PCFs from different SMs and produces a new PCF which it sends to the SMs as a

response. The dispatch point in time of this new PCF is calculated as a function of

the relative permanence points in time of the PCFs from the SMs. The dispatch point

in time from the CM is called the compressed point in time.

The compression function runs unsynchronized to the synchronized timebase;

hence, it is started upon the reception of a PCF, rather than upon the synchronized

198 Time-Triggered Communication

local clock in the CM reaching a particular point in time. Therefore, it has to be

guaranteed that faulty SMs that may send early or late will not cause the compression

function to recognize only a subset of PCFs from correct SMs in the generation of

the new PCF.

An example scenario of the compression function is depicted in Figure 8.11. In

this example, three end systems that are configured as SMs dispatch PCFs (in this

case, a special type called Integration Frame [IN]) to a switch that is configured as

CM. Note that the depicted deviations of the dispatch points in time stem from the

relative differences in the oscillators of the end systems; in a perfect world, these

dispatch points in time would be perfectly aligned.

SM

SM

SM

100000

010000

001000

Collection
Phase

Delay
Phase

11
10

00
11

10
00

11
10

00

D
is

pa
tc

h
P

oi
nt

s
In

T
im

e

Permanence
Points In Time pi

CM TIME
Compressed
Point In Time

FIGURE 8.11
Compression Function Overview: Three End Systems Configured as Synchroniza-

tion Masters Provide Their Local Clock Readings to a Switch Configured as Com-

pression Master; in the Real World, the Network Jitter is Compensated for by the

Permanence Function (In Formal Verification Studies [310], We Take Credit for the

Permanence Function by Abstracting from the Network Delays)

The CM will use the permanence function discussed previously to derive the

permanence points in time of the PCFs. The first permanence point in time (p1) will

cause the compression function to start the collection phase. As the successive PCFs

with the same value in the pcf integration cycle field become permanent, the

CM records their relative offsets to the first permanence point in time (pi − p1, i > 1)

and stores these offsets in a local data structure that we call the clock synchronization
stack. Should PCFs with differing values in their pcf integration cycle field

become permanent in the CM, a parallel compression function is started for each

new value in pcf integration cycle.

The duration of the collection phase is given by the following rules, where “ob-

Time-Triggered Ethernet 199

servation window” specifies the maximum deviation of two correct local clocks in

the system as measurable by a clock within the network:

• The first permanence point in time will cause the compression function to col-

lect the following permanent PCFs for one observation window.

• When the compression function collects at least a second permanent PCF dur-

ing the first observation window, the collection phase is prolonged for a second

observation window.

• The collection phase will end when the number of permanent PCFs collected

during observation window i is equal to the number of permanent PCFs col-

lected during observation window i−1 (i.e., when no new PCF becomes per-

manent for the duration of one observation window). Otherwise collection will

be continued for another observation window.

• The collection phase will stop at the latest after the (k +1)th observation win-

dow, where k is the configured number of faulty SMs to be tolerated.

After the collection phase the relative permanence points in time of the collected

PCFs are used to determine a correction value for the following delay phase. In order

to minimize the impact of the faulty SMs we use a variant of the fault-tolerant median

(where pi, i ≥ 1 represents the permanence points in time):

• One permanence point in time: correction value = 0

• Two permanence points in time: correction value = p2−p1
2

• Three permanence points in time: correction value = p2 − p1

• Four permanence points in time:

correction value = ((p2−p1)+(p3−p1))
2

• Five permanence points in time: correction value = p3 − p1

• More than five permanence points in time: Take the average of the (k + 1)th

largest and (k +1)th smallest inputs, where k is the number of faulty SMs that

have to be tolerated.

In the delay phase, the compression function will wait for

delay phase duration = correction value+
(k +1)∗observation window−
collection phase duration (8.2)

where collection phase duration is the length of the preceding collection phase.

The overall time from the first permanence point in time until the CM dispatches

the resulting compressed PCF is denoted by the compression master delay and cal-

culated as follows:

200 Time-Triggered Communication

compression master delay = collection phase duration

+delay phase duration

= (k +1)×observation window

+correction value (8.3)

This equation assumes negligible overhead for the calculation of the fault-tolerant

median.

At the compressed point in time, the CM generates the compressed PCF with

pcf integration cycle set to the same value as in the original PCFs from the

SMs. Furthermore, in the pcf membership new field of the compressed PCF, the

CM sets those bits to one that indicate the SMs from which the CM received PCFs

in the collection phase. All other bits in pcf membership new are set to zero.

The compressed PCF may be delayed by a configured duration before dispatch.

This is necessary, for example, if the CM executes a central guardian function. This

duration can be added in the transparent clock of the compressed PCF upon dispatch

to the SMs. Otherwise, compression master delay has to be extended by this dura-

tion.

8.2.2.3 Second Step Convergence: Synchronization Master

The SMs off-line configure the scheduled receive pit as the nominal point in time

when they expect the permanence of the compressed PCFs received from the CMs.

scheduled receive pit = dispatch pit

+2×max transmission delay

+compression master delay (8.4)

Starting from an SM’s dispatch point in time (local clock==0), it takes

max transmission delay until a PCF from an SM becomes permanent in the CM.

The delay through the CM is given by compression master delay (Equation 8.3 set-

ting correction value = 0). Then it takes another max transmission delay until the

compressed PCF becomes permanent in the SMs.

The scheduled receive pit is the nominal point in time of permanence of the com-

pressed PCF. In the real world, oscillator drifts as well as digitalization errors and

timing errors imposed by crossing clock domains as well as faulty components re-

quire the specification of an interval around the scheduled receive pit. This interval

is called the acceptance window. Compressed PCFs that become permanent within

the acceptance window are called “in-schedule,” while all other PCFs are called “out-

of-schedule.”

At the end of the acceptance window, the SMs evaluate the in-schedule com-

pressed PCFs. As there is at least one CM per channel, an SM will receive at least

as many compressed PCFs as channels it is connected to. Current TTEthernet imple-

mentations allow one, two or three channels. In cases where more than one CM is

Time-Triggered Ethernet 201

configured per channel and in certain failure scenarios, an SM will receive more than

one compressed PCF per channel. The evaluation of the PCF is done as follows:

1. Per-Channel Selection:

(a) From the possibly many in-schedule compressed PCFs on a channel,

the SM selects the PCF with the highest number of bits set in the

pcf membership new field.

(b) In case of equal maximum number, the PCF that has become permanent

latest with maximum number of bits set in pcf membership new is se-

lected.

(c) The output of this selection process is at most one PCF per channel and

we call these PCFs “best-channel” PCFs.

2. Low-Membership Exclusion:

(a) From the best-channel PCFs the SM removes those PCFs with a rela-

tively low number of bits set in the pcf membership new field.

• The relatively low number is determined by the maximum number

of bits set in the pcf membership new of the best-channel PCF

minus a configurable parameter.

• This parameter is typically set to the number of faulty SMs to be

tolerated.

3. Clock-Correction Calculation

(a) If only one best-channel PCF remains, then the clock correction value is

determined by the scheduled receive point in time minus the permanence

point in time of this PCF.

(b) If only two best-channel PCFs remain, then the clock correction value is

determined by the arithmetic mean of the two time differences between

the scheduled receive point in time and the permanence points in time.

(c) If three best-channel PCFs remain, then the clock correction value can

be configured to either be the arithmetic mean of the two extreme time

differences or the middle time difference between the scheduled receive

point in time and the permanence points in time.

8.2.3 Startup and Restart

This section discusses the TTEthernet startup/restart on an informal level. The

startup/restart algorithm executed in the SMs is depicted in pseudo-code using stan-

dard IEEE formalism in Figure 8.12. The CMs realize a similar algorithm which

we do not discuss in this chapter. SCs implement a much simpler state machine,

as SCs only passively integrate to an already established synchronized time. We re-

fer the interested reader to the SAE AS6802 standard for a complete discussion of

202 Time-Triggered Communication

the state machines and the formal description of the algorithm’s parameters. The

startup/restart algorithm has been designed to tolerate multiple failures. Downgraded

versions for less demanding fault-tolerance applications are available and similar to

the algorithm discussed in this section.

stable_cycle_counter >=
num_stable_cycles

(Async Clique Detected +
(Sync Clique Detected
* local_sync_membership > 0) +
Relative Clique Detected)

[duration:= sm_restart_timeout]

receive(CS Frame)

(local_timer)

SM_INTEGRATE

(ENTER)
[local_timer := FALSE,
Tw (duration),
local_timer := TRUE]

(Power-On * Initialization Ready)
[duration := sm_listen_timeout]

SM_UNSYNC

(ENTER)
[local_timer := FALSE,
send(CS Frame),
Tw (duration),
local_timer := TRUE]

SM_FLOOD

(NOT flood_receive
* NOT closed_window)

[Tw (cs_offset),
send (CA Frame),
Tw (ca_round_trip –

ca_acceptance_window/2)
flood_receive := TRUE]

(flood_receive
* NOT closed_window)

[Tw (ca_accpetance_window),
closed_window := TRUE]

(ENTER)
[flood_receive := FALSE,
closed_window := FALSE]

Comments

(a) send (xy frame) and recevie (xy frame)
are interpreted to take zero time

SM_WAIT_4_CYC
LE_START_CS

(ENTER)
[local_timer := FALSE,
Tw (ca_offset),
local_clock := 0,
local_integration_cycle :=

config,
local_timer := TRUE]

SM_TENTATIVE_
SYNC

(local_clock ==
smc_sync_eval_pit)

[Sync. Clique Detection,
stable_cycle_counter++]

receive(CS Frame)

(receive(CA Frame)
* flood_receive
* NOT closed_window)

(flood_receive
* closed_window)
[duration :=
sm_coldstart_timeot]

(local_clock ==
smc_async_eval_pit)

[Async. Clique Detection,
Relative Clique Detection]

(local_clock ==
smc_clock_corr_pit)

[local_clock := local_clock +
clock_corr]

(local_clock == 0)
[send (IN Frame)]

SM_SYNC

(local_clock ==
smc_sync_eval_pit)

[Sync. Clique Detection,
stable_cycle_counter++]

(local_clock ==
smc_async_eval_pit)

[Async. Clique Detection,
Relative Clique Detection]

(local_clock ==
smc_clock_corr_pit)

[local_clock := local_clock +
clock_corr]

(local_clock == 0)
[send (IN Frame)]

SM_STABLE

(local_clock ==
smc_sync_eval_pit)

[Sync. Clique Detection]

(local_clock ==
smc_async_eval_pit)

[Async. Clique Detection,
Relative Clique Detection]

(local_clock ==
smc_clock_corr_pit)

[local_clock := local_clock +
clock_corr]

(local_clock == 0)
[send (IN Frame)]

(local_timer)
[duration:=sm_coldstart_timeout]

(receive(CA Frame)
* stable_ca_enabled)

receive(CA Frame)

receive(CA Frame)

receive(CA Frame)

receive(CA Frame)

(receive (IN Frame))
[local_clock :=

sm_scheduled_receive_pit,
local_integration_cycle :=
pcf_integration_cycle,

local_sync_membership :=
pcf_membership_new]

(local_sync_membership >= sm_integrate_to_sync_thrld)

(local_sync_membership
>= sm_unsync_to_sync_thrld)

(receive (IN Frame))
[local_clock :=

sm_scheduled_receive_pit,
local_integration_cycle :=
pcf_integration_cycle,

local_sync_membership :=
pcf_membership_new]

(local_sync_membership >=
sm_unsync_to_tentative_thrld

* local_sync_membership <
sm_unsync_to_sync_thrld)

(Async Clique Detected +
(# Sync Clique Detected

>= num_unstable_cycles) +
Relative Clique Detected)

[duration := sm_restart_timeout]

(Sync Clique Detected
* local_sync_membership ==0)

[duration := sm_restart_timeout]

(Async Clique Detected +
Sync Clique Detected +
Relative Clique Detected)

(local_timer)
[duration:= sm_restart_timeout]

(stable_cycle_counter
>

=
num

_stable_cycles
*

sm
_tent_to_stable_enabled)

local_sync_membership >=
sm_tentative_to_sync_thrld

receive(CS Frame)

(local_timer)
[duration:=
sm_coldstart_timeout]

FIGURE 8.12
Protocol State Machine for the SMs: Coldstart Proceeds Clockwise, Regular Integra-

tion Counter-Clockwise

In Figure 8.12, each box represents a state in the protocol state machine. Within

each box, the state name is depicted, e.g., SM UNSYNC, followed by guarded com-

mands. Guarded commands are of the form (list of conditions), e.g.,

(ENTER), followed by a list of commands to be executed when a guard evaluates

to true, e.g., [local timer:=FALSE]. Tw(duration) is used to describe a

timeout; ∗ and + denote logical AND and OR, respectively. Boxes are connected to

Time-Triggered Ethernet 203

each other by transitions, which are labeled by the conditions to be met and com-

mands to be executed. The TTEthernet synchronization protocol uses the following

variables:

• local timer: An unsynchronized timer used to measure timeouts, e.g., the

duration for which an SM tries to integrate before coldstart. In order for con-

formity to the IEEE standard, we use local timer as Boolean in the state

machine above.

• local clock: The synchronized timer used to measure the current point in

time relative to the current integration cycle.

• local integration cycle: A synchronized counter that cyclically

counts the integration cycles.

• local sync membership: A membership vector with a one-to-one map-

ping of bit to SM; used in the synchronous and relative clique detection func-

tion.

• local async membership: A membership vector with a one-to-one map-

ping of bit to SM; used in the asynchronous and relative clique detection func-

tion.

In a multiple-failure tolerant configuration of TTEthernet, the startup/restart pro-

tocol has the character of an end-to-end protocol between the SMs. Hence the CMs

have only minor impact on the protocol execution: the CM will not react to CS and

CA frames, but will only passively integrate to IN frames. Once a CM perceives that

sufficient SMs are operational, it will stop forwarding CS frames (note: IN frames

will always be forwarded).

The startup/restart protocol realizes four functions: integration, coldstart, clique

detection and restart. We will discuss these functions next with a focus on their fault-

tolerance capabilities and with references to the state machine depicted above.

8.2.3.1 Integration

A component that is powered-on or reset will start in an integration state. In partic-

ular, the SM will start in the SM INTEGRATE state, where it tries to integrate to an

already established global synchronization. The regular integration is depicted by the

counter-clockwise background arrow in the state machine. As discussed in Section

8.2.2.1, during normal operation mode synchronization messages, the IN frames, are

periodically exchanged with a period of the integration cycle. An integrating com-

ponent will thus wait for two integration cycles in which it is guaranteed that it will

receive an IN frame from the CM should the global synchronization already be estab-

lished and maintained by a sufficient set of components in the system. Once a compo-

nent receives an IN frame, it checks the number of bits set in the membership new
payload-field of the IN frame. If this number is sufficiently high, the component en-

ters normal operation mode and starts executing the clock synchronization service. If

this number is too low, the IN frame is ignored and the component continues waiting

204 Time-Triggered Communication

for an IN frame with sufficient weight. If the two integration cycles time out, this

means that the SM did not integrate. Hence, it concludes that there is no global syn-

chronization available and executes the coldstart procedure, by entering SM UNSYNC
state.

8.2.3.2 Coldstart

The coldstart is depicted by the clockwise background arrow in the state machine;

it proceeds in four steps that implement the classic two-round end-to-end message

exchange required to overcome inconsistent message transmissions (this is executed

in states SM UNSYNC and SM FLOOD in the state machine). The first round is

initiated by an SM with the transmission of a Coldstart Frame (CS) to all CMs (Step

1). The CMs will distribute the CS to all SMs in the network (Step 2). In the two

fault-tolerant configurations, all SMs except the original CS sender will acknowledge

the CS by sending a Coldstart Acknowledgment Frame (CA) a configurable duration

after the CS became permanent (Step 3). Finally, the CMs will again relay the CA

to all SMs in the network (Step 4). The reception of the CA in an SM concludes

the coldstart procedure and the SM transits to the SM WAIT 4 CYCLE START CS

state.

A defined offset (the CA offset) after the received CA frame becomes per-

manent, the SMs will test whether normal operation mode can be entered

(SM TENTATIVE SYNC state). This is done by sending out an IN frame. The CM

will then generate and dispatch a new compressed IN frame as described in Section

8.2.2.1. When the received compressed IN frame becomes permanent, the SMs will

check the number of membership bits set and enter normal operation mode if this

number is sufficiently high.

The four step startup/restart is necessary because of the two-fault hypothesis: In

the worst case an SM and a CM may be faulty, as depicted in Figure 8.13 (SM1 and

CM1 are faulty). The scenario starts with the faulty SM (SM1) dispatching its CS

frame only to the faulty CM (CM1), which in turn relays the faulty CS frame only to

an arbitrary subset of SM (SM3). To establish consistency, the SM (SM3) answers

the CS frame with a CA frame dispatched to both CMs. The correct CM (CM2) will

now distribute the CA frame consistently. Note: All SMs (even the faulty one, see

Section 8.2.5.2) will answer only CS frames that they did not send themselves. In a

faulty SM plus faulty CM scenario, it is, therefore, guaranteed that either the original

CS frame or the CA as response to a CS frame will be dispatched by a correct SM to

all CMs in the network.

In order to generate a CA frame, three components have to be involved, two SMs

and one CM: (a) a first SM sends a CS frame, (b) a CM relays the CS frame and (c)

a second SM acknowledges the CS frame by sending a CA frame. Hence, under a

two-failure hypothesis it is impossible that two faulty components can maliciously

cooperate in order to produce the startup sequence of frames. Either two SMs are

faulty, in which case no CM would relay the initial CS frame, or an SM and a CM

are faulty, in which case no SM will acknowledge a faulty CS frame.

Time-Triggered Ethernet 205

Port 1

Port 2

Port 3

Port 4

Port 1

Port 2

Port 3

Port 4

dispatch
permanence

CS

CS

CS

CS

CA

CA

CA

CA

CA

CA

CA

CA

CA

CA

CA

CA

CSO

dispatch
permanence

dispatch
permanence
dispatch
permanence

dispatch
permanence
dispatch
permanence

dispatch
permanence
dispatch
permanence

dispatch
permanence
dispatch
permanence
dispatch
permanence
dispatch
permanence

dispatch
permanence
dispatch
permanence
dispatch
permanence
dispatch
permanence

CM1

CM2

SM1

SM2

SM3

SM4

1

2

3

4

FIGURE 8.13
Startup/Restart Example in Presence of a Faulty SM and a Faulty CM: the CA Frame

Resolves an Inconsistent Startup Attempt

8.2.3.3 Restart

Once a component detects the loss of synchronization (by using the clique detection

mechanisms discussed in the following section), it will try to regain synchronization.

Depending on the current state in the protocol state machine, the component will ei-

ther try to re-integrate or re-coldstart. Re-integration will be executed when a clique

is detected in SM STABLE state. Re-coldstart will be executed when the compo-

nent is in SM TENTATIVE SYNC state. When a component is in the SM SYNC

state, it will re-integrate only if the synchronous clique detection function detected

a clique and the component did not receive any synchronization message confirm-

ing its current schedule; in all other cases the component will try to re-coldstart.

This subtle differentiation is a result of the quality of synchronization a compo-

nent has already reached: SM STABLE is an indication that there were already a

number of rounds of successful synchronization exchange, while a component in

SM TENTATIVE SYNC state is still testing if a newly generated global synchro-

nization has been established successfully.

8.2.3.4 Clique Detection

In the synchronized states (SM TENTATIVE SYNC, SM SYNC, and SM STABLE

state), TTEthernet uses clique detection algorithms to reliably detect all clique sce-

206 Time-Triggered Communication

narios. Three types of clique detection algorithms are implemented that can be active

in parallel:

• The synchronous clique detection function is essential to move faulty compo-

nents out of synchronization, e.g., in the case of a faulty high-integrity SM, a

valid failure mode of an SM is that it only accepts IN frames that match its

own perception of synchronization and drops all other IN frames. Hence, both

the asynchronous and the relative clique detection function will not cover this

clique scenario as frames belonging to other cliques are simply ignored by the

faulty component.

• The asynchronous clique detection function is the usual means by which cor-

rect components will detect cliques.

• The relative clique detection function is of significance when the number of

operational components is low and is essential to resolve temporary clique

formations during coldstart.

The synchronous clique detection function uses the local sync
membership variable to store the pcf membership new field with the

highest number of bits set of IN frames received in-schedule. When the number of

bits set in local sync membership is below an a priori defined threshold, a

synchronous clique is detected. This check is executed at the end of the acceptance

window (see Section 8.2.2.1).

The asynchronous clique detection function uses the local async
membership variable to record the pcf memberhip new fields of

IN frames received out-of-schedule. When the number of bits set in the

local async membership variable goes above a configured threshold, an

asynchronous clique has been detected. This check is executed at the beginning of

each integration cycle before the transmission of the IN frame.

The relative clique detection function detects a clique if local sync
membership is equal to or less than local async membership. This check

is executed at the beginning of each Integration Cycle before the transmission of the

IN frame.

8.2.4 Diagnostic Services

The clique detection algorithms discussed in the previous section are low-level di-

agnostic services. They identify situations in which TTEthernet end systems and/or

switches have lost synchronization. In addition to the clique detection algorithms,

more sophisticated diagnostic routines can be implemented, for example, to iden-

tify unexpected behavior. Although such diagnostic algorithms are outside the SAE

AS6802 standard that defines the TTEthernet services, diagnosis is generically sup-

ported by the different traffic classes. For example, time-triggered frames can be used

to periodically distribute detailed information of the internal synchronization state of

a TTEthernet device (e.g., maximum and minimum clock correction values or even a

Time-Triggered Ethernet 207

history of these values). On the other hand, best-effort messages allow the realization

of arbitrary on-demand diagnosis protocols in the network.

8.2.5 Fault Isolation

As TTEthernet is designed for ultra-highly dependable systems, we have to assume

that the failure mode of any chip IP in the TTEthernet network may become arbi-

trarily faulty. This means that the faulty chip IP may assign arbitrary signals on an

arbitrary selection of its pins. In TTEthernet, we find essentially two types of chip

IP: The end system and the switch (we discuss the impact of their integration into a

single chip IP toward the end of this section).

In TTEthernet, we assume each chip IP to be a fault-containment unit. This means

that a fault will not propagate directly from one device to another one. However, a

fault in one device may manifest in an error state and ultimately result in a failure

of a TTEthernet device. This failure may then become visible as faulty or missing

Ethernet frames on the interface from the faulty device to the TTEthernet network.

To tolerate faulty Ethernet frames, TTEthernet specifies two ways to construct error-

containment units: The central guardian and the high-integrity design. A third type

of error-containment is based on triple-modular redundancy and is currently under

development.

An error-containment unit consists of at least two independent fault-containment

units. In the case of the central guardian, the error-containment unit is constructed

from one end system and one switch chip IP. The high-integrity design constructs

the error-containment unit from either two end system chip IPs or from two switch

chip IPs. In this case, we also speak of a high-integrity end system or a high-integrity

switch. Both, central guardian and high-integrity design aim at transforming the fail-

ure model of a faulty device from an arbitrary failure model to a more benign one.

In the case of TTEthernet, arbitrary failure modes are transformed into inconsistent-

omission failures.

8.2.5.1 Central Guardian

The central guardian functionality is implemented in the TTEthernet switch and pro-

tects the TTEthernet network against arbitrarily faulty end systems. Figure 8.14 de-

picts the central guardian control and enforcement actions for time-triggered and

rate-constrained traffic.

A TTEthernet end system transmits a time-triggered frame according to the syn-

chronized global time when the scheduled dispatch point in time (dispatch pit) of

the frame is reached. As discussed in Section 8.2.1.4, depending on the integration

method of unsynchronized and synchronized traffic, the actual instant when the frame

is transmitted on the dataflow link, the send point in time send pit, may be delayed.

However this delay is bounded by max(send delay).

send pit ∈ [dispatch pit,dispatch pit +max(send delay)] (8.5)

As a consequence of the latency of the dataflow link (link latency), the TTEth-

208 Time-Triggered Communication

send_pitdispatch_pit

receive_pit

A Time

Acceptance Window

A

Pi Pi

max(send_delay)

B Time

max
(send_delay)

B

send_pitdispatch_pit

receive_pit

A Time

A

max(send_delay)

B Time

B

Minimum Gap

delbanEemarFdelbanEemarF Frame Disabled

(a) Window Enforcement
for time-triggered traffic

(b) Rate Enforcement
for rate-constrained traffic

FIGURE 8.14
Central Guardian Enforcement Actions for Synchronized Time-Triggered Traffic and

Unsynchronized Rate-Constrained Traffic

ernet switch to which the end system is connected receives the first bit of the time-

triggered frame at receive pit:

receive pit = send pit + link latency (8.6)

A TTEthernet switch that is configured to execute the window enforcement

checks whether the receive point in time of a time-triggered frame happens within an

acceptance window. The start of this acceptance window has to consider the earliest

possible receive pit. This directly follows from the link latency and the maximum

offset of the local clocks in the end system and switch, the precision Π.

acceptance window start = dispatch pit + link latency−Π (8.7)

Likewise, the end of the acceptance window has to consider the latest possible

receive pit for the time-triggered frame.

acceptance window end = acceptance window start

+2×Π
+max(send delay) (8.8)

When the window enforcement algorithm for time-triggered traffic is enabled in

the TTEthernet switch, the switch will forward a time-triggered frame only when

receive pit falls within the acceptance window as specified by Equations 8.7 and 8.8.

Rate-constrained traffic is not dispatched according to the synchronized global

time and, therefore, the window enforcement is not directly applicable. Instead a

Time-Triggered Ethernet 209

TTEthernet switch supporting the rate-constrained traffic class implements a rate-

enforcement algorithm as depicted in Figure 8.14 on the right. A rate-enforcement al-

gorithm controls and enforces the temporal distance between two succeeding frames

with the same frame identifier. A frame is only forwarded when this temporal dis-

tance exceeds a minimum gap as specified by a configurable parameter.

8.2.5.2 High-Integrity Design

The high-integrity design of a device aims for error-containment already within the

device rather than via a remote instance as in the case of the central guardian. A par-

ticular high-integrity design method is the commander/monitor (COM/MON) design

method depicted in Figure 8.15.

COM MON

IN OUT

Core COM/MON Assumptions:
- COM and MON fail independently
- MON can intercept a faulty message produced
by the COM

- COM cannot produce a valid message such that
this message appears as two different messages
on listen_out and OUT; though it may be valid on
listen_out but detectably faulty on OUT or vice versa

- MON cannot itself generate a faulty message,
neither by inverting listen_out to an output, nor by
toggling the intercept signal

listen_out
intercept

listen_in

FIGURE 8.15
Realization of a High-Integrity Component as a Commander/Monitor (COM/MON)

Architecture

A COM/MON pair is constructed out of two fault-containment units, where one

unit operates as the commander (COM) and the other as monitor (MON). In TTEth-
ernet, both end system and switch may be realized in a COM/MON design. Current

realizations use a single oscillator for COM and MON and a dedicated clock mon-

itor to prevent common-mode failures of the clock. The input (IN) received by the

device is forwarded to both, COM (IN) and MON (listen in). COM and MON ex-

ecute an agreement protocol on the information received before further usage. This

agreement protocol is also called the congruency exchange. When COM and MON

agree on the received information, they process the input in their state machines.

In TTEthernet, COM and MON execute the same state machine and as they agree

on the input and derive their timing from the same clock source, they will produce

the same output at about the same point in time. This means that COM and MON

operate in a replica-determinant manner [258]. The output from the COM (OUT) is

forwarded to the MON, which cross-compares OUT with its own output. When the

output from the COM differs from the output of the MON, then the MON terminates

COM’s transmission on OUT.

210 Time-Triggered Communication

8.2.6 Configuration Services

In standard Ethernet networks, the simple network management protocol (SNMP) is

widely accepted. However, in case of a network for mixed-criticality systems we also

have to consider faulty devices. TTEthernet realizes a fault-tolerant reconfiguration

protocol. Here, a switch may only change its configuration when a configurable set

of end systems send “unlock” frames to the switch within a small temporal duration.

End systems can be re-configured through the host interface. If necessary, the host

or a middleware layer can implement an interactive consistency protocol before the

dataflow is adapted. Future TTEthernet products may harmonize the configuration

and maintenance routines with existing state-of-the-art approaches like SNMP.

8.3 Protocol Parameterization
8.3.1 Physical Topology

TTEthernet is largely agnostic to the underlying physical topology. However, being

fully compatible to standard Ethernet, the preferred topologies for bandwidths of

100 Mb/s and above are redundant star and tree topologies. A “channel” in the star

topology consists of exactly one switch and the communication links between this

switch and the attached end systems. For a redundant star topology, the switches and

communication links are replicated such that an end system is connected to as many

switches as there are redundant instances. Each redundant switch and its attached

communication link form one channel. The tree topology extends the concept of a

channel by allowing multiple switches per channel. Hence, in a tree topology differ-

ent end systems may be connected to different switches and these switches are then

connected directly or indirectly to each other via communication links. The commu-

nication links between switches of the same channel are commonly called multi-hop

links. It is not required that the redundant channels in the TTEthernet network have

the same topology. The example depicted in the beginning of this chapter in Figure

8.1, for example, shows two redundant channels in which Channel 1 is configured in

tree topology with three switches, and Channel 2 is configured in star topology.

For availability reasons, additional communication links to the ones present in the

star/tree topology can interconnect the TTEthernet devices, thereby forming a mesh

topology. TTEthernet as specified in the AS6802 standard does not specify redun-

dancy management using these additional links directly. However, adaptive routing

protocols can be implemented in addition to TTEthernet. For example, when a switch

becomes fail-silent, the network can reconfigure the respective channel and the addi-

tional links compensate for the faulty switch.

For the correct execution of the synchronization algorithms, it is required that

all non-faulty CMs receive the PCFs from all non-faulty SMs and vice versa. De-

vices configured as SCs may be attached to the network such that they receive only

some of the PCFs from non-faulty CMs, which means that in the failure case these

Time-Triggered Ethernet 211

SCs may lose synchronization to the network. However, as SCs do not source PCFs,

connecting them only with partial redundancy to the network impacts only the SCs

themselves.

The topology freedom comes with the implementation of the permanence func-

tion (Section 8.2.1.5) which masks the network-imposed jitter on the PCFs. The

max transmission delay parameter gives the upper bound in time for the transmission

of a PCF between an SM or SC and the CM. The parameter max transmission delay
is therefore also the restricting parameter of the number of devices in the transmis-

sion path of a PCF.

8.3.2 Protocol-Control Flow Parameterization

In a TTEthernet network, the precision is the main synchronization quality parameter

from which most other parameters are derived. The precision itself is a function of

the drift rates in the device’s oscillators, the integration cycle, the network jitter (not

covered by the permanence function), as well as the failure hypothesis. The failure

hypothesis and the network topology are often given by the system requirements.

Hence, the precision in the system may either be improved by increasing the quality

of the oscillators and/or by decreasing the integration cycle.

TTEthernet provides scalable fault-tolerance. The key parameters determining

the degree of fault-tolerance are the integrity level of the devices (high-integrity or

standard-integrity), the number of SMs and CMs, as well as the number of indepen-

dent channels between the SMs and CMs. The number of SMs in the TTEthernet
network is reflected in the threshold parameters in the protocol state machines in

SMs, SCs, and CMs. For example, the threshold that gives the number of bits to be

set in a PCF such that an SM may integrate is determined by the overall number of

SMs in the network.

8.3.3 Dataflow Parameterization

All messages communicated in a TTEthernet network are standard Ethernet frames.

In a particular implementation of TTEthernet, on top of ARINC 664-p7 (TTEther-
net/ARINC664) time-triggered and rate-constrained frames are specified in more de-

tail, to carry a particular frame id, called the Virtual Link Identifier, and a sequence

number (see Section 8.2.1.2). The number of Virtual Link Identifiers that a device

supports turned out to be a critical parameter. The first ARINC 664-p7 devices sup-

ported a few hundred of these identifiers. TTEthernet/ARINC664 devices increase

this number up to a few thousand.

TTEthernet identifies the traffic class of a particular Ethernet frame by combi-

nations of bits in the Ethernet frame. In TTEthernet/ARINC664, a device classifies a

frame as time-triggered or rate-constrained when the Constant Field in the Destina-

tion Address is set to a configured value as depicted in Figure 8.5. All other frames

are classified as best-effort traffic. The Virtual Link Identifier is then used to differ-

entiate between time-triggered and rate-constrained traffic, by a table-lookup in a de-

vice. It is, therefore, possible that different TTEthernet/ARINC664 devices within the

212 Time-Triggered Communication

same TTEthernet network change the traffic class of a frame. For example, a frame

may be sent as a time-triggered frame to the first switch, but the switch forwards the

frame as a rate-constrained frame.

8.3.3.1 Time-Triggered Parameters

A time-triggered frame fi on a dataflow link [vk,vl] (that is the unidirectional connec-

tion between two TTEthernet devices vk and vl), f [vk,vl]
i , is fully temporally specified

by the following triple (as defined by the Time-Triggered Architecture [177]):

f [vk,vl]
i = { fi.period, f [vk,vl]

i .offset, fi.length} (8.9)

The time-triggered frame period and frame length are given a priori; it is the task

of the scheduler to assign values to FL.offset for all frames F on all dataflow links L
in the network.

A crucial aspect in time-triggered protocols is the number and kind of different

frame periods they support. Some protocols, for example, define a base period and

allow only harmonic multiples of the base period as valid frame periods. TTEth-
ernet is more flexible in this respect. In particular, TTEthernet/ARINC664 supports

eight non-harmonic frame periods, with the only restriction that the frame periods

are multiples of the oscillator tick, e.g., multiples of 8 ns in a device running at

125 MHz. For each non-harmonic frame period, the TTEthernet/ARINC664 devices

support harmonic frame periods.

The integration of time-triggered traffic with unsynchronized traffic imposes ad-

ditional constraints on the time-triggered schedule. When time-triggered frames are

scheduled back-to-back, there is a potential threat that rate-constrained frames will

not be delivered within their required temporal bounds. Hence, for the integration

of synchronized and unsynchronized traffic the time-triggered schedule should be

sparse. We call this property of a time-triggered schedule, the schedule “porosity.”

For schedule porosity, we have to insert blank intervals, intervals not assigned to

time-triggered traffic, into the time-triggered schedule. We can distinguish three ap-

proaches to achieving a required level of schedule porosity: a priori schedule varia-
tion, a posteriori schedule variation and schedule interpretation. The a priori sched-

ule variation takes the requirements on the blank intervals already as input to the

scheduling process. Blank intervals will not be assigned time-triggered frames. The

a posteriori approach generates a time-triggered schedule and inserts blank intervals

by post-processing. Schedule interpretation means that the scheduled entities, the

communication slots, are already sufficiently large to allow the communication of

time-triggered as well as rate-constrained frames.

8.3.3.2 Rate-Constrained Parameters

A rate-constrained frame fi on a dataflow link [vk,vl] that is the unidirectional con-

nection between two TTEthernet devices vk and vl), f [vk,vl]
i , is fully temporally spec-

ified by the following tuple:

f [vk,vl]
i = { fi.rate, fi.length} (8.10)

Time-Triggered Ethernet 213

fi.rate is the maximum rate with which frame fi may be generated. In

ARINC664-p7, for example, typical frame rates are between 1 ms and 128 ms. A

non-faulty sender of rate-constrained frames will source two succeeding instances of

frame fi only with a minimum of
1

fi.rate
time-units in between. The upper bound

of temporal distance of two succeeding instances of a frame fi is not bounded. As

discussed in Section 8.2.5.1, a switch that supports rate-constrained traffic will exe-

cute a rate-enforcing algorithm to prevent a faulty device from exceeding its defined

frame rates.

The rate-constrained frame rates and frame lengths are a priori given. It is the

task of a checker tool to off-line calculate bounds on the maximum latency and jitter,

as well as on the worst-case memory usage in the system.

8.3.3.3 Best-Effort Parameters

Best-effort traffic implements the standard Ethernet communication paradigm.

Hence, the temporal characteristics of best-effort traffic beyond standard Ethernet

is also not part of the TTEthernet parameters set.

8.4 Communication Interface
A TTEthernet end system consists of a controller and a host. The TTEthernet con-

troller is in charge of executing the TTEthernet services as discussed throughout

this chapter and specified in the SAE AS6802 standard. The host executes the sys-

tem applications. Host and controller communicate via the communication interface.

The communication interface itself consists of an application-programming interface

(API) and an implementation-specific interface.

The API defines the functions of the communication interface, such as functions

for transmitting or receiving TT frames, and TTEthernet vendors have defined the

API for TTEthernet outside the scope of the SAE AS6802 standard. It ensures that

applications can easily be migrated to different TTEthernet realizations with small

overhead. The implementation-specific interface depends on a particular realiza-

tion of TTEthernet. It addresses the physical connection, data structures and buffer-

ing/queueing capabilities. We discuss the implementation-specific interface next.

TTEthernet end systems are available with PCI (Peripheral Component Intercon-

nect) and PCIe (Peripheral Component Interconnect Express) as well as System-on-

Chip (SoC) solutions. In addition to the standard PCI and PCIe form factors, these

devices also come in PMC (PCI Mezzanine Card) and XMC (Switched Mezzanine

Card) form factors.

From the buffering/queueing perspective, the communication interface of TTEth-
ernet/ARINC664 complies with the ARINC 664-p7 standard which specifies “com-

munication ports” in sampling or queueing mode (in short sampling and queueing

214 Time-Triggered Communication

ports) and “service access points” (SAP) ports. Sampling and queueing ports are

defined by the ARINC 653 standard.

The data structures communicated between host and controller differ with respect

to the traffic class. For rate-constrained and time-triggered frame transmissions, the

host sends the respective virtual link id, the EtherType and the Ethernet payload to

the controller which then assembles the complete Ethernet frame. Also, the controller

can be configured to manage a sequence number for each rate-constrained and time-

triggered frame. This sequence number is then used as specified by ARINC 664-p7.

Best-effort traffic is sent as Ethernet-compliant frame from the host to the controller

starting with the MAC field and ending with the payload field. The controller will

then calculate and add the frame-check sequence.

8.5 Validation and Verification Efforts
8.5.1 Formal Verification and Analysis

TTEthernet has been designed for use in ultra-highly dependable systems. There-

fore, the assessment of its core algorithms by means of formal methods has been a

primary goal right from the beginning of its industrial development. In particular, the

following aspects of TTEthernet have been addressed within the CoMMiCS project2:

The permanence function, the compression function and clock synchronization algo-

rithms, as well as the overall interplay of the synchronization services. In addition to

that, clock synchronization proofs from the ROBUS protocol have been adapted for

TTEthernet.
The formal assessment of the permanence function is a model-checking study

using the SAL model-checker. In particular, the formal model is based on continuous

time represented as real values and uses the “calendar automata” approach [83]. The

verification procedure uses the SAL infinite-bounded model checker sal-inf-bmc

and k-induction. The procedure is highly automatized and the verification runs take

a few seconds to complete. The formal studies show that the permanence point in

time happens in a receiver a constant duration after the dispatch point in time in the

sender. This is in a perfect world, free of digitalization effects, measurement errors

when crossing clock boundaries, and similar. For the real world we have extended

the model. Here we have shown that the permanence point in time in the receiver

happens within a calculable interval defined by the accumulated errors. Again, the

temporal position of this interval starts a constant delay after the dispatch point in

time in the sender.

The formal verification of the compression function uses the same modelling

paradigms as the permanence function. However, the actual proof is more compli-

cated and requires abstraction techniques also presented in [83]. For abstraction we

2European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement

n◦236701

Time-Triggered Ethernet 215

have to define abstract system states and transitions between them by hand. We then

prove that the abstraction is valid. This means that for every transition in the original

state machine there exists either a transition between abstract states or the system

remains in the current abstract state. SAL helps in the definition of the abstraction

by providing a counterexample if an inconsistency between the actual state machines

and the abstraction is present. Once the abstraction is verified, we can use the abstrac-

tion in the proof of the actual properties of interest. For the compression function,

we have proven a termination property, an agreement property and two timing prop-

erties [310]. The termination property shows that the compression function produces

a compressed point in time when triggered. The agreement property proves that the

collection phase in the compression function collects the PCFs from all correct SMs.

Finally, the timing properties relate the permanence points in time to the compressed

point in time and show that the fault-tolerant median is correctly executed.

The interplay of the synchronization services, in particular the coldstart, integra-

tion, clique detection and restart services, is significant for the correct operation of

a time-triggered protocol. The state space it constructs, especially in the presence of

faulty components, is huge. In order to keep the problem to a reasonable size, we

have used a discrete notion of time in granularity of slots and use the finite bounded

model checker sal-bmc in the formal assessment. Here we initialize the system in

a broad range of initial states and calculate the time it takes to stabilize into a syn-

chronous state. The results for the two fault-tolerant configurations of TTEthernet are

presented in [306].

8.5.2 Certified Development Process

Most application areas of safety-critical and mixed-criticality systems require a de-

velopment process according to a quality assurance standard. TTEthernet, having

originally come from the aerospace domain, has been developed according to the DO

178b standard for software and the DO 254 standard for hardware. However, most

quality assurance standards have a similar structure involving the following design

steps: Requirements definition, conceptual design, detailed design, requirements-

based testing and independent peer review. These steps have been executed for

TTEthernet.

8.5.3 Model-Based Testing

In addition to the requirements-based testing within the certified development pro-

cess, TTEthernet has also been subject to model-based testing. For model-based test-

ing, we use the SAL models developed for the formal verification to also generate

particular test cases. Here, we set the SAL model into a particular initial system state

and simulate the algorithmic execution for a configurable number of steps, for which

SAL is capable of producing the simulation trace. Also, an actual TTEthernet net-

work is set in the same initial state and allowed to run for a configurable duration.

The execution trace on the hardware is captured as well and cross-compared with

216 Time-Triggered Communication

the simulation trace. By showing equivalency between the simulation trace and the

execution trace, the formal models are validated.

8.6 Example Configurations and Implementations
TTEthernet has been designed as cross-industry communication infrastructure sup-

porting the implementation of low-cost field-bus-like networks up to ultra-highly

dependable systems. In this section we discuss two particular configurations of

TTEthernet representing the extremes of the possible configuration space: A master-

based configuration and a dual-fault tolerant configuration. Furthermore, we present

a system-of-systems configuration.

Current TTEthernet implementations are available in FPGA and in software. We

will summarize their key characteristics in this chapter. An ASIC implementation of

TTEthernet is being finalized.

8.6.1 Configurations

TTEthernet network configurations may differ with respect to the number of end

systems and the number of switches, as well as their connecting topology. In par-

ticular for the synchronization algorithms, configurations are determined by the as-

signment of synchronization roles to TTEthernet devices. As a reminder, we have

introduced three roles in the synchronization algorithms of TTEthernet: The Syn-

chronization Master (SM), the Compression Master (CM) and the Synchronization

Client (SC). We will discuss different configurations with regard to these aspects.

More general characteristics of time-triggered networks include the quality of oscil-

lators used in the TTEthernet devices, the wire speed and associated physical layer

(Section 8.2.1.3), the communication interface (Section 8.4) and the activated fault-

containment measures (Section 8.2.5).

8.6.1.1 Master-Based Configuration

The most basic TTEthernet configuration consists of an SM and a CM where both

synchronization roles may be integrated into a single device. From this configura-

tion, classic single-master multiple-slave networks, as depicted in Figure 8.16, can

be built. This example network consists of one SM, one switch configured as CM

and six SCs (two switches and four end systems). End systems and switches are

connected in a tree topology and there is no redundant channel present.

SM1 sources PCFs which are relayed by CM1. As there is only one SM, a com-

pressed PCF generated by CM1 will be the same as before compression. Hence, a

simplified device (integrating SM and CM) that sources PCFs with a fixed period of

the integration cycle is sufficient as steady synchronization source for the SCs in the

network.

Time-Triggered Ethernet 217

SM1

SC3 SC4 SC5 SC6

CM1 SC1 SC2

Integrated TTEthernet Device
(optional)

FIGURE 8.16
Master-Based Configuration with Three Switches Connected in Multi-Hop Topology

This single-master configuration is attractive for low-cost applications with a re-

quirement of Quality-of-Service such as real-time performance. This configuration

can be enhanced by safety mechanisms like the activation of the central guardian

function in the switches or by the high-integrity design of key devices (Section 8.2.5).

Hence, given that the appropriate fault-isolation measures are in place, even this ba-

sic configuration is appropriate for fail-safe applications (applications that can enter

a safe state upon failure in which no protocol operation is required).

Availability, on the other hand, is limited: The failure of an arbitrary number of

SCs will not affect the services as provided by TTEthernet. However, as in all single-

master based systems, the loss of the SM or CM means a loss of the synchronization

source and so of the TTEthernet protocol services. Availability requires the imple-

mentation of a sufficient degree of redundancy. We discuss a highly-dependable and

highly-available configuration next.

8.6.1.2 Dual-Fault Tolerant Configuration

Highly-dependable systems such as civil airplanes or manned spacecrafts are fail-

operational systems. These systems have to remain operational even in the presence

of failures. Figure 8.17 shows a redundant TTEthernet network that tolerates two

faulty devices without degradation of the TTEthernet services. The network consists

of three redundant channels and five end systems. Each channel is formed by a single

switch configured as CM and all five end systems operate as SMs. Furthermore, the

SMs and CMs have to be high-integrity devices supporting an inconsistent-omission

failure mode (Section 8.2.5.2). In this configuration, the failure of any two devices is

masked by the TTEthernet services without quality degradation.

8.6.1.3 System-of-Systems Configuration

TTEthernet also provides a priority-based mechanism to realize system-of-system

architectures.

Figure 8.18 shows a network architecture consisting of two TTEthernet subnet-

works, a high-priority subnetwork and a low-priority subnetwork. The priority of

the respective network is stored in the configuration data of each TTEthernet device

218 Time-Triggered Communication

CM1 CM2

SM1 SM2 SM3 SM4 SM5

CM3

FIGURE 8.17
Dual-Fault Tolerant Configuration with Three Redundant Channels and Five Syn-

chronization Masters

SM 1 SM 2 SM 3

CM 1

SM 4

CM 2

SM 7

SM 6

SM 5

Low Priority

High Priority

FIGURE 8.18
TTEthernet Systems-of-Systems Configuration Consisting of Two Subnetworks (c©
2009 IEEE [359])

as well as in the Sync Priority field in the PCFs. A TTEthernet end system can be

configured to automatically synchronize to the highest priority PCF it receives. Alter-

natively, the change of a TTEthernet current priority to a higher priority can demand

host interaction.

This priority mechanism supports the full operation of parts of the network, for

example, to realize power-down modes. In the example in Figure 8.18, either one of

the subnetworks can be shut down. Once it is powered on again, both sub-networks

synchronize either automatically or upon host acknowledgment.

Time-Triggered Ethernet 219

8.6.2 Implementations

TTEthernet specifies a set of services that can be implemented on top of standard

Ethernet. End systems realize these services either in the form of a software stack

on top of commercial-off-the-shelf controllers or in the form of dedicated FPGA

solutions. Currently, TTEthernet switches are implemented in FPGA. Furthermore,

ASICs for TTEthernet end systems and TTEthernet switches are being developed at

the time of this writing.

The FPGA-based solutions of TTEthernet mainly differ with respect to the com-

munication speed they support. The 100 Mbit/s FPGA-based version of the TTEth-
ernet switch is specified as follows:

• Eight 100 Mbit/s and one 1 Gbit/s uplink port

• Guaranteed real-time delivery and microsecond synchronization

• Legacy Ethernet devices can synchronize to network time base without know-

ing about TTEthernet

• Support for legacy and best-effort traffic

• Standard TCP/IP protocols and applications can be used

• Flexibility for customer-specific extensions (ALTERA Cyclone III FPGA)

• Digital I/O for triggering measurements

• Dimensions: 170x121x55 mm; Weight: 800 g; Operating temperature: 0C to

+70C; storage: -40C to +85C

• Robust housing

The 1 Gbit/s version of TTEthernet switch has the following characteristics:

• Four 1 Gbit/s copper/fiber ports

• Message schedules and routing information stored in internal ROM (loaded by

TTE-Load download tool)

• Hardware-based on Altera COTS board and PHY daughter board

• 8 Gbit/s full-duplex bandwidth

• Multi-hop capable

• Single synchronization domain

A 12-ports TTEthernet switch is under development as well. This version pro-

vides 24 Gbit/s full-duplex cross-sectional bandwidth. The TTEthernet switch vari-

ants are depicted in Figure 8.19.

220 Time-Triggered Communication

FIGURE 8.19
TTEthernet Switches

TTEPCI Card TTEPCIe Card TTEPMC Card TTEXMC Card

FIGURE 8.20
TTEthernet FPGA-Based End Systems in Different Form Factors

TTEthernet end systems have been realized in FPGA and as a software stack. The

FPGA solutions come in different form factors and are depicted in Figure 8.20.

The software stack realizing the TTEthernet services is depicted in Figure 8.21.

This stack is designed for a 100 Mbit/s software-based TTEthernet end system run-

ning a single TTEthernet channel. COTS Ethernet Controllers can be used. In an

example setup on an Intel ATOM running at 1.6 GHz with 1 GB of RAM and 0.5

MB cache, the stack was implemented on Standard Linux.

Using a cluster cycle of three milliseconds and communicating ten time-triggered

messages (1500 bytes each), a total network load of 40 Mbit/s has been generated. In

this configuration, the software stack used about three percent of the ATOM CPU.

Host app. ET traffic Host app. TT traffic

TTEthernet services

Fast Ethernet Controller driver HW timer driver

HW

System without OS support

TTEthernet services

Fast Ethernet Controller driver HW timer driver

TT Ethernet OS driver

Host app. ET traffic Host app. TT traffic

Operating System (OS)

HW

System with OS support

FIGURE 8.21
TTEthernet Software Stack with and without Operating Systems Support

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-9&iName=master.img-3679.jpg&w=269&h=75

9
TTCAN

R. Kammerer
Vienna University of Technology

CONTENTS

9.1 Protocol Overview . 221

9.2 Protocol Services . 222

9.2.1 Communication Services . 222

9.2.2 Clock Synchronization . 224

9.2.3 Sending and Receiving Messages in TTCAN 229

9.2.4 Restart, Re-Integration, Integration . 230

9.2.5 Diagnostic Services . 232

9.2.6 Error Detection and Fault Isolation . 234

9.2.7 Configuration Services . 238

9.3 Protocol Parameterization . 239

9.4 Communication Interface . 241

9.5 Validation and Verification Efforts . 242

9.6 Example Configurations and Implementations . 243

9.1 Protocol Overview
Controller Area Network (CAN) [149] provides an inexpensive and robust network

technology which is widely deployed in many application domains such as automo-

tive, avionic and industrial control systems. For example, present day cars contain

multiple CAN buses deployed for different domains such as comfort or powertrain

subsystems [93, 119]. Properties of CAN that have lead to its success include its sim-

plicity, high flexibility, efficiency and low cost. Adversely, CAN exhibits limitations

with respect to reliability, diagnosis and scalability.

In classic CAN networks, the communication has two main characteristics: The

communication is event-triggered, and the shared medium is a bus. Both of these

properties lead to limitations of the conventional CAN protocol in the context of

dependable embedded systems. An example of a hazard to reliability is the miss-

ing fault isolation for babbling idiot failures [327]. A faulty CAN node can disrupt

the communication abilities of all other nodes by continuously transmitting high-

221

222 Time-Triggered Communication

priority messages. Besides these limitations which have their origin in the bus-based

topology, conventional CAN does not provide time-triggered concepts like dedicated

communication slots for real-time communication, because conventional CAN does

not make use of a priori knowledge about communication activities.

Due to the event-triggered nature of CAN, peak loads can occur if nodes in the

network try to send messages at the same point in time. The arbitration mechanism of

CAN performs sequential transmission of all messages according to their identifier
priority. This arbitration makes a scheduling analysis of the whole system difficult

because worst-case peak loads have to be considered for the analysis. Additionally,

the temporal behavior of sending nodes is often unknown or not defined.

Time-Triggered CAN (TTCAN) [148] uses the concept of cyclic communication,

divided into slots to implement time-triggered behavior. The standard requires that

all activity assigned to one slot (including interrupt handling) is finished until the

next slot starts, whereas one message can be assigned to several slots.

It is important to note that TTCAN adds an additional layer before the exist-

ing standard CAN layers. The physical layer and data link layer of CAN (specified

in [150]) are kept unchanged. Mapped to the ISO-OSI model, TTCAN resides on

layer 5, the session layer. Within this layer, TTCAN is divided into two different

modes of operation. While level 1 and level 2 both support time-triggered behavior,

the capabilities of these levels differ in key properties. The most outstanding differ-

ence is the notion of a global time, that only exists in level 2, and allows a much more

fine grained synchronization of the nodes in a TTCAN network.

The following sections discuss the key properties of the TTCAN protocol, where

both levels of TTCAN are taken into consideration.

9.2 Protocol Services
9.2.1 Communication Services

According to the standard [148], TTCAN specifies a serial communication protocol

that supports distributed real-time control and multiplexing for use within road vehi-

cles. The underlying CAN-protocol is unchanged, therefore TTCAN uses the same

arbitration and medium access control mechanisms (MAC) as conventional CAN.

TTCAN level 1 provides cyclic message transfer, while level 2 adds the notion

of a global time. The key element for the periodic and cyclic communication is the

reference message, which is sent by a time master. TTCAN supports up to eight

alternative time masters, where only one is allowed to be the current time master.

The reference message is sent by the current time master at the beginning of each

basic cycle. Figure 9.1 shows the execution of basic cycles over time.

Every basic cycle is divided into windows of communication activity. The sum of

all basic cycles forms a system matrix. Basic cycles are the rows of the system matrix.

Additionally, note that the number of basic cycles in the system matrix shall be a

TTCAN 223

FIGURE 9.1
Basic Cycle in TTCAN [148]

FIGURE 9.2
Communication Matrix in TTCAN [148]

power of two. The variable Cycle Count refers to the current basic cycle in the system

matrix. Cycle Count starts from zero and has a maximum value of Cycle Count Max.

Figure 9.2 gives an overview about the communication matrix used in TTCAN.

A message (e.g., message C in basic cycle 0) can be assigned to one or more time

windows. The columns in the system matrix form so-called communication columns
which are important for the periodicity of a message. The two important factors for

the periodicity of a message are the number of basic cycles and the number of com-

munication columns.

As shown in Figure 9.2, TTCAN supports different types of communication win-

dows:

• Reference window

• Exclusive window

• Arbitrating window

• Free time window

Reference windows are used to flag the start of a basic cycle. The format of ref-

erence messages and their importance for TTCAN are discussed in Section 9.2.2.

224 Time-Triggered Communication

FIGURE 9.3
Event-Synchronized Basic Cycles in TTCAN

Exclusive windows are assigned to specific, periodic messages where no other com-

munication is allowed in the same window. There is no competition on the CAN bus

within an exclusive window. Arbitrating windows are slots where all CAN nodes are

allowed to communicate. Conflicts are resolved by the conventional CAN identifier

arbitration mechanism (e.g., the message with the highest priority will be transfered).

It is important to note that CAN nodes may not start a communication if the bus is

not idle. To guarantee that nodes finish their transmission within their assigned win-

dow, there is a time window (Tx Enable) at the start of the arbitrating window where

nodes are allowed to start their communication. If the attempt to send fails, nodes are

not allowed to automatically retransmit their message and have to wait for another

arbitrating window. Free time windows are reserved slots which will be eventually

used in future network extensions.

TTCAN supports two different methods of basic cycle synchronization, namely

time-triggered and event-synchronized. In time-triggered synchronization, the time

master sends the reference messages in equidistant time slots. Additionally, TTCAN

supports an event-synchronized transmission of reference messages. In this case, the

start of a basic cycle is synchronized to a specific event in the current time master.

The gap is only allowed between the end of one basic cycle and the start of the next

basic cycle (i.e., its reference message). If there is a gap between basic cycle n and

basic cycle n + 1, the time master has to announce the gap in the reference message

of basic cycle n. For this purpose, the reference message, which will be described

in detail in Section 9.2.2, contains a single bit flag Next is Gap. Event-synchronized

transmission is shown in Figure 9.3.

9.2.2 Clock Synchronization

The key element for synchronization in TTCAN is the reference message that is sent

at the beginning of every basic cycle. The following section discusses the structure

and the relevance of the reference message and the achieved synchronization quality

for both levels of TTCAN.

The TTCAN standard [148] states that a reference message shall be a data frame

characterized by a specific CAN identifier which shall be received and accepted

by every FSE1 (frame synchronization entity) except the time master, which is the

1Every CAN controller in a time-triggered CAN network has its own FSE

TTCAN 225

sender of the reference message. For reasons of simplification, FSEs are simply

called nodes in the following. Level 1 and level 2 differ in the length of their cor-

responding reference messages. For level 1, the data length shall be at least one byte;

for level 2 it shall have a length of at least four bytes. All bits of the identifier field,

except three, are used to characterize the reference message itself. The three least

significant bits are used to define the priority of up to eight (23) time masters. The

reference messages of both levels have in common, that they shall include the num-

ber of the current basic cycle (Cycle Count) and one bit that signals that there will

be a gap between the current and the next reference message (Next is Gap), which

is used for event-synchronized communication. In general, the reference message is

transmitted periodically, with the exception of event-synchronized communication,

or if the transmission of a reference message is disturbed. In the latter case, the time

master is allowed to retransmit the reference message. In both levels, the reference

message may be extended to eight CAN data bytes. Reserved bits shall be transmit-

ted as logical zero and shall be ignored by the receivers. Additionally, both levels

have in common that the most significant bit (bit 7) is transmitted first.

The format of reference messages for level 1 and level 2 are shown in Figure 9.4

and Figure 9.5, respectively. In both figures grayed boxes represent optional bits in

the reference message, which shall be transmitted as logical zero.

01234567

Next

is Gap
Reserved

Cycle

Count (5)

Cycle

Count (4)

Cycle

Count (3)

Cycle

Count (2)

Cycle

Count (1)

Cycle

Count (0)

FIGURE 9.4
Reference Message in TTCAN Level 1

All timing in TTCAN, for level 1 and level 2, is controlled by the local clock,

where the resolution for time is the network time unit (NTU). For the simpler level

1, the NTU is the nominal CAN bit time. The local time is implemented as a simple

incrementing counter that contains 16 bits. In level 1, this counter is increased by one

every NTU.

For level 2 communication, the reference message contains two additional fields,

namely Master Ref Mark (MRM), which is a timestamp measured in global time,

and Disc Bit, which flags that there is a discontinuity in the global time. If the trans-

mission of a reference message is disturbed, the time master shall retransmit the mes-

sage and the Master Ref Mark is updated. The structure of the reference message for

TTCAN level 2 is shown in Figure 9.5.

The first byte of a reference message in level 2 contains the same bits as the ref-

erence message for a level 1 message. The second byte contains the Disc Bit, which

flags a discontinuity in the global time, and the NTU Res, which is the resolution of

the network time unit (NTU). TTCAN supports four additional bits for a more fine

grained specification of the NTU Res. If a node does not support these additional

bits, they shall be transmitted as logical zero. The third and fourth bytes contain the

low and high byte of the Master Ref Mark.

226 Time-Triggered Communication

01234567

Byte 1:
Next

is Gap
Reserved

Cycle

Count (5)

Cycle

Count (4)

Cycle

Count (3)

Cycle

Count (2)

Cycle

Count (1)

Cycle

Count (0)

Byte 2:
NTU

Res (6)

NTU

Res (5)

NTU

Res (4)

NTU

Res (3)

NTU

Res (2)

NTU

Res (1)

NTU

Res (0)
Disc

Bit

Byte 3: MRM (7) MRM(6) MRM (5) MRM (4) MRM (3) MRM (2) MRM (1) MRM (0)

Byte 4: MRM (15) MRM(14) MRM (13) MRM (12) MRM (11) MRM (10) MRM (9) MRM (8)

FIGURE 9.5
Reference Message in TTCAN Level 2

In TTCAN, there are three different notions of time [126], namely local time,

cycle time and global time. Each of these times and their importance for TTCAN

will be discussed in the following.

Local Time

As in level 1, the time in level 2 is measured in network time units (NTUs). In contrast

to level 1, the NTU in level 2 is a fraction of the physical second. This is required

to correct the slight differences in the local clock oscillators of the nodes and to

synchronize them to the global time. For level 2, the counter for the local time shall

contain at least 19 bits, where the 16 most significant bits represent whole NTU ticks.

The rest of the counter bits are reserved for the fractional parts of the NTU. There-

fore, the counter counts in units of NTU
2n if NTU Res contains n bits. If the counter is

incremented 2n times, this is equivalent to 1 NTU. For example if 3 bits are reserved

for the fractional part of the NTU, the counter has to increment 23 times to increment

one NTU. Every node has a basic time unit (e.g., the frequency of its local clock os-

cillator). To set this basic time unit in relation to the NTU, there exists the time unit
ratio (TUR). This usually non-integer value specifies the ratio between the length of

a NTU and the length of a basic time unit. The current value of TUR (TUR Actual)

is responsible for the velocity of the NTU counter. The TTCAN standard does not

specify the implementation or the data representation of the TUR. The TUR has an

essential role for clock synchronization in level 2. Whenever there is a difference

between the local time and the global time transmitted by the time master, the TUR

gets adjusted. The generation of the Local Time is shown in Figure 9.6.

Cycle Time

The time within one basic cycle is measured in the Cycle Time parameter. At each

start of a data frame (SOF) or remote frame the node saves its current value of the lo-

cal time to Sync Mark. Whenever the node receives a reference message, it saves the

current value of Sync Mark to Ref Mark. Therefore, the value of Ref Mark contains

the timestamp of that point in time of the start of the last reference message. The

TTCAN 227

FIGURE 9.6
Local Time Generation in TTCAN [126]

FIGURE 9.7
Cycle Time Generation in TTCAN [126]

Cycle Time is the difference between the local time of the node and its Ref Mark.

Cycle Time has no fractional part; therefore, only the 16 most significant bits con-

tribute to the Cycle Time. The generation of the Cycle Time is shown in Figure 9.7.

Global Time

In TTCAN level 1, the common time base is the Cycle Time which is restarted at

each basic cycle. In this sense, level 1 has a global time with the horizon of one

basic cycle. Level 2 adds a more fine grained concept of global time which is used

to calibrate the local time base of each node in the TTCAN network. To compen-

sate a clock drift in the nodes in level 2, the TUR value is adjusted to the current

time master’s view of the global time at every reception of a reference message.

At a pulse of frame synchronization, a node stores its local view of the global time

as its Global Sync Mark, which has at least 19 bits. The current time master trans-

mits its Global Sync Mark (i.e., its view of the global time) as the bits reserved for

228 Time-Triggered Communication

FIGURE 9.8
Global Time Generation in TTCAN [126]

Global Ref Mark in its reference message. Whenever a node receives a reference

message, it calculates a local offset:

Local Offset = Master Ref Mark−Ref Mark

The generation of the global time in TTCAN is shown in Figure 9.8. The current

time master’s view of Local Offset remains constant. Every node starts with a Lo-

cal Offset of zero. Changes in the value of the Local Offset show that there is drift

between the local view of time and the global view which has to be corrected. This

clock rate correction is done by adjusting the NTU value according to the following

formula [126]:

df =
Ref Mark−Ref Markprevious

Master Ref Mark−Master Ref Markprevious

TUR = df ∗TURprevious

TTCAN considers the 16 most significant bits of local time and local offset of

the current time master as its global time. The local time and local offset of a node

are an approximation of the global time.

The time master in TTCAN is allowed to use external clock synchronization. The

TTCAN standard describes the following three means:

• Frequency adjustment: In this method, the external time period is used as the

base for the NTU. To adapt the NTU, the length of the external time pe-

riod is used as the TUR value. First, the time master writes the new value

to TUR Adjust. At the beginning of the next basic cycle, TUR Actual gets

overwritten by TUR Adjust.

• Phase adjustment: Phase adjustment can be done by continuous frequency ad-

justment or by inserting a discontinuity in the global time. In the latter case,

TTCAN 229

the time master has to set the Disc Bit to inform the nodes that a discontinuity

has to be expected. At the beginning of the next basic cycle, the time master

adds the difference between the desired global time and the actual current time

to its local offset to influence the global time.

• Adjustment of Cycle Time: If this synchronization scheme of external clock

synchronization is applied, the time master sets the Next is Gap flag in its ref-

erence message to inform the nodes that the next basic frame will be event

synchronized. After that, the time master waits as long as required by the ex-

ternal clock before it starts sending the next reference message.

9.2.3 Sending and Receiving Messages in TTCAN

As described before, the communication in TTCAN is organized with the help of the

system matrix. Within the system matrix, the rows form the basic cycles, where each

of these basic cycles starts with a reference message. When it comes to sending and

receiving of messages, two parameters are of utmost importance: Cycle Time and

Tx Trigger. A basic cycle is divided into columns that form the time slots when

a message shall be sent. Time within a basic cycle is measured in Cycle Time.

Tx Trigger specifies that instant in time when a message corresponding to a time

slot shall be sent. A Tx Trigger contains the following information:

• A reference to a message that shall be sent.

• Activation time mark, which is the column of the system matrix.

• Row of the system matrix measured in Cycle Count.

• Repeat factor: Position of the same column in which it will be sent next. The

value is a power of two.

A vital parameter for TTCAN and the sending of messages is the Tx Enable
parameter. A message has to be sent within a specific time window after the start of its

corresponding time slot. If the transmission would start too late, the massage would

overlap with the start of the next slot. To avoid this erroneous behavior, there exists

the Tx Enable parameter. It specifies a window from the start of the corresponding

time slot (Tx Trigger) within the transmission of a message is allowed and safe. This

window is specified as a number of nominal CAN bit times with a range from 1 to 16.

If a node cannot start the transmission of a message within the Tx Enable window,

the transmission may not be started at all. In this case, the node has to wait for the

next Tx Enable to send the message.

The concept of the Rx Trigger is related to the Tx Trigger. It contains the same

information as a Tx Trigger, but specifies the point in time when a received message

has to be completed and verified.

There are two additional triggers that are important in a TTCAN system:

Tx Ref Trigger and Watch Trigger. Tx Ref Trigger is a special Tx Trigger that

230 Time-Triggered Communication

refers to reference messages and is only used in potential time masters. Whenever this

trigger is reached, a potential time master tries to send a reference message. Within

a strictly time-triggered TTCAN system (no Next is Gap bits), one Tx Ref Trigger

is enough. If event-synchronized transmission of basic cycles is planned, a second

Tx Ref Trigger is used. The first trigger is used for the periodic transmission of ref-

erence messages, where the second restarts the first one whenever the event that was

flagged with the Next is Gap bit did not occur or was missed.

Watch Trigger is also used by nodes which are not potential time masters. These

nodes will be called slave nodes in the following. Watch Trigger is reached if there is

no reference message on the bus longer than a specified threshold. This could be the

case on a disturbed bus. Like the Tx Ref Trigger, there shall be two Watch Triggers

to support event-synchronized communication. When a Watch Trigger is reached,

the application shall be informed about the erroneous behavior in the system. Dur-

ing startup, the Watch Trigger is disabled until the first successful transmission or

reception of a reference message.

9.2.4 Restart, Re-Integration, Integration

TTCAN differentiates between the startup behavior of a time master and its fault

tolerance capabilities. This section describes the startup, whereas Section 9.2.6 gives

an overview about fault tolerance in TTCAN.

At system startup (or a reset), all potential time masters try to become the current

time master and all of them try to send a reference message. There are two parameters

that influence the decision which potential time master becomes the current time

master. The potential time master with the highest priority shall use the CAN ID

with the highest priority (in relation to the other potential time master). As specified

by the TTCAN protocol, CAN IDs of time masters only differ in the three least

significant bits. The rest of the bits reserved for the CAN ID are equal for all potential

time masters. Additionally, there is a parameter which specifies how long a potential

time master is idle before it tries to send a reference message. The potential time

master with the highest priority has the shortest delay before it tries to send its initial

reference message.

Both of these parameters, the priority of a potential time master and the time a

potential time master waits for its initial transmission, influence the decision which

potential time master will become the current time master and how long it takes to

establish a new time master.

Figure 9.9 shows a state machine of the startup protocol and the establishment

of a new time master. State 1 is the initial state, which is reached for example after

a hardware reset. Transition 0 is always taken. State 2 is reached by slaves as well

as potential time masters. If the node is a slave and it receives a reference message

on the bus, transition 1 is taken and the node is in state 4, the slave state. If the node

is in state 2 and it is a potential time master, two transitions may be taken. First

of all, a potential time master will try to send its own reference message. The best

case for the potential time master is that it reads its own reference message on the

bus. In this case, the potential time master takes transition 3 and becomes the new

TTCAN 231

FIGURE 9.9
Master/Slave Relation in TTCAN [148]

time master (state 5). On the other hand, a potential time master in state 2 can read

a reference message that contains an ID that is not equal to its own. In this case,

the potential time master takes transition 2 and becomes a backup time master (state

3). From this state, a potential time master can become the current time master with

transition 4 whenever it reads its own ID in the reference message. This can happen

if the prior time master fails and a backup time master can now successfully transmit

its own reference message. However, a current time master can also be degraded to a

backup time master. This happens if it is the current time master (state 5) and reads

a reference message with a higher priority on the bus. In case of an error, the time

master as well as backup time masters can be reset to state 2.

After the initialization, but before the synchronization has finished, each node

refers to its local time as the global time of the system. The parameter Local Offset

is initially set to zero. The actual time master tries to establish its view of the

global time as the global time in the TTCAN system. Therefore, it sends its own

Global Sync Mark as the Master Ref Mark in its reference message. An important

fact is that a potential time master that becomes the actual time master (e.g., when

the old time master fails) keeps its value for the Local Offset. This is used to avoid

discontinuities of the global time.

The synchronization of a node can also be described with the help of a state

machine (refer to Figure 9.10). A node is in state 1 after a hardware reset. From

this state, transition 0 always occurs. In state 2, the node is not yet synchronized

(Sync Off). After leaving an internal configuration mode and setting Cycle Time to

zero, the node is in state 3. From state 3, the node can either take a transition 2 to

state 4, where it is In Gap, or transition 3 to be in schedule (In Schedule). For both

transitions TS2 and TS3, the node has to receive two successive reference messages

where the last of the two did not contain a Disc Bit. For TS2, the last reference

message has to contain a set Next is Gap bit, whereas for TS3 Next is Gap has to

be unset. A node can leave the In Schedule state with transition TS4 whenever a

reference message contains a set Next is Gap bit. When a node is in the In Gap state

232 Time-Triggered Communication

FIGURE 9.10
Synchronization in TTCAN [148]

(state 4), it can reach a synchronized state (state 5) whenever it receives a reference

message where the Next Is Gap bit is unset.

9.2.5 Diagnostic Services

TTCAN provides simple means for diagnosing the communication on the CAN bus.

A Watch Trigger is used to monitor the reception of reference messages. TTCAN

uses two different Watch Triggers, one for the reception of periodic messages and

one for event-synchronized messages. If there is no reference message for a specified

time, the Watch Trigger is activated and an error handling procedure is started. Ad-

ditionally, the application shall be notified. During initialization, the Watch Trigger

is disabled and gets activated upon a successful reception of a reference message.

As stated before, TTCAN provides an additional layer above the conventional

CAN protocol. All means of CAN bus error handling support the error handling of

TTCAN.

Error Counters in CAN

CAN provides a receive error counter as well as a transmit error counter which can

be used also in TTCAN. The values of these counters are vital for the CAN node

because they define the error state of the node. CAN defines the following three error

states for a node:

• Error active: The node is allowed to send active error frames

• Error passive: The node sends passive error frames

• Bus off: The node does not take part in bus communication

According to the state of the error counter of the CAN node, it can send active or

TTCAN 233

FIGURE 9.11
Error Frame in CAN [356]

passive error frames. When a node is highly disturbed, and therefore has a high error

count, it is only allowed to send passive error frames. Within these frames, the node

is only allowed to send recessive error flags. Therefore, a node in passive error state

cannot disrupt the communication of the bus, because its recessive error flags cannot

disturb the communication of working nodes.

When the corresponding error counter has a value between 0 and 96, the node

is in error active state. If the error counter exceeds 96, it reaches a warning limit,

where the node sets an error flag and generates an interrupt. Between 97 and 127 the

bus is heavily disturbed and the node is still in error active state. Between 128 and

255 the node is in error passive state and above 255 the node reaches bus off state.

Error Frames in CAN

Whenever a node detects an error on the bus, it sends an error frame on the bus.

These error frames contain a six bit error flag. Additional 0 to 6 bits are reserved for

the superposition of further error flags. After the error flags, an error frame contains

eight bits used for the error delimiter. The delimiter contains eight recessive bits

to allow a restart of the communication after the superposition of error flags. After

the delimiter, three bits are reserved for an inter frame space. The fields of an error

frame are shown in Figure 9.11. Superposition of error flags occurs in the following

situation: A receiver detects an error on the bus and starts to send an error frame.

Within this error frame, the other receivers will detect a violation in the bit stuffing of

CAN. Therefore, the other receivers will send error frames themselves and their first

six bits will lead to a superposition of error flags in the first error frame. Figure 9.12

shows the superposition of error flags. In this case, receiver 1 detected the error on

the bus first and started to send its error frame. After the first six bits, receiver 2 also

detected an error and started to send its error frame with its error flags. This shows

one important mechanism of CAN, the globalization of local errors. Whenever a

node detects an error on the bus, it will try to establish a global error state on the bus.

Bit stuffing in CAN

Bit stuffing is used in CAN whenever five consecutive bits of the same polarity occur

in the CAN bit stream. In this case, one bit of the opposite polarity will be inserted.

In CAN there are fields with a fixed bit pattern which are not part of the bit stuffing.

234 Time-Triggered Communication

FIGURE 9.12
Error Handling in CAN [356]

In CAN the fields for start of frame (SOF), the arbitration field, the control field, the

data field and the CRC field are part of the bit stuffing area. The bit stuffing property

of CAN is used to flag errors on the bus, because whenever six consecutive bits of

the same polarity are read on the bus, all nodes will interpret this as an error.

9.2.6 Error Detection and Fault Isolation

Fault isolation and tolerance is of utmost importance whenever a network is used in

a safety relevant context. For traditional CAN, it is possible to retransmit a message

if an error occurs during the transmission of the message. This simple mechanism

cannot be used for TTCAN because it has to follow the schedule for its messages.

Therefore, in TTCAN the automatic retransmission of messages is turned off.

The TTCAN standard itself provides error detection mechanisms and a classifi-

cation of error severity. It also states that active fault confinement shall be left to a

higher layer or to the application. The node shall provide error detection and fail-

silence [148].

TTCAN defines the following errors and their severity. Note that the standard

does not specify where these bits should be saved (i.e., this could be in registers of a

node).

• Scheduling Error 1 (S1): An error of this kind is flagged whenever the differ-

ence between the highest message status count (MSC) and the lowest MSC of

all messages is larger than 2. Additionally, a scheduling error is flagged if the

MSC of an exclusive receive message object is 7. The MSC is used for peri-

odic messages in exclusive time windows. The MSC has a range from 0 to 7.

The MSC is updated at the Rx Trigger event that corresponds to that specific

TTCAN 235

message. If the message is successfully received, the MSC is decremented by

one. Otherwise, it is incremented by one.

• Tx Underflow (S1): This bit is set whenever the count for transmitted mes-

sages is lower than its expected value.

• Scheduling Error 2 (S2): Whenever a MSC of a transmit message object

reaches 7, this error bit will be set.

• Tx Overflow (S2): This flag will be set whenever the expected maximum value

(Expected Tx Trigger) is reached and there are still Tx Trigger events.

• Application Watchdog (S3): The application watchdog gets reset by the appli-

cation itself via a Host Alive Sign. If the application fails to set this sign, an

error will be flagged.

• CAN Bus Off (S3): This error is flagged whenever the node went off the bus

due to CAN-specific errors.

• Config Error (S3): Slots in TTCAN have a specific time window where the

transmission of the data has to start. If the actual point in time exceeds this

specified limit, a Config Error will be flagged.

• Watch Trigger Reached (S3): This error flag will be set whenever a reference

message is missing.

The TTCAN standard specifies the following severity classes:

• S0: No error.

• S1: Warning - the application will be informed, the reaction is application spe-

cific.

• S2: Error - the application will be informed, and all transmissions in exclu-

sive and arbitrating windows will be disabled. Potential time masters are still

allowed to transmit reference messages with the maximal allowed offset.

• S3: Severe - the application will be informed, and all bus activities will be

stopped. In this case, an update of the configuration is required.

In addition to the fault handling specified by the TTCAN standard itself, there are

several approaches for how to add fault tolerance to TTCAN. One simple approach

is described in [44], where each frame is sent twice.

A different approach is to add a mailbox system to TTCAN [213]. This is done by

reserving an exclusive window, the mailbox, at the end of each basic cycle to retrans-

mit messages that could not be sent in their dedicated slot, as shown in Figure 9.13.

The basic idea is to add a software supervisor layer above the TTCAN controller

that manages additional send and receive queues. Whenever a message cannot be

transmitted in its dedicated slot, this message is scheduled to be transmitted in the

mailbox slot at the end of the basic cycle. This solution assumes that bit error rates

236 Time-Triggered Communication

FIGURE 9.13
System Matrix with Mailbox

occur in the magnitude of 10−7. Therefore, a basic cycle would have to be 2 ∗ 107

messages long to corrupt two messages within one basic cycle. This would require a

basic cycle of about 2.2 hours. The authors conclude that one mailbox is enough to

provide sufficient fault tolerance. Whenever an error occurs, the supervisor sends an

error frame on the bus. After that, it enqueues the failed message to the send queue

and transmits the message in the mailbox slot. At the start of the system matrix (and

at every iteration), the send queue gets flushed to prevent queue overflows.

TTCAN provides fault-tolerance by combining two (or more) TTCAN

buses [231]. A system of two TTCAN buses is considered a coupled TTCAN pair
if there is at least one “gateway” node connected to both TTCAN buses. A system of

TTCAN buses is considered as coupled if there exists a path from the start bus via

coupled nodes to the end bus. More formally [231]: busa and busb are TTCAN cou-

pled if there exists a sequence (bus1,. . . ,busn) of TTCAN buses with bus1 = busa and

busn = busb where (busi,busi+1) are coupled TTCAN pairs ∀i = 1, . . . ,n− 1. Now

a fault tolerant TTCAN network is a system of TTCAN buses where every two of

them are TTCAN coupled. Figure 9.14 shows a coupled TTCAN system where busa
and busc are coupled.

The main problem of providing a coupled, and therefore fault-tolerant, TTCAN

system is the synchronization between the different buses. Reference [231] states

three different problems of synchronization, which are related to the different times

used in TTCAN. With the synchronization mechanisms described in the paper, it

is possible to synchronize a system of two or more TTCAN buses and therefore

provide fault-tolerance in the system: Phase synchronization of cycle time, phase

synchronization of global time and rate synchronization.

Phase Synchronization of Cycle Time

To recapitulate, the cycle time is used to measure the time between two successive

TTCAN 237

FIGURE 9.14
Coupled TTCAN Buses [231]

reference messages. At every start of a basic cycle, a reference mark is saved and

cycle time = local time − local reference mark. All points in time in TTCAN are

specified according to the cycle time. The simplest solution to phase synchronize

two (or more) buses is to use one bus as a “master bus” and synchronize the second

bus to the first one. The situation can further be simplified if the “gateway” node —

the node connected to both buses — is a time master for the second bus. To initiate

the desired phase relation, the time master has to set its Next Is Gap bit and stall the

next reference message until the desired offset. This is the simplest method to solve

this issue. If the gateway node is not a time master on the second bus, a simple meta

protocol can be used. In this case, the gateway node transmits the desired phase shift

in a TTCAN message to its time master and the time master will take care of the rest.

This method of “master buses” can be extended to n TTCAN buses, where the first

bus is the master bus and every bus i for i = 2, . . . ,n synchronizes to bus i−1.

Phase Synchronization of Global Time

To synchronize the phase of the global time of two time masters on distinct buses,

the same methods as for the phase synchronization of the cycle time can be used.

The gateway node calculates the desired phase for the slave global time and informs

the master node. As well as for the synchronization of the cycle time, this can be

simplified if the gateway node is the time master of the slave bus. The new global

time can then be announced to the slave bus. This is done by setting the Disc Bit to

flag a discontinuity in the global time.

Rate Synchronization

To synchronize the rates of two TTCAN buses, first the rates of the two (or more)

buses have to be measured. One option is to measure the same physical time interval

on both buses. From this measurement, the ratio for the slave bus can be calculated.

This value will then be sent to the local time master. This time master will then

update its TUR value and within the next basic cycle the TTCAN bus will be rate

synchronized.

For details about the different synchronization methods, please refer to [231].

In addition to the presented TTCAN specific methods of fault isolation, classi-

238 Time-Triggered Communication

TABLE 9.1
CRC—Hamming distance shortfall [356].

Original 1000 0001 1011 1100 0100 0011 01
Stuffed 1000 0010 1101 1110 0010 0001 101
Disturbed 1000 0110 1101 1110 0010 0000 101
De-Stuffed 1000 0110 1101 1110 0010 0000 01
CRC 0000 0111 0110 0010 0110 0011 00

cal CAN error detection mechanisms of CRC-checksums can be used in TTCAN

networks.

CRC in CAN

CAN uses a 15 bit cyclic redundancy check for its messages. The generator polyno-

mial used for CAN is x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1. The polynomial has a

guaranteed minimal hamming distance of 6, which means that up to five random bit

failures can be detected. Due to bit stuffing, there can be the situation that only two

disturbed bits lead to to a situation that cannot be detected by the CRC check. For an

example, refer to Table 9.1.

9.2.7 Configuration Services

The TTCAN standard specifies three main configuration interfaces, where each of

these interfaces is divided into sub-interfaces that allow the configuration of protocol

settings. The TTCAN standard demands that all interfaces shall be lockable against

random changes, whereas reading settings is always possible. The following para-

graphs provide an overview of the configuration interfaces and their most important

variables. For a complete list, refer to the corresponding section of the TTCAN stan-

dard [148]. Note that the standard does not specify the location of these interfaces

or how to access these interfaces. One practical solution is to store the values into

registers and provide an API to access these interfaces.

General Configuration Interfaces

As the name states, this interface is used to set general protocol parameters for a

TTCAN node. Settings include the configuration of the TUR, the operation mode

of the node (configuration, CAN communication, time-triggered communication and

event-synchronized time-triggered communication), its role as a slave or a potential

master, if external clock synchronization shall be used, which interrupt sources shall

be masked and an 8-bit value for the application watchdog limit.

The main role of the interface is the configuration of the system matrix. With this

interface, the system engineer can specify message objects and the corresponding

triggers. The triggers contain a reference to a valid message, a time mark when they

should be activated, the position in the transmission column with its first activation

TTCAN 239

and their repeat factor. The standard states that the configuration can be read and

written during the initialization phase, and shall be locked during the time-triggered

communication activity.

Application Interfaces

The application interfaces provide information about the current state of the node to

the application.

Accessible information includes the priority (3 bit) of the current time master,

the master state, the current value of the global time in NTUs, the Cycle Time, the

number of the current basic cycle and the actual value of the TUR (TUR Actual),

which is read-only. Additionally, the interface is used to configure operational and

error detection interrupt sources. Operational interrupt sources are among others the

start of a basic cycle, the start of the system matrix, an interrupt that occurs if the

global time wraps or a change in the local master state. Error detection interrupt

sources are for example over- and underflows of the Tx-Counter, the application

watchdog or a CAN Bus Off interrupt.

Optional Interfaces

Optional interfaces are not required to comply to the TTCAN standard. Examples

are interfaces that signal that the node is out of synchronization, or that the Disc Bit

should not be used and to prevent a discontinuity in the global time. Additionally,

there could be an interface to specify the maximum synchronization deviation.

9.3 Protocol Parameterization
TTCAN is a highly flexible protocol, which allows the system engineer to configure

a TTCAN system according to the requirements.

TTCAN Level

As described in previous sections, TTCAN offers two levels which differ mainly

in the synchronization quality. Where in level 1, time is measured solely with the

Cycle Time and no drift compensation is provided, TTCAN level 2 provides the no-

tion of a global time. The first and most basic decision is the level of TTCAN which

should be used. All time masters in the network have to use the same level. Time

slaves in a level 2 network are free to use level 1, whereas level 2 communication

is not allowed in a level 1 network. TTCAN controllers provide a flag to specify the

level of TTCAN (e.g., Operation Mode Register).

System Matrix/Tx Trigger

When it comes to TTCAN parameterization, the system matrix and the Tx Trigger

240 Time-Triggered Communication

FIGURE 9.15
Tx Trigger for Exclusive Message X [148]

parameter are of utmost importance. The system matrix defines the communication

schedule of the TTCAN system. Every row in the matrix starts with a reference

message and the rows in the matrix specify a time slot in which a message will be

sent. Messages themselves are specified in a message object. As specified by the

TTCAN standard, a message object shall provide storage for one LLC frame (logic

link control) together with control and status information. These message objects are

linked to the system matrix with the help of Tx Triggers (see Figure 9.15).

Application Watchdog

Every application in TTCAN can specify an application watchdog. If the application

does not set the Host Alive Sign parameter, an interrupt will be raised. The watchdog

can be parameterized with the Appl Watchdog Limit parameter which is an eight bit

value specifying the period in NTUs.

Potential Time Master

The system engineer can parameterize the role of a node. It can be in the role of a

time slave or it is a potential time master. In the second case, up to eight potential

time masters can be specified. Potential time masters are configured with two param-

eters. First the priority of the potential time master, and second its Initial Ref Offset.

This parameter specifies the time after which a potential time master tries to send a

reference message.

Interrupts

For error indication, TTCAN specifies an interrupt status vector (Inter-

rupt Status Vector), which reserves one bit for every error detection mechanism. The

engineer can enable every interrupt source with Interrupt Enable. These interrupts

TTCAN 241

include operational as well as error detection interrupt sources. To name a few,

these operational interrupt sources include the start of a basic cycle, the start of the

system matrix, the discontinuity flag or a wrap of the global time. Error detection

interrupt sources include Tx Overflow, Tx Underflow or CAN Bus Off. This list is

not intended to be exhaustive. For further details, refer to the standard [148].

Bit-Rate

The engineer has the ability to configure the bit-rate of the time-triggered CAN sys-

tem. Maximum bit-rates for TTCAN are the same as for conventional CAN (up to

1 Mbit/s).

9.4 Communication Interface
The TTCAN standard itself does not stipulate a specific communication interface. It

is up to the provider of the IP module to implement an interface for its users. Like for

classic CAN, the interface can range from a simple hardware register based interface

to a full programming API. As there is a limited range of TTCAN IP core providers

(see Section 9.6), the following description of the TTCAN communication interface

is based on the quasi reference implementation of Bosch [125].

Bosch’s implementation of the TTCAN IP core has two application modes. As

TTCAN requires classic CAN (i.e., for MAC control), the default mode is classical

CAN operation. It is up to the user to switch into TTCAN mode. Bosch provides

a simple register based interface for configuration, status retrieval, as well as mes-

sage transmission and reception. To write to TTCAN’s configuration registers, two

requirements have to be fulfilled. First the Init bit has to be set in the CAN control

register. In addition to Init, the CCE (Configuration Change Enabled) flag has to be

set. If both of these requirements are met, TTMode can be set to configuration mode.

Entering as well as leaving the configuration mode requires the flags init and CCE
to be set. If a node is in configuration mode, its configuration registers are readable

and writable. As an example, consider the TM flag in the TT operation mode register

which is used to specify if a node is a potential time master or not, or the MPr flag (3

bits wide), which specifies the priority of a potential time master. If a node is a po-

tential time master, a seven bit value specified in NTUs can be written which defines

how long a potential master, which is not the current time master, waits until it tries to

send a reference message. Additional settings in the operation mode register are L2
to define the TTCAN level and EECS which enables external clock synchronization.

For time-triggered CAN operation, further protocol specific registers have to be

configured. This includes the trigger memory which contains information of up to 32

message triggers, and the configuration of message objects (e.g., transmit objects).

These registers are vital for TTCAN operation. While message objects contain the

content of a message, the triggers specify the points in time of message transmission.

242 Time-Triggered Communication

Reading and writing contents is relatively simple, as the content can be accessed at

the address of the corresponding message object.

After all protocol parameters are set, the last step is to set the TTMode. These

two bits define if the node operates in classic CAN mode, is in configuration mode,

operates strictly time triggered or is in event synchronized time-triggered mode. In

the two latter cases, a node will start its synchronized TTCAN operation. It is impor-

tant to note that switching TTMode to one of the operational modes has to be the last

step because the configuration can only be changed if TTMode is set to configuration

mode.

As stated before, the communication interface is not covered by the TTCAN

standard itself and is therefore highly implementation dependent. For further details

concerning Bosh’s TTCAN IP core, please refer to the user manual [125].

9.5 Validation and Verification Efforts
This section describes a selected set of academic papers that have been published on

TTCAN validation and verification.

Saha and Roy [289] describe a model based approach to check the startup of

TTCAN. In their paper, the SAL [74] model checker is used. The paper validates

several liveness properties of fault-free and fault-injected startup scenarios. In the

case of a fault-free startup, the number of potential time masters varies from 2 to

10. The liveness properties varies from the case where the highest priority potential

time master will eventually become the current time master to a case where all po-

tential time masters which are not the current time master will eventually move to

a synchronized state. Additionally, fault-tolerant startup is examined. These proper-

ties vary from the simple case that once the current time master becomes faulty, one

among all the other potential time masters will eventually be the new current time

master to cases where once the current time master becomes faulty, all the poten-

tial time masters which will not be the current time master will eventually go to a

synchronized state.

In [32] an experimental setup with two boards manufactured by Phytec and en-

dowed with Bosch TTCAN controllers were set up. At first the duration of basic

cycles was measured. The TTCAN controller was configured to send messages at a

bandwidth of 1 Mbit/s. Within the 128 samples that were taken, the basic cycle dura-

tion spans between 0.999275ms to 0.999687ms with a mean value of 0.999451ms

and a mean error with respect to the nominal value of about 0.55μs. These re-

sults show that the controllers worked within their specification of the TTCAN stan-

dard which requires that the difference in length of basic cycles has to be less than

one NTU. Additionally, the paper presents experimental data on synchronization of

TTCAN networks. In the experimental setup, two TTCAN networks were investi-

gated. In this experimental setup, the synchronization of two buses requires more

TTCAN 243

than one basic cycle, whereas the synchronization was in a good bound. There was

no shifting between the basic cycles of the two buses.

Saha and Roy [288] present a model of TTCAN, where properties of the protocol

were checked with the model checker Spin [134]. To represent time explicitly a spe-

cial version of Spin, DT-Spin [41, 42] was used. This version of Spin uses a discrete

time model. A basic cycle divided into five time windows was used: The first slot for

the reference message, the second slot as an exclusive slot for node 1, the third slot

free, the fourth slot as an arbitration slot and the fifth as an exclusive slot for node 2.

Note that in this setup node 0 has no dedicated slot. With this setup, vital properties

of TTCAN have been proved. It was shown that the master eventually writes to the

bus in the first slot and that node 1 and node 2 eventually write in the second and

fifth slot. For node 0, this property cannot be proved because node 0 did not have a

dedicated slot. Additionally, data consistency was shown. All the nodes eventually

read whatever the time master writes to the bus. An important property is that no

node writes to the bus in the third slot. For additional verification results, refer to the

paper [288].

Leen and Heffernan [195] present a formal model of TTCAN, which is used to

verify properties of TTCAN with the use of the UPPAAL model checker [28, 3].

Under the assumptions that the medium does not introduce errors, that all messages

exchanged are fixed in length and that all clocks are assumed to proceed at the same

rate (constant NTU), a formal model of TTCAN was abstracted from the text based

specification. The final model defines a system of 10 timed automata, representing

two potential time master nodes, a time receiving node and a CAN physical layer in

the context of level 1 TTCAN implementation [195]. Leen et al. have shown that their

model will never inadvertently enter an undesired error state. Additionally, deadlock

free operation has been proved as well as the expected behavior of the error state

automata. For the later tests, nodes have been removed from the network.

9.6 Example Configurations and Implementations
Standalone TTCAN controllers are not that widespread in the market. One reason

might be the limitation in speed (about 1 Mbit/s), which makes TTCAN not the

first choice for safety-critical real-time applications in the automotive industry. Ad-

ditionally, competing protocols such as FlexRay recently got more attention from

manufacturers.

Bosch, the main driving force behind TTCAN, provides a TTCAN IP core written

in VHDL on RTL level prepared for synthesis. According to the product description,

the TTCAN IP module provides all features of time-triggered communication that

are specified in the TTCAN standard, including event-synchronized time-triggered

communication, global time and clock drift compensation.

In addition to the “reference implementation” from Bosch, stand-alone TTCAN

controllers are rare. Infineon provides a MultiCAN chip which has at least support

244 Time-Triggered Communication

for TTCAN level 2. Atmel produces 8-bit micro controllers which have full standard

CAN support and provide initial TTCAN support like independent message objects

(in the case of the TC89C51CC01 15 message objects).

In academics the GAST (General Application Development Boards for Safety

Critical Time-Triggered Systems) project2 provides a controller board which features

a TTCAN controller card. The setup was used in a master’s thesis to evaluate the

performance of TTCAN [99].

Note that TTCAN — especially level 1 — has low hardware requirements. Ba-

sically every CAN controller that supports a single-shot mode or is able to support

the cancellation of a transmission request is able to support TTCAN level 1 only in

software.3

2http://www.chl.chalmers.se/gast/
3http://www.can-cia.org

10
LIN

W. Elmenreich
Lakeside Labs/University of Klagenfurt

CONTENTS

10.1 Protocol Overview . 245

10.2 Protocol Services . 246

10.2.1 Communication Services . 246

10.3 LIN 2.x . 247

10.3.1 Clock Synchronization . 248

10.3.2 Restart, Re-Integration, Integration . 248

10.3.3 Diagnostic Services . 248

10.3.4 Error Detection and Fault Isolation . 249

10.3.5 Configuration Services and Protocol Parameterization 250

10.4 Communication Interface . 252

10.5 Validation and Verification Efforts . 253

10.6 Example Configurations and Implementations . 253

10.1 Protocol Overview
The LIN protocol was developed by a consortium of seven automotive partners

(Audi, BMW, DaimlerChrysler, Volvo, Volkswagen, Motorola and VCT) as a com-

plementary system to the widely used CAN bus [15]. In 2003, many updates to reflect

the latest off-the-shelf microcontrollers as well as inputs from the SAE Task Force

resulted in the definition of LIN 2.0. In fact, LIN 2.0 was a complete rework of the

existing LIN 1.3 standard, but backward compatible. The most recent version of the

specification is LIN 2.1 [200].

245

246 Time-Triggered Communication

10.2 Protocol Services
10.2.1 Communication Services

The LIN protocol is built upon UART frames as basic communication units. The

used UART format consists of a start bit (always low), eight message bits in non-

return-to-zero (NRZ) encoding, an optional parity bit and a stop bit (always high).

LIN does not use a parity bit, thus encodes one data byte with 10 bits.

In order to support nodes with unstable clocks, a periodic synchronization pattern

is provided. This allows the use of microcontrollers with internal RC oscillators for

the implementation of the nodes. Such RC oscillators change their clock frequency

with varying temperature and supply voltage so that they require frequent resynchro-

nization.

The communication is initiated by a dedicated master node; the smart transducers

are considered the slave nodes. The LIN master follows a time-triggered message

scheme. This means that the messages are scheduled to be transmitted at a predefined

point in time. This feature guarantees a collision-free media access scheme and a

predictable message ordering.

A main difference of LIN to other time-triggered protocols is that the slave nodes

are implemented in an event-triggered way. This eases protocol implementation;

however, since LIN nodes are not aware of the time triggered schedule, measure-

ment and calculation tasks must be done on demand or in an unsynchronized way.

Each message in LIN is encapsulated in a single message cycle. The message

cycle is initiated by the master and contains two parts, the frame header sent by the

master and the frame response, which encompasses the actual message and a check-

sum field. The frame header contains a sync brake (allowing the slave to recognize

the beginning of a new message), a sync field with a regular bit pattern for clock syn-

chronization and an identifier field defining the content type and length of the frame

response message. The identifier is encoded by six bits (allowing 64 different mes-

sage types) followed by two additional bits for error detection. Figure 10.1 depicts

the frame layout of a LIN message cycle.

The frame response contains up to eight data bytes and a checksum byte. Since

an addressed slave does not know that it has to send a message before the reception

of the respective frame header, the response time of a slave is specified within a

DataByte

Sync break message of 2,4, or 8 data bytesSync field Msg. identifier

0x00

t

...0x55 id DataByte chk

Frame header (from master) Frame response (from master or slave)

FIGURE 10.1
LIN Frame Format

LIN 247

time window of 140% of the nominal length of the response frame. This gives the

node some time to answer, for example to perform a measurement on demand, but

introduces a noticeable message jitter for the frame response.

From the slave’s view, the LIN protocol is a plain polling protocol, since the

slaves only react to the frame header from the master. It is the master’s task to issue

the respective frame headers for each message according to a scheduling table. The

configuration of the network must ensure that each message has exactly one producer.

Several slaves can subscribe to a particular message.

10.3 LIN 2.x
In 2003, many updates to reflect the latest off-the-shelf microcontrollers as well as

inputs from the SAE Task Force resulted in the definition of LIN 2.0. In fact, LIN 2.0

was a complete rework of the existing LIN 1.3 standard, but backward compatible, al-

lowing for the integration of new LIN 2.0 master/slave nodes in existing LIN 1.2/1.3

clusters (however, a cluster with LIN 2.0 slaves requires a LIN 2.0 master, due to the

slave nodes’ improved configuration capabilities). New features introduced in LIN

2.0 are an enhanced checksum, sporadic and event-triggered communication frames,

improved network management (status, diagnostics) according to ISO 14230-3 / ISO

14229-1 standards, automatic baudrate detection, standardized LIN product ID for

each node and an updated configuration language to reflect the changes.

In addition to the unconditional frames (frames sent whenever scheduled accord-

ing to the schedule table) provided by LIN 1.3, LIN 2.0 introduces event-triggered
frames and sporadic frames.

Similar to unconditional frames, event-triggered frames begin with the master

task transmitting a frame header. However, corresponding slave tasks only provide

their frame response when the signals transmitted in the data fields have changed.

Unlike unconditional frames, multiple slave tasks can provide the frame response to

a single event-triggered frame, assuming that not all signals have actually changed.

In the case of two or more slave tasks writing the same frame response, the mas-

ter node has to detect the collision and resolve it by sequentially polling (i.e., send

unconditional frames) the involved slave nodes. Event-triggered frames were intro-

duced to improve the handling of rare-event data changes by reducing the bus traffic

overhead involved with sequential polling.

Sporadic frames follow a similar approach. They use a reserved slot in the

scheduling table, however, the master task only generates a frame header when nec-

essary, i.e., involved signals have changed their values. As this single slot is usually

shared by multiple sporadic frames (assuming that not all of them are sent simul-

taneously), conflicts can occur. These conflicts are resolved using a priority-based

approach: Frames with higher priority overrule those with lower priority.

In November 2006, a revision 2.1 of the LIN specification was published by the

LIN consortium [200]. LIN 2.1 revised the configuration interface (e. g., it features

248 Time-Triggered Communication

a function for assigning multiple identifiers at once, which allows a more efficient

configuration than with LIN 2.0). Furthermore, LIN 2.1 defines time-out parameters

based on ISO 15765-3 [152] for transmissions spanning multiple frames.

10.3.1 Clock Synchronization

LIN builds on a master-slave concept for coordinating the cluster. However, a LIN

slave is not explicitly aware of a global time, thus the protocol does not support

synchronization of actions which are not explicitly triggered by the master, for ex-

ample time-triggered synchronized measurements [90]. Instead, coordinated actions

on slaves are initiated by the master based on schedule tables stored at the master.

In order to support nodes with unstable clocks, the master sends a synchroniza-

tion pattern which allows the slaves to adjust their internal clock speed to the mas-

ter’s clock. This allows the use of microcontrollers with internal RC oscillators for

the implementation of the nodes. Such RC oscillators change their clock frequency

with varying temperature and supply voltage so that they require frequent resynchro-

nization.

10.3.2 Restart, Re-Integration, Integration

The simple model of LIN slaves supports an easy restart and re-integration of nodes

into a cluster in most cases provided the master node has not crashed.

If a node crashes and restarts, it will synchronize to the next frame from the

master and respond if the frame was addressing itself. Thus, the node will be tem-

porarily unavailable, but integrate smoothly when it comes back provided that the

node’s configuration had been preserved in some persistent memory.

However, if a node is new or a node’s state is reset, there is the need for several

configuration steps (assigning node diagnostic address, set slave configuration, etc.1)

until the node can participate in the communication.

10.3.3 Diagnostic Services

The monitoring of the timing parameters depends on the diagnostic class of the slave

nodes [200]: Diagnostic class I slaves are typically simple smart transducers requir-

ing none or a very low amount of diagnostic functionality. Actuator control, sensor

reading and fault memory handling is done by the master. Diagnostic class II are

nodes with identification support, i. e., node identification, reading and writing data

parameters. This functionality is typically required by vehicle manufacturers. Apart

from the identification support, actuator control, sensor reading and fault memory

handling is done by the master like for diagnostic class I nodes. Diagnostic class III

slave nodes have internal fault memory, along with associated reading and clearing

services.

1For details, see [200], chapter 7.3 Node Configuration and Identification.

LIN 249

Each LIN 2.0 node possesses its LIN Product Identification. This unique number

is stored in the microcontroller’s ROM and encodes information about this node.

• Supplier ID: Assigned to each supplier by the LIN Consortium

• Function ID: Assigned to each node by supplier

• Variant field: Modified whenever the product is changed but its function is

unaltered

In addition to signal-bearing messages, LIN 2.0 provides diagnostic messages.

These messages use two reserved identifiers (0x3c, 0x3d). Diagnostic messages use

a new format in their frame response called PDU (Packet Data Unit). There are two

different PDU types: Requests (issued by the client node) and responses (issued by

the server node).

The LIN 2.0 configuration mode is used to set up LIN 2.0 slave nodes in a cluster.

Configuration requests use SID values between 0xb0 and 0xb4. There is a set of

mandatory requests that all LIN 2.0 nodes have to implement as well as a set of

optional requests. Mandatory requests are:

• Assign Frame Identifier: This request can be used to set a valid (protected)

identifier for the specified frame.

• Read By Identifier: This request can be used to obtain supplier identity and

other properties from the addressed slave node.

Optional requests are:

• Assign NAD: Assigns a new address to the specified node. Can be used to

resolve address conflicts.

• Conditional Change NAD: Allows master node to detect unknown slave nodes.

• Data Dump: Supplier specific (should be used with care).

10.3.4 Error Detection and Fault Isolation

LIN was invented for non-critical body electronic services, and therefore is not de-

signed as a fault-tolerant protocol. Thus, a single fault of the master, a babbling node

or a failure of the communication line can lead to the failure of the network. When

used in a dependable system, a LIN cluster must be part of a fault-containment re-

gion [176].

Error detection was a weakness in LIN 1.3 because of the protection with only

two extra bits for the message identifier of the header message, giving an error de-

tection probability of only 1−1/22 = 0.75. The header message is critical for com-

munication, since an undetected erroneous header message may cause a wrong slave

to answer with a syntactically correct message.

250 Time-Triggered Communication

The response frame of LIN is protected by a check byte, giving an error detection

probability of 1−1/28 = 0.996.

LIN 2.0 solves the problem of the weak error detection of the header message by

specifying an enhanced checksum for the frame response that includes the protected

message identifier in the checksum calculation. An erroneous header message may

still cause a wrong slave to answer with a frame response, but the checksum of the

frame response will be different from the expected one. Thus, there are 10 bits used

for error detection of the header message, giving an error detection probability of

1−1/210 = 0.999. However, note that there is still a chance of 75 % that an erroneous

header message might cause the wrong slave to trigger an action at the wrong time.

The error protection of unconditional frames in LIN 2.0 is identical to LIN 1.3,

thus rendering also an error detection probability of 0.996.

10.3.5 Configuration Services and Protocol Parameterization

LIN clusters are configured during the design stage using the LIN Configuration
Language. This language can be used to create a LIN description file (LDF). The

LDF describes the complete LIN network. Its syntax is deliberately not specified to

allow for vendor specific implementations.

In addition to the LIN configuration language and LDF, which are the most im-

portant tools to design a LIN cluster, the LIN specification defines a (mandatory)

interface to software device drivers written in C. Also, many tools exist that can

parse a LDF and generate driver modules by themselves. The LIN C API provides a

signal based interaction between the application and the LIN core (also called core
API).

The node capability file (NCF) (since LIN 2.0 [16]) provides a standardized de-

scription of off-the-shelf slave nodes. This supports an automatic plug-and-play with

slave nodes in a cluster. The NCF is structured as follows:

• The node’s name.

• General compatibility properties, e. g., the supported protocol version, bit

rates, and the LIN product identification. This unique number is also stored in

the microcontroller’s ROM and links the actual device with its NCF. It consists

of three parts: Supplier ID (assigned to each supplier by the LIN Consortium),

function ID (assigned to each node by supplier) and variant field (modified

whenever the product is changed but its function is unaltered).

• The diagnostic definition specifying the properties for transport layer and con-

figuration and the node’s diagnostic class.

• Frame definitions. All frames that are published or subscribed by the node are

declared. The declaration includes the name of the frame, its direction, the

message ID to be used and the length of the frame in bytes. Optionally, the

minimum period and the maximum period can be specified. Each frame may

carry a number of signals. Therefore, the frame’s declaration also includes

the associated signals’ definitions. Each signal has a name, and the following

LIN 251

V
0 7 11 13 17

0

64

128

192

255
Signal

V_bat t er y {
l ogi cal _val ue, 0, " under vol t age" ;
physi cal _val ue, 1, 63, 0. 0625, 7. 0, " Vol t " ;
physi cal _val ue, 64, 191, 0. 0104, 11. 0, " Vol t " ;
physi cal _val ue, 192, 253, 0. 0625, 13. 0, " Vol t " ;
l ogi cal _val ue, 254, " over vol t age" ;
l ogi cal _val ue, 255, " i nval i d" ;

}

FIGURE 10.2
Example for a LIN Signal Definition

properties associated with it: Init value specifies the value used from power on

until the first message from the publisher arrives. Size specifies the signal’s size

in bits. Offset specifies the position within the frame. Encoding specifies the

signal’s representation. The presentation may be given as a combination of the

four choices logical value physical value, BCD value or ASCII value. Declara-

tions of physical values include a valid value range (minimum and maximum),

a scaling factor and an offset. Optionally, this can be accompanied by a textual

description, mostly to document the value’s physical unit. An example is given

in Figure 10.2.

• Status management: This section specifies which published signals are to be

monitored by the master in order to check if the slave is operating as expected.

• The free text section allows the inclusion of any help text, or more detailed,

user–readable description.

The node capability file is a text file. The syntax is simple and similar to C. Properties

are assigned using name = value; pairs. Subelements are grouped together using

curly braces, equivalent to blocks in C.

Figure 10.3 depicts the role of NCFs and LDF in a LIN cluster. The LDF de-

scribes the complete LIN network (corresponding NCFs are parsed by the LIN clus-

ter design tool into the LDF). The LDF is used by the LIN cluster generator to gen-

erate LIN related functions within particular nodes. The LDF is also used by the bus

analyzer/emulator to support debugging of the LIN cluster [200].

The slave nodes are connected to the master node forming a LIN cluster. The

corresponding node capability files are parsed by the LIN cluster design tool to gen-

erate a LIN description file (LDF) in the LIN cluster design process. The LDF is

parsed by the LIN cluster generator to automatically generate LIN related functions

in the desired nodes (the Master node and Slave3 node in the example shown in Fig-

ure 10.3). The LDF is also used by a LIN bus analyzer/emulator tool to allow for

cluster debugging.

The development of a LIN cluster is partitioned into three phases (see Fig-

ure 10.3). During the design phase, individual NCFs are combined to create the LDF.

This process is called System Definition. For nodes to be newly created, NCFs can

be created either manually or via the help of a development tool. From the LDF,

communication schedules and low–level drivers for all nodes in the cluster can be

252 Time-Triggered Communication

Slave Slave Slave Master
Bus analyzer
and emulator

LIN cluster
generator

Node Capability Files

LIN cluster

LIN cluster
design tool

LIN File
Description

Design Domain

Debugging Domain

FIGURE 10.3
Development Phases in LIN (according to [200])

generated (System Generation). Based on the LDF, the LIN cluster can be emulated

and debugged during the Debugging and Node Emulation phase. In the System As-
sembly phase, the final system is assembled physically, and put to service.

10.4 Communication Interface
The LIN 2.0 API consists of two sections. In addition to the LIN Core API that came

with LIN 1.x, there is a new LIN Diagnostic API that is used for configuration and

the diagnostic transport layer. The LIN node Configuration API is available only to

the master node and mainly implements functions to perform diagnostics and con-

figuration [16].

The LIN diagnostic transport layer is introduced to provide gatewaying functions

between CAN and LIN slaves. It transports ISO diagnostic requests/responses and

provides a simple raw API, as CAN ISO PDUs are very similar to LIN diagnostic

frames. This allows us to manage LIN networks via a number of third party configu-

ration tools, e. g., Vectors CANbedded LIN tool[346].

LIN 253

10.5 Validation and Verification Efforts
The LIN protocol is not fault-tolerant, thus a single fault of the master, a babbling

node or failure of the communication line can lead to the failure of the network.

For particular implementations, there are efforts to provide verified LIN imple-

mentations (e. g., LIN core implementation for ASIC, Actel, Altera and Xilinx archi-

tectures [53]) or fail-safe LIN controllers [233].

10.6 Example Configurations and Implementations
The LIN bus system has been applied to various types of non-safety-critical car body

applications, such as sun roof control, cruise control switch, windshield wipers, turn-

ing lights, climate control, radio controls, seat position motors, mirror, window lift,

door locks, etc [317].

Since LIN does not depend on dedicated hardware, there exist many implemen-

tations for COTS hardware, e. g., for Microchip PIC [47] (LIN 1.0 slave), ATMEL

microcontrollers [14] (LIN 1.0 slave), for Freescale’s M68HC08 [58] (LIN 2.0 slave)

or for the SPMC75F2313A board [319] (LIN 1.0 bus master). These solutions pro-

vide the source code for the embedded software to implement the basic LIN com-

munication features together with a simple description of the necessary hardware

setup.

11
TTP/A

W. Elmenreich
Lakeside Labs/University of Klagenfurt

CONTENTS

11.1 Protocol Overview . 255

11.2 OMG Smart Transducer Standard . 256

11.3 Interface File System (IFS) . 256

11.4 Protocol Services . 259

11.4.1 Communication Services . 259

11.4.2 Clock Synchronization . 261

11.4.3 Restart, Re-Integration, Integration . 262

11.4.4 Diagnostic Services . 262

11.4.5 Fault Isolation . 263

11.4.6 Configuration Services and Protocol Parameterization 263

11.5 Communication Interface . 264

11.6 Validation and Verification Efforts . 265

11.7 Example Configurations and Implementations . 265

11.7.1 TTP/A Slave Nodes . 265

11.7.2 TTP/A Master . 266

11.1 Protocol Overview
The TTP/A protocol is the low-cost field-bus protocol that is harmonized with the

fault-tolerant system bus TTP/C of the time-triggered architecture (TTA). It is in-

tended for the connection of smart sensors and actuators in embedded real-time sys-

tems in different application domains, e.g., industrial, automotive, etc. It is the ob-

jective of TTP/A to provide all services needed by a smart sensor, including timely

communication, remote online diagnostics, and plug-and-play capability. While LIN

is powered by industrial sponsors, TTP/A is an academic development started by the

Technical University of Vienna, Austria, and then broadened to include the Technical

University of Munich, Germany, and the University of Stuttgart, Germany. The first

version of TTP/A was published at the SAE World Congress in 1995 [167]. Since

255

256 Time-Triggered Communication

then, TTP/A has been extended by a plug-and-participate function [89] and a unique

interface scheme in the form of an Interface File System (IFS) [181].

11.2 OMG Smart Transducer Standard
TTP/A implements the Object Management Group (OMG) Smart Transducer Inter-

face (STI) standard [241].

The STI standard defines a smart transducer system as a system comprising sev-

eral clusters with transducer nodes connected to a bus. Via a master node, each cluster

is connected to a CORBA gateway. The master nodes of each cluster share a synchro-

nized time that supports coordinated actions (e. g., synchronized measurements) over

transducer nodes in several clusters. Each cluster can address up to 250 smart trans-

ducers that communicate via a cluster-wide broadcast communication channel. There

may be redundant shadow masters to support fault tolerance. One active master con-

trols the communication within a cluster (in the following sections the term master

refers to the active master unless stated otherwise). Since smart transducers are con-

trolled by the master, they are called slave nodes. Figure 11.1 depicts an example for

such a smart transducer system consisting of three clusters.

It is possible to monitor the smart transducer system via the CORBA interface

without disturbing the real-time traffic.

The STI standard is very flexible concerning the hardware requirements for smart

transducer nodes, since it only requires a minimum agreed set of services for a smart

transducer implementation, thus supporting low-cost implementations of smart trans-

ducers, while allowing optional implementation of additional standard features.

The information transfer between a smart transducer and its client is achieved

by sharing information that is contained in an internal IFS, which is encapsulated in

each smart transducer.

11.3 Interface File System (IFS)
The IFS [181] provides a unique addressing scheme to all relevant data in the smart

transducer network, i. e., transducer data, configuration data, self-describing infor-

mation and internal state reports of a smart transducer. The values that are mapped

into the IFS are organized in a static file structure that is organized hierarchically

representing the network structure (Table 11.1).

TTP/A 257

FIGURE 11.1
Multi-Cluster Architecture with CORBA Gateway

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-12&iName=master.img-000.jpg&w=217&h=243

258 Time-Triggered Communication

TABLE 11.1
Hierarchical structure of an IFS address

Element Size Description

Cluster name 8 bit Identifies a particular cluster. Native communica-

tion (without routing) among nodes is only possi-

ble within the same cluster.
Node alias 8 bit The node alias or logical name selects a particular

node. Some values have an associated special func-

tion, e. g., alias 0 addresses all nodes of a cluster in

a broadcast manner.
File name 6 bit The file name addresses a certain file within a node.

A subset of files, the system files, have a special

meaning in all nodes. Each service of a node is

mapped onto a file containing sections for the ser-

vice providing and service requesting linking in-

terface as well as for configuration/planning and

diagnosis/management data.
Record number 8 bit Each file has a statically assigned number of

records. The record number addresses the record

within the selected file. Each record contains 4 data

bytes. Note that each file contains only the neces-

sary number of records, thus, the number of ad-

dressable records is statically defined for each file.

TTP/A 259

Slot 0 Slot nSlot 1 Slot 2

FB(Master)

FB..................Fireworks Byte, sent by master

DataByte......sent either by master or slave

t

...DataByte DataByte DataByte FB(Master) ...

Slot 0

Multipartner Round

Last slot of round

FIGURE 11.2
Example for a TTP/A Multipartner Round

11.4 Protocol Services
11.4.1 Communication Services

Communication is organized into rounds consisting of several messages. Each com-

munication round is started by the master with a so-called fireworks byte. The fire-

works byte defines the type of the round and is a reference signal for clock synchro-

nization. The protocol supports eight different firework bytes encoded in a message

of one byte using a redundant bit code [120] with a hamming distance of 4 supporting

error detection. One particular fireworks byte is a regular bit pattern, which is also

used by slave nodes with an imprecise on-chip oscillator for startup synchronization.

This bit pattern is identical to the sync pattern used in LIN.

Generally, there are two types of rounds:

Multipartner round: This round consists of a configuration dependent number of

slots and an assigned sender node for each slot. The configuration of a round is

defined in a datastructure called ROund Descriptor List (RODL). The RODL

defines which node transmits in a certain slot, the operation in each individ-

ual slot and the receiving nodes of a slot. RODLs must be configured in the

slave nodes prior to the execution of the corresponding multipartner round. An

example for a multipartner round is depicted in Figure 11.2.

Master/slave round: A master/slave round is a special round with a fixed layout

that establishes a connection between the master and a particular slave for

accessing data of the node’s IFS, e.g., the RODL information. In a master/slave

round the master addresses a data record using a hierarchical IFS address and

specifies an action like reading of, writing on or executing that record.

The master/slave rounds are used for diagnostics and configuration of the smart

transducer nodes. The periodical multipartner rounds provide a predictable real-time

communication among the nodes. The master/slave rounds allow a point-to-point

connection to a particular node for configuration, maintenance, and diagnosis pur-

poses. Each node is assigned a logical node ID that is used in the master/slave rounds

260 Time-Triggered Communication

FB Fireworks Byte, sent by master

Time

Time

FB

Record Data BytesFB

MSD
MSR

Epoch
Alias

MSD

Rec#
OP
File#
Check

b)

a) CheckOP/File#Rec#Alias

CheckData Byte 3Data Byte 2Data Byte 1Data Byte 0

EpochMSR

FIGURE 11.3
TTP/A Master/Slave Round

for addressing a node within a cluster. The logical IDs of TTP/A nodes can be as-

signed either at compile time or online when the node is integrated into the cluster.

The online-assignment of logical node IDs is called baptizing. The baptizing algo-

rithm is performed by the master and is based on binary search. It makes use of the

unique identification number of every TTP/A node, the conditional setting of node

identifiers by executing a special record in the file system of the node and the ability

to detect simultaneous bus access of multiple nodes. The baptizing enables true plug

and play but is not mandatory in the TTP/A standard.

Figure 11.3 depicts the fixed layout of a master/slave round. A master/slave round

consists of two parts. In the addressing part (Figure 11.3 a), the action and the mem-

ory addressing is encoded in three parameter bytes.

In a further part (Figure 11.3 b), the addressed data bytes are transmitted between

master and slave. The fireworks byte (MSD) is always sent by the master, while the

data bytes are either sent by master or slave depending on the action defined in the

addressing part.

The last byte of each round contains a checksum byte that protects the commu-

nication from bus failures. Master/slave rounds have idempotent semantics, thus it is

possible to repeat the action in case of communication failures.

A master/slave round has a fixed layout. The address scheme is derived from the

IFS. At startup the master uses master/slave (MS) rounds for determining the types

of the connected nodes and configuring them. The multipartner (MP) round is in-

tended to establish a periodical, predictable and efficient real-time communication.

To support a diagnosis and maintenance access concurrent to the real-time traffic,

master/slave rounds are scheduled periodically between multipartner rounds as de-

picted in Figure 11.4 in order to enable maintenance and monitoring activities during

system operation without a probe effect.

TTP/A 261

t

MP Round MP RoundMS RoundMS Round

Cluster Cycle Time

Real-Time
Service Data

Diagnostics and
Management Data

FIGURE 11.4
Recommended TTP/A Schedule

Drift maxDrift max

Bit 1 Bit 2

Time Slot n

Message in timeslot n

Bit 11 ToleranceTolerance

FIGURE 11.5
Tolerance Time in a Slot within a TTP/A Round

11.4.2 Clock Synchronization

TTP/A uses a periodic central master clock synchronization. The master starts a so-

called epoch by issuing a fireworks byte that also defines the communication mode

for the following round. The slave nodes restart their timer at the beginning of an

epoch and organize their operations, i. e., sending and receiving frames and executing

tasks in a lattice of slots. The size of a lot is predefined based on the requirement

for transmitting one byte of data including an 8o1 framing information (except for

fireworks bytes which are sent using 8E1 encoding, but have the same timing) as

well as some tolerance buffer to account for timing differences between the nodes

(see Figure 11.5). The fireworks byte from the master serves as a state correction of

all the nodes’ clocks. In order to cope with clock rate differences, a node can adjust

the rate of its clock using frames sent from a trustable time source, e. g., from the

master or a node with exact time. Slots containing such reference timing information

may contain ordinary user data, but are especially marked in the RODL of the slave

nodes.

The combination of rate and state correction supports even nodes with very im-

precise oscillators, which may have a drift rate of up to 10−3 s
s and a high drift rate

change of 10−1 s
s2 . At a baud rate of 19200 bit

s , there must be a reference time frame

at least every 17 slots in order to keep the slot-wise synchronization for nodes with

such imprecise oscillators [88].

During operation, the above-described rate and state correction is taking place

periodically within each TTP/A round. In order to initially synchronize a slave node’s

clock, the TTP/A master is using a specific bit pattern as one of its fireworks bytes

(see Figure 11.6). An already synchronized node will interpret this pattern as a value

262 Time-Triggered Communication

0 1 2 3 4 6 75 od
d

Synchronize Pattern

IRG IBG

St
ar

t

L
SB

M
SB

Pa
ri

ty

St
op

FIGURE 11.6
Synchronization Pattern from TTP/A Master

of 0x55 encoded using 8E1 encoding. An unsynchronized node, however, can search

for such a regular pattern in order to adjust its clock to match the given baud rate.

11.4.3 Restart, Re-Integration, Integration

A major concept of time-triggered networks is that they maintain a minimum system

state in order to allow for a fast restart of the networks or parts of it. The com-

munication system of TTP/A does not require to store state information between

successive rounds, except for the master/slave round, which keeps a state between

the Master/Slave Address MSA and the Master/Slave Data MSD rounds. Thus, a

re-integrating node, given it still has the RODL information, will just wait until it

receives the next fireworks byte in order to participate in the communication.

Integrating new nodes needs special support, since a major design goal of TTP/A

was that the communication for node setup may not disturb the real-time operation

of the already running ensemble. Therefore, the trivial solution where new nodes

simply report their presence by broadcasting a message containing their ID, is out of

question since the broadcasts of unsynchronized new nodes might disturb the deter-

ministic real-time service. Therefore, the TTP/A master polls for new nodes using a

binary search operation followed by a baptize operation that assigns a local identifier

to the detected nodes [89]. The local identifier consists of an 8-bit value and allows

a unique addressing of a node within the same cluster.

11.4.4 Diagnostic Services

TTP/A specifies a diagnostic and management interface which establishes a connec-

tion to a particular smart transducer node and allows reading or modifying of specific

IFS records. Most sensors need parameterization and calibration at startup and con-

tinuously collect diagnostic information to support maintenance activities. For exam-

ple, a remote maintenance console can request diagnostic information from a certain

sensor. The diagnostic and management interface is supported by the master/slave

rounds of the protocol and is usually not time-critical.

TTP/A 263

Secondary TTP /A Bus

TTP/C Host
Application

TTP/C
Communication

Controller

CNI

TTP /A
Master

TTP /A
Master

 Shadow
Master

 Shadow
Master

TTP/C Host
Application

TTP/C
Communication

Controller

CNI

Primary TTP /A Bus

TTP /C Communication Service

FIGURE 11.7
Integrated Architecture with Two TTP/C Nodes and TTP/A Networks

11.4.5 Fault Isolation

TTP/A per se is not fault-tolerant, a single fault of the master, a babbling node or

failure of the communication line can lead to the failure of the network. However,

the deterministic behavior of TTP/A allows it to be integrated as subsystems to hier-

archical time-triggered systems, where each TTP/A network will form a single fault

containment region.

For example by integrating TTP/A with a TTP/C network, both systems com-

plement each other in order to support low-cost smart transducers within a highly

dependable system. Since both protocols follow a strict time-triggered schedule, the

TTP/A and TTP/C system can be synchronized in order to support synchronous in-

teraction of all nodes in the network.

Figure 11.7 depicts a fault-tolerant architecture with two TTP/C nodes and two

TTP/A networks containing a set of transducers. Each TTP/C node controls vice

versa one master node of one TTP/A network and a shadow node to the other TTP/A

network. The dotted ovals around the transducers indicate that these transducers are

redundantly measuring the same real-time entity. The given example tolerates an

arbitrary node failure of any node in the network. Since measurements from different

sensors of the same real-time entity are not replica deterministic, it is necessary to

run an agreement protocol between the TTP/C application in order to get a consistent

system state.

11.4.6 Configuration Services and Protocol Parameterization

TTP/A specifies a configuration and planning (CP) interface allowing the integra-

tion and setup of newly connected nodes. It is used to generate the “glue” in the

network that enables the components of the network to interact in the intended way.

For a time-triggered system, this is mainly a consistent communication schedule that

is consistent among all participating nodes. Usually, the CP interface is not time-

264 Time-Triggered Communication

critical, but it can coexist with an operational real-time service. In this case, the new

communication schedule is written to an inactive RODL until the configuration pro-

cess is complete. Then, the master switches to the new schedule.

Together with the diagnostics and management interface, the configuration and

planning interface provides access to the interface file system and, therefore, a pos-

sibility to parameterize and configure nodes. Download of application software is

not provided within the TTP/A protocol or the smart transducer interface. A respec-

tive boot loader for reprogramming a node would have to use a proprietary protocol.

Typically, TTP/A nodes integrate protocol software and application software in a

single microcontroller, which makes a separation for the application parts to be re-

programmed during operation difficult.

11.5 Communication Interface
For unique addressing of the slave’s internals, all relevant data of a TTP/A node, like

round definitions, application specific parameters and I/O properties, are organized

into a structure called IFS [181]. The IFS is structured in a record-oriented format.

Each record is addressable separately by master/slave rounds.

The IFS was introduced for two reasons:

• Provide a consistent view of the transducer properties.

• Decouple subsystems from the point of view of temporal control.

All nodes contain several files that can be accessed over the TTP/A protocol in a

unified manner. The minimal setup for a smart transducer is:

Round Descriptor List (RODL): Each node contains at least one and up to six

RODLs that contain TDMA schedules for the TTP/A multipartner rounds.

Configuration File: This file contains an eight-bit alias which is the slave’s name

within its cluster and may have extra configuration data within.

Documentation File: Each node is assigned a unique identifier (physical name)

stored in this file. This physical name is a 64-bit integer assigned invariably

to each node. The number is the concatenation of a series number, which iden-

tifies the node’s type, and the serial number, distinguishing nodes of equal

type. Optionally this documentation file contains the ASCII text of a uniform

resource locator (URL) pointing to a file containing the node’s data sheet. Doc-

umentation files are read-only from the master’s viewpoint.

To support ultra-low-cost implementations of TTP/A slave nodes, it is also possi-

ble to omit the implementation of the file system and hard-code the TDMA schedule

TTP/A 265

FIGURE 11.8
Smart Transducer Based on Atmel 4433 Microcontroller with Distance Sensor At-

tached (scale in centimeters)

for the TTP/A multipartner rounds. Such a node would not respond to any mas-

ter/slave round and does not support configurability. It is possible to build heteroge-

neous networks with ultra-low-cost nodes and configurable nodes together but this

might have a negative effect for the system overview because the maintenance pro-

gram is “blind” on the ultra-low-cost nodes.

11.6 Validation and Verification Efforts
TTP/A follows a correct-by-design approach, and thus allows us to verify its relevant

properties due to its open and simple design. In [311] a formal model of the TTP/A

master, slaves and channel was created and formally checked in order to prove the

recovery of the real-time service part of a TTP/A system from a transient fault back

to correct operation.

11.7 Example Configurations and Implementations
11.7.1 TTP/A Slave Nodes

TTP/A slave nodes are typically built as smart transducers [87], thus featuring a

microcontroller that instruments a sensor or an actuator.

Figure 11.8 depicts the hardware of a smart transducer implementation based on

an Atmel AVR AT90S4433 microcontroller and an attached distance sensor. This

type of controller offers 4K Byte of Flash memory and 128 Byte of SRAM. The

physical network interface has been implemented by an ISO 9141 k-line bus, which

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-12&iName=master.img-001.jpg&w=167&h=122

266 Time-Triggered Communication

is a single wire bus supporting a communication speed up to 50 kBps. The wires to

the left of the photo contain the bus line and the power supply.

Table 11.2 gives an overview on the resource requirements for smart transducer

implementations in Atmel AVR, Microchip PIC and ARM RISC microcontrollers.

All three implementations provide a Baud Rate of at least 19.2 kbps. As physi-

cal layer, an ISO 9141 k-line is supported. For the Atmel AT90S4433, a maximum

performance of 58.8 kbps had been tested on an RS485 physical layer.

TABLE 11.2
Resource requirements and performance of time-triggered smart transducer interface

implementations (from [335]).

Microcontroller Used

FLASH

Used

RAM

Clock

Speed

Max.Speed

Atmel AT90S4433 2672B 63B 7.37 MHz 58.8 kbps
Microchip PIC 2275B 50B 8.0 MHz 19.2 kbps
ARM RISC 8kB n.k. 32.0 MHz 19.2 kbps

The implementations of these microcontrollers show that due to the low hardware

requirements of the time-triggered smart transducer interface it should be possible to

implement the protocol on nearly all available microcontrollers with similar features,

like the Atmel or Microchip microcontroller types, that is 4KB of Flash ROM and

128 Byte of RAM memory.

A software implementation for Atmel AVR8 microcontrollers is available

at http://www.vmars.tuwien.ac.at/ttpa/ as open source under the

Berkeley Public License.

11.7.2 TTP/A Master

Every node that is able to run the slave protocol can also run the master protocol. So

for deploying a stand-alone TTP/A network, the same type of nodes can be used for

master and slaves. In order to utilize the maintenance and configuration features, the

master node is implemented as a gateway including one or more interfaces to other

networks.

Within several research projects, implementations of TTP/A master nodes with

gateway function have been created [254, 236, 158]. There exist also some prototype

implementations of the TTP/A master protocol for TTP/C nodes. The most modular

solution comes in the form of a PCMCIA card [38] which can be used as an I/O

card in a TTP/C node (or any other computer system with a PCMCIA interface).

Figure 11.9 depicts the size of the PCMCIA gateway card (without cover). The card

hosts a microcontroller and provides interfaces to a TTP/A and CAN [39] bus. The

microcontroller can be configured via the PCMCIA interface and runs the TTP/A

master protocol.

TTP/A 267

FIGURE 11.9
PCMCIA Gateway Card in Comparison to Size of 2 Euro Coin

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-12&iName=master.img-002.jpg&w=301&h=116

12
BRAIN

M. Paulitsch
EADS

B. Hall
Honeywell

K.R. Driscoll
Honeywell

CONTENTS

12.1 Protocol Overview . 270

12.1.1 Development History and Design Goals . 270

12.1.2 Minimal Overhead Replication and Input Agreement 273

12.2 Protocol Mechanisms and Services . 274

12.2.1 High-Integrity Data Propagation . 274

12.2.1.1 Self-Checking Data Relay . 274

12.2.1.2 Independent Path Data Integrity Reconstitution . . 276

12.2.1.3 Self-Checking Processor Pair Broadcast 277

12.2.2 Clock Synchronization, Startup and Clique Resolution 279

12.2.2.1 Self-Checking Master Coordination 281

12.2.2.2 Connectivity Building and Clique Aggregation . . 282

12.2.2.3 Synchronous Mode Clique Aggregation

Breakthrough . 285

12.3 Fault Isolation . 286

12.3.1 Time-Triggered Sequenced Guardian Roles 286

12.3.1.1 Directional Integrity Exchange 287

12.3.1.2 Skip Guardian Link Forwarding 287

12.3.1.3 Self-Checking Pair Neighbor Guardian 288

12.3.2 Asynchronous Guardian Roles . 289

12.3.2.1 Startup Enforcement . 289

12.3.2.2 Source Authentication . 290

12.3.2.3 Additional Guardian Fault Containment Behavior 291

12.4 Diagnostic and Agreement Services . 291

12.4.1 Host Task Set Agreement . 291

12.5 Validation and Verification Efforts . 292

269

270 Time-Triggered Communication

12.6 Example Configurations, Implementations and Deployment

Considerations . 292

12.1 Protocol Overview
The BRAIN (Braided Ring Availability Integrity Network) is a novel communication

architecture supporting fault-tolerant time-triggered communication. As the name

suggests, the BRAIN is built upon a braided-ring topology. This topology augments

the standard ring topology with increased connectivity. In addition to the “direct

link” connections between a node and its immediate neighboring nodes (as is used in

simple rings), a braided-ring node also is connected to its neighbor’s neighbor via a

link called the braid or skip link (see Figure 12.1). The BRAIN utilizes the additional

connectivity to achieve both high-coverage integrity and availability concurrently.

This is in contrast to previous braided rings, which use these additional links only

for availability. The BRAIN can use almost any existing Local Area Network (LAN)

technology to implement its communication links, including any of the IEEE 802.3

Ethernet variants.

The BRAIN uses the least amount of hardware to achieve single fault tolerance

(including Byzantine failure) of any known data network. The BRAIN also can tol-

erate most cases of two benign faults with no additional redundancy. The BRAIN

topology enables adjacent nodes to collaboratively form self-checking pairs (SCPs).

This allows standard simplex computational hardware to be run-time configured into

high-integrity fail-silent computational platforms, which provides the high fault cov-

erage for processing that one would find in architectures supported by SAFEbus (see

Chapter 7) but without requiring any special SCP hardware for the processors.

The BRAIN’s benefits derive from its time-triggered data flow and its use of

high-coverage fault tolerance.

12.1.1 Development History and Design Goals

The BRAIN was originally conceived as a field-bus type protocol, targeting

low-bandwidth applications. Acknowledging the simplicity of high-coverage self-

checking architectures, such as SAFEbus (see Chapter 7), the BRAIN was conceived

to apply these techniques to a field-bus protocol. The intent was to deliver SAFEbus

levels of integrity and availability within a field-bus environment. Exploiting lessons

learned from the application of other field-bus protocols in safety-relevant applica-

tions, the BRAIN has been designed with two principles in mind: (1) limited reliance

on inline error detection mechanisms such as Cyclic Redundancy Codes (CRCs) for

error detection needs and (2) the avoidance of dedicated guardian hardware com-

monly used in other field-bus protocols targeting safety-relevant deployment [122].

The BRAIN has evolved to become a more general purpose architecture, and it con-

tinues to evolve.

BRAIN 271

CC 1

CC 2

CC 3

legend:
CC … communication controller

CC 4CC 6

CC 5

FIGURE 12.1
BRAIN’s Braided-Ring Basic Architecture

Limited reliance on coding-based techniques for error detection. It can be ar-

gued that the error detection properties of code-based inline error detection

like CRCs are not strong enough to cover the failure modes of active inter-

stages. Active interstages are defined as relaying stations with active circuits

(e.g., integrated circuits). These typically are a network switch or hub in a com-

munication architecture [250]. Codes like CRCs have been designed for good

error detection coverage of typical failure modes of wires, such as occasional

bit flips and burst errors. The failure modes of interstages and the potential for

correlated failures are unlikely to fit these assumptions. Hence, the goal of the

BRAIN is to not rely on coverage of CRCs or similar error detection schemes

for interstages. This is described in more detail in [250].

Avoidance of dedicated guardian hardware. The requirement for local or central

guardian hardware constitutes an intolerable overhead in cost-constrained ap-

plications. They also introduce complexities when the guardian action needs

to be verified within a deployed system. Similarly, each fault-tolerance feature

needs scrubbing logic – logic that tests whether the fault-tolerance mechanism

is still operational. Such scrubbing logic needs to detect latent faults of the

logic implementing the fault tolerance, in order to ensure the logic is available

when needed. More allegorically explained, scrubbing ensures that the guard

is awake and well when really needed. Distributed, built-in guardian logic as

deployed in the BRAIN can be more easily scrubbed for latent faults during

operation than central or local guardians. Central guardians may additionally

introduce architectural constraints, for example by restricting the order of com-

ponent power-up, etc. Therefore, a core goal of the BRAIN was to remove the

need for any dedicated guardian components.

The BRAIN was conceived as a broadcast flooding network targeting network

bandwidth on the order of 5 to 20 Mbit/s. At these speeds, the intra-node propagation

272 Time-Triggered Communication

(b) half-duplex BRAIN configuration(a) full-duplex BRAIN configuration

FIGURE 12.2
The Two BRAIN Connection Duplex Configurations

delay is minimal, comprising only a few bits of elasticity delay encountered at each

link as the message floods around the segmented medium. A global, time-triggered, a

priori agreed schedule coordinates the transmission sequencing, in a manner concep-

tually similar to the media access of a typical time-triggered bus, i.e., Time-Division

Multiple Access (TDMA). For targeting very low-end applications, the BRAIN can

use half-duplex instead of full-duplex BRAIN links. The half-duplex BRAIN sends

data in both directions on each link medium, while the full-duplex BRAIN sends data

through unidirectional link media. Half-duplex operation is described in [123]. The

half-duplex configuration uses less physical layer hardware, at the expense of cutting

effective bandwidth by about half.

Targeting medium to high performance applications, a recent development in

the evolution of the BRAIN uses store-and-forward propagation to be able to more

efficiently use emerging high-speed serial protocols, such as the gigabit per second

(Gbs) Ethernet. However, the algorithms for this higher-speed variant of the BRAIN

were still undergoing formal analysis at the time of this publication. Therefore, the

details of this development are not discussed here.

Fault Tolerance and Fault Hypothesis

With point-to-point links, the BRAIN topology implicitly addresses the spatial and

other physical layer damage issues that impact bus topologies. The BRAIN topology

is able to tolerate complete loss of communications at any single geographic loca-

tion on the ring. Similarly, any single node may fail and drop out from the BRAIN

without adversely impacting the system level communication (availability and in-

tegrity) guarantees. In addition to these passive failures, the BRAIN protocol also

has been designed to tolerate an active malicious fault. The BRAIN mitigates such

BRAIN 273

faults by leveraging bit-for-bit comparisons between the independent data paths that

exist between the skip and direct links, and/or the two opposing directions of travers-

ing the ring (clockwise and counterclockwise), see Section 12.2.1. In addition, the

BRAIN employs a “brother’s keeper” guardian action, where each node may act as

a guardian for its adjacent neighbors. Note that this is consistent with the original

design goals, since it supports the deployment of guardian actions without incurring

additional component overheads.

The BRAIN originally was designed to tolerate at least one faulty node.1 A

node’s failure mode may be either i) passive (i.e., fail-stop) on any combination of

its ingress or egress links, or ii) actively malicious, where the node acts actively to

corrupt data and/or disrupt protocol operation, e.g., by masquerading as another node

or babbling. In practice, the connectivity of the BRAIN provides tolerance to many

more benign faults, providing service under at least two passive node faults or link

faults. However, to tolerate the active fault, the initial field-bus BRAIN requires the

full connectivity of the non-faulty nodes. A discussion of the BRAIN’s sensitivity to

node and link failures together with a comparison of the BRAIN’s policies with other

protocols is given in [248].

Note that, similar to SAFEbus, the BRAIN has not been designed to tolerate dual

active malicious faults, i.e., where two nodes act in a coordinated fashion to corrupt

data flow and/or disrupt the system. This fault hypothesis is backed by two observa-

tions. Firstly, statistical analysis shows that it is highly unlikely that two faults man-

ifest in identical correlated active failure modes in two independent2 devices within

the very tight time window of self-checking action. Secondly, the combination of

the self-checking forwarding action, the periodically scrubbed guardian function and

potential reconfiguration actions of Section 12.3 are sufficient to tolerate an active

fault for the time of exposure between scrubs.

12.1.2 Minimal Overhead Replication and Input Agreement

In Byzantine-tolerant real-time systems, the bandwidth and scheduling overheads

associated with the Byzantine data exchange and agreement often constitute signifi-

cant network, system and software burdens. This observation created another design

goal of the BRAIN, which was to provide a low-overhead framework to support task

replication and data agreement. To this end, the BRAIN introduces additional mech-

anisms to contain node-sourced Byzantine failures; for example, preventing a node

from supplying different data on each of its outgoing directions. With such fault con-

tainment in place, an inconsistent omission fault model may be assumed for those

messages needing agreement. This reduces the expenses of higher-level agreement

exchanges required for such messages typically used in other Byzantine tolerant pro-

tocols. In place of the fault message exchange and voting typically used in Byzan-

tine agreement, a simpler agreement on reception status may be implemented. This

is a hierarchical Byzantine agreement mechanism, similar to the one developed for

1Later variants are targeting tolerance to two faults.
2This independence can be made arbitrarily large — separate boxes, separate power supplies, etc.

274 Time-Triggered Communication

SAFEbus. The BRAIN also encompasses hardware assistance mechanisms for this

exchange that does not need software interaction (see Section 12.4.1).

12.2 Protocol Mechanisms and Services
12.2.1 High-Integrity Data Propagation

The core service of the BRAIN is the fault-tolerant, high-integrity, high-availability

broadcast distribution of data. This mechanism provides the foundation for all of

the higher-level protocol services. Abstractly, the BRAIN data propagation scheme

is very simple and can be viewed independently of the higher-level protocol ser-

vices. These techniques may also be applicable to other time-triggered protocols such

as FlexRay (see Chapter 6), TTP (see Chapter 5), or Time-Triggered Ethernet (see

Chapter 8).

A conceptual representation of the BRAIN’s high-integrity data propagation is

illustrated in Figure 12.3. At a high level, the BRAIN is best viewed as offering two

concurrent modes of data propagation, with both modes collaborating to maximize

data integrity and data availability. The two modes are Self Checking Data Relay and

Independent Path Data Integrity Reconstitution.

12.2.1.1 Self-Checking Data Relay

The BRAIN’s first propagation mode focuses on inline integrity failure detection, i.e.,

the possible corruption of data during a node’s data relaying action and availability

in the event of a single fault. As illustrated by the long outer arrows in Figure 12.3,

a sending node transmits its message in both directions around the ring (“clockwise”

and “counterclockwise”). Broadcasting a message in both directions provides avail-

ability. A message will be delivered successfully if either one of the directions is

intact (the “Availability OR” in the figure). The independence of these two paths en-

sures that there will always be one success path available from any arbitrary sending

node to any arbitrary receiving node, given a single fault assumption.

If a receiving node gets two copies of a message (one from each direction) that

are different, it must decide which one is good. This decision is supported by the use

of message integrity status provided by an integrity scheme employed within each

direction. This integrity scheme prevents a message from being corrupted in transit

without the message being flagged as suspect. For every potentially faulty compo-

nent within the data propagation path, there exists completely independent hardware,

which checks that this component has not caused any corruption. If corruption is de-

tected, the message is flagged as suspect (i.e., has lost its integrity guarantee). One

instance of the mechanism supporting this scheme is shown in Figure 12.3 as the

“Integrity AND” function for the counterclockwise direction. This is replicated for

every node in both directions.

As a message traverses the ring, it tries to pass through every node using the direct

BRAIN 275

links. Each node is also bypassed by a skip link. For the general case, in a particular

direction, a node receives two inputs, one from the direct link and one from the skip

link. Each node compares the data it receives from its direct link with the data it

receives from its neighbor’s neighbor via the skip link. This bit-for-bit comparison

of all data transmitted ensures that any data corruption injected by a faulty node is

immediately detected. For example, consider the node marked “faulty” of Figure 12.3

corrupting the message transmission from the sending node as it is being relayed. The

erroneous data from the faulty node is immediately detected by the Integrity AND

comparison function performed at the next downstream node, which compares the

direct link output from the faulty node with the original data (sending node) available

on the skip link. This skip-direct comparison is performed by all nodes as the data is

propagated around the ring. Hence, data corruption at any point can be immediately

detected. The status of the propagation integrity comparison is signaled by setting

the value of a status flag at the end of the message. This flag must follow all of the

bits within the message that are checked for integrity.

sending
node

receiving
node

The Availability OR

The Integrity AND

Message’ Message’’

Message

faulty

for node failures

for node failures

Message’’

Message

no integrity
(detected due
to comparison)

correct

selects
correct

message

FIGURE 12.3
Conceptual Brain Operation for Tolerating One Arbitrary Fault

The implementation details for the integrity status flag depend on the particular

physical layer technology used to implement the links (e.g., Ethernet) and whether

the flag is equivalent to a single binary value (i.e., message integrity is intact vs. mes-

sage integrity is not trusted) or is a vector of such binary values, one for each node

276 Time-Triggered Communication

through which the message passes. For vector implementations, the vector can either

be a fixed length (with one element of the vector for each node in the ring) or the

vector can be variable length (growing in size by one element for every node through

which the message passes). Vector implementations enable precise diagnostics to

isolate where in the propagation path the errors are induced. However, it increases

the message overhead and may not be compatible with some physical layer tech-

nologies. For the single binary implementations, an aggregate status of all up-stream

comparisons can be carried by a shared status flag.

It is essential that the setting of the integrity status flag (single binary value or

vector) by all repeating nodes is strictly one-way. That is, repeating nodes are limited

to either propagating the current integrity status value or setting it to “not trusted,”

i.e., they are not allowed to change a non-trusted status back to one that says the

message has integrity. To enforce this one-way behavior, the value of the integrity

status is also checked in the direct-skip link comparison described above. If either

link says that the message integrity is no longer trusted, the relayed message will

have its integrity status flag say that the integrity is no longer trusted. In framed for-

mats, such as Ethernet, the loss-of-integrity status can be signaled by truncating the

frame (e.g., deleting the end-of-frame marker), forcing a detectable error at the end

of message (e.g., using the wrong disparity in 8B/10B encoding) or forcing a frame

check sequence to be invalid (e.g., inverting Ethernet’s CRC field) which causes the

frame to be detectability erroneous by the physical technology used to implement the

links.

12.2.1.2 Independent Path Data Integrity Reconstitution

The BRAIN’s second propagation mode focuses on tolerating a second benign (fail-

stop or omission) failure. The BRAIN is able to tolerate a benign second fault without

any increase in redundancy. This provides the BRAIN an additional degree of fault

tolerance. However, the current evolution of the BRAIN cannot tolerate an active

fault and an arbitrary benign fault at the same time. The first propagation mode pro-

vides for fail-op/fail-stop operation. The second propagation mode adds fail-op/fail-

op/fail-stop operation for benign faults. This is worst-case. The BRAIN can tolerate

many more faults for most cases. For example, the BRAIN can tolerate any number

of benign node failures, as long as no two or more failed nodes are adjacent when

three or more nodes have failed.

This second propagation mode reverses the locations of the “Integrity AND” and

“Availability OR” mechanisms. See Figure 12.4 and compare it to Figure 12.3. In this

mode, the skip and direct links provide increased channel availability, while the In-

tegrity AND is performed by comparing the data a node receives from each direction.

If the data received from both directions matches bit for bit and the data from neither

direction violates the link data encoding nor framing checks, the integrity of the data

received may be “reconstituted.” This allows the data to be used, despite having the

integrity flags from both directions showing that integrity is suspect. The situation

of getting a correct high-integrity message via integrity reconstitution may happen

only if there are multiple benign node failures (fail-omission or broken links). By

BRAIN 277

sending
node

receiving
node

The Availability OR

The Integrity AND

Message

Message
Message

Message
Message

for link failures

for link failures

faulty?

Message
Message

faulty?

The Availability OR
for link failures

no integrity
(detected due
to comparison)

no integrity
(detected due
to comparison)

selects correct message
by comparing messages

from both directions

FIGURE 12.4
Conceptual BRAIN Operation for a Second Benign Failure

leveraging the reconstitution of integrity, a system may lose multiple skip and direct

link connections, yet still be able to deliver high-integrity data to the application.

In the second propagation mode, the Availability OR is implemented by each

node selecting the data from either link to be forwarded, with the loss of integrity

status signaled if the two incoming links do not match bit for bit. This selection can

be arbitrary in most cases. The exception rules for selection are discussed with the

rules for the time sequenced guardian roles in Section 12.3.1.2.

It is emphasized that both propagation modes of the BRAIN co-exist simulta-

neously and there are not any specific mode selections nor additional bandwidth

required to support them both. Therefore, there are three paths that may constitute

a high-integrity data reception, either clockwise or counterclockwise with the inline

integrity status confirmed, or the reconstituted path from the comparison of both di-

rections.

12.2.1.3 Self-Checking Processor Pair Broadcast

The connectivity of the BRAIN that enables the data relaying policies of the BRAIN,

as described above, also can be used to compare the output of two adjacent nodes.

This allows for adjacent nodes to be configured into high-integrity message-based
self-checking pairs. Implementing the paired actions is as simple as configuring the

278 Time-Triggered Communication

communication schedule to make the two halves of a pair transmit in a shared slot

(the time allocated on the media to transmit one message). The synchronous nature

of the BRAIN and the high-integrity forwarding mechanism ensure that the receiving

nodes receive a single high-integrity message when the data sent from the two halves

of the pair are identical. Such a configuration is depicted in Figure 12.5, where the

copies of message “msg a” appears as the copies of a single message at all receivers.

self-checking pair

self-checking pair

A

F

E

D

C

B

m
sg

a‘

msg a’

m
sg

a”

msg a”

(2) Both
halves of pair

send
message in
same time

window

(1) direct links
between pair

used to
coordinate
message

sending time

(3)
propagation

logic in
nodes used

to vote
messages
from pair

(2) direct links
between pair
used for local
consensus on

message

paired nodes also send in simplex
fashion for different msgs

(2), (3):

Example TDMA Sequence

B: msg a’
A: msg a”

slot 1 slot 2 slot 3

A: msg b C: msg c

slot 4

D: msg d F: msg f

slot 10

Example BRAIN
configuration and
message flow of
msg a in slot 1

B
A

(1+2) local consensus
msg sent on direct link

before msg a is broadcast

…

…

TDMA round N

time

TDMA
sequence
repeats

FIGURE 12.5
Self-Checking Pairs

Using the time-triggered network communication primitives to implement the

high-integrity computational comparison presents significant advantages when con-

trasted with other self-checking approaches. Traditionally, high-integrity computa-

tional hardware platforms have required specialized design to “clock step” or “lock-

step” the processing platform. In modern processors, such lock-step comparisons can

often introduce a significant run-time performance degradation. In addition, with the

emergence of multi-core processing engines, the complexity associated with such

comparisons may impact the very feasibility of the lock-step approach. The loosely-

BRAIN 279

coupled time-triggered message-stepping comparison3 of the BRAIN does not suffer

from performance degradation, since the comparison is made at the communication

line rate as a by product of the BRAIN’s normal message propagation mechanisms.

Additionally, the communications-based comparison approach may arguably offer

superior fault coverage, since it detects failures that occur within the communication

hardware itself. It should also be noted that the BRAIN message-stepping scheme en-

ables nodes to selectively perform self-checking or non-self-checking message trans-

missions. As illustrated in Figure 12.5, nodes can operate as message-stepping pairs,

during one TDMA slot (see nodes A and B in slot 1), and the same nodes can make

independent simplex transmissions in other slots (node A in slot 2). This scheme may

provide improved processing hardware utilization, since it provides the freedom to

replicate only safety-relevant software tasks and does not require the full replication

of all computation on the self-checking host.

There are advantages in reducing the tight redundancy coupling required for pro-

cessor integrity mechanisms. For example, in missions and applications where spare

resources are scarce or the logistics pipeline is expensive, systems designers often

strive for “generic sparing” strategies that enable common reconfigurable hardware

to be used in more than one application or mission role. Hence, the ability to config-

ure standard COTS processing hardware into high-integrity fail-silent computational

pairs via a simple change of the TDMA schedule may be very attractive. Addition-

ally, each half of the pair may use dissimilar hardware, providing a path for generic

design failure mitigation. A triple modular redundant variant of the self-checking

scheme is also possible, as presented in Figure 12.6. Using such a configuration,

it may be possible to guarantee fail-operational behavior with a generic processing

fault, while using minimal hardware.

To implement the message-stepping pairs, input agreement is required between

each half of the pair to ensure that a fault entering the two halves of the pair cannot

force each half of the pair to diverge or disagree. To implement such agreement, the

direct connections between the paired nodes may be used. Section 12.4.1 outlines the

use of agreement hardware.

12.2.2 Clock Synchronization, Startup and Clique Resolution

The self-checking data propagation mechanism described above is extensively uti-

lized by the BRAIN’s clock synchronization and startup protocols. Within a BRAIN

network, adjacent nodes act as self-checking pairs to send protocol synchronization

messages. Unlike other protocols that utilize distributed algorithms to vote and con-

verge output from multiple “peer” nodes, the BRAIN adopts a hierarchical proto-

col strategy. In place of a fault-tolerant convergence function, the BRAIN employs

a fault-tolerant priority-based selection function to select a master clock pair. The

selection of a pair is performed once each synchronization interval. It is, therefore,

tolerant to dynamic system membership changes and will reselect an alternative driv-

3Integrity comparisons are done on a message-by-message basis rather than on every clock tick of the

processor.

280 Time-Triggered Communication

TMR set

B

A

G

F

C

H

E

D

SCP pair BCSCP pair AB

SCP pair AC

FIGURE 12.6
Triple-Modular Replication (TMR) Deployed on BRAIN

ing pair when the highest-priority selected master fails. Similarly, when the higher-

priority pair recovers, the BRAIN protocol incorporates mechanisms to ensure that

the recovering pair will assume the running timeline before it resumes its master-

ship. As is generally true for the creation of BRAIN self-checking pairs, clock syn-

chronization self-checking pairs are created simply by including this information in

the schedule tables. Nodes that are not configured to be in the set of potential self-

checking pair clock masters are called “slaves.” The protocol messages sourced from

the self-checking pairs are simple, comprising two fields as noted in Table 12.1. In

the BRAIN, the same message format is used for synchronization and integration,

hence the messages are termed Synchronization-INTegration (SINT) messages.

TABLE 12.1 SINT message fields.

Field Description

TDMA POSITION The TDMA slot counter
PRIORITY The priority of the sending self-checking pair

Within the SINT message, the TDMA POSITION field enables nodes to agree

and integrate on the TDMA schedule phase. The PRIORITY field is used to arbi-

trate among clock-pair masters, in the event that the pairs disagree on timing and/or

schedule phase. The PRIORITY is statically allocated to pairs at design time and the

pair with the highest priority wins. Following any detected contention, the highest

priority pair will continue running; the lower priority pairs will yield and resyn-

chronize according to the content of the higher priority pair’s SINT message. The

timing of the highest priority SINT messages also is used for global synchronization,

with lower priority pairs and slave nodes correcting their local timing with respect to

BRAIN 281

the highest priority master’s SINT message arrival. As discussed in Chapter 4, Sec-

tion 4.2, there is a relationship between precision and drift of synchronized time. The

more frequently an algorithm synchronizes, the tighter the precision but, frequent re-

synchronization may lead to a larger drift of the global time (affecting accuracy).

The BRAIN master/slave-based approach performs better than classical distributed

algorithms because it maximizes accuracy (eliminates the integration of “read error”

suffered by peer synchronization algorithms) and minimizes jitter impact. The time

between scheduled SINT messages (the synchronization interval) is determined at

design time as an engineering trade-off between better clock precision and minimiz-

ing bandwidth overhead, which can be different for every application.

12.2.2.1 Self-Checking Master Coordination

The accuracy and validity of the BRAIN’s leader-elect master/slave synchronization

approach is dependent on the fault coverage of the master clocks. For this reason, the

BRAIN introduces special qualification logic to cross-check a pair’s health prior to

them initiating any protocol traffic. In the BRAIN, all self-checking pairs are formed

from adjacent nodes. Hence, each half of a master-clock pair is connected by the

direct link (private link) that connects the nodes. The pairs use this link to initiate

a pairing rendezvous. This rendezvous is performed by each pair once per synchro-

nization interval and is scheduled to occur just prior to the sending of the associated

pair’s SINT frames. This ensures that the clocks are checked for accuracy before

each half of the pair initiates SINT transmission. To achieve this, as part of a pair’s

rendezvousing action, each half of the pair monitors the timing of its other half. Sub-

sequently, one half of a pair will not support a SINT transmission if the timing of its

partner’s clock fails beyond a configured tolerance.

To ensure clock correctness at start-up, the rendezvous procedure is also per-

formed as part of the protocol startup. On power up, the nodes of each self-checking

pair perform a rendezvous prior to entering a listen-timeout period, i.e., the period

during which the nodes listen and wait to detect running TDMA traffic. If the self-

checking pair nodes complete the listen-timeout without detecting traffic, the nodes

rendezvous again on completion of the listen period. Thus, the duration of the lis-

ten period constitutes the period over which the startup clock frequency monitoring

occurs. To ensure that the clocks are operating within the configured tolerance, both

halves of the pair monitor and cross-check the duration of the listen period as indi-

cated by its partner.

Should listen activity result in a change of schedule phase, i.e., following the

reception of a SINT frame from another master, each half of the pair inhibits SINT

transmission for the first synchronization interval following integration. This ensures

that a full synchronization interval duration is used for clock cross-checking prior to

the pair sourcing of any coordinated SINT messages. Similarly, if one half of a pair

has successfully integrated into running TDMA traffic, it will not support its partner

in the establishment of a disjoint-phase clique. Figure 12.7 illustrates the rendezvous

procedure, showing the sequence of SCP rendezvous (REND) messages used to align

their respective timelines.

282 Time-Triggered Communication

REND

REND

SYNCHRONIZATION INTERVAL/

Or LISTEN PERIOD

REND

REND

SINT

SINT

SCP Clocks Compared

over TDMA/ROUND

Integration period

SINT transmission

inhibited of clock beyond

allowable skew

delta

Drift

Time

Master Clock Selected for

SINT timing

If clocks bounded with

allowable skew

FIGURE 12.7
A Self-Checking Pair Clock Monitoring and Rendezvous

To maximize clock accuracy, the two halves of a pair do not perform mutual

clock averaging. Instead, one of the pair’s clocks is used as the master clock, and all

protocol timing is derived from this single clock. The clock of the other half of the

pair is used only for monitoring, to ensure that the master clock remains within the

expected accuracy. As discussed earlier in Chapter 4, Section 4.2, this improves the

clock accuracy.

12.2.2.2 Connectivity Building and Clique Aggregation

The self-checking leader-elect synchronization strategy described above is concep-

tually very simple. However, it is not sufficient, by itself, to address the multi-hop

and segmented-media topology of the BRAIN architecture. Without mitigation, the

segmentation of the BRAIN may cause startup clique formation. This vulnerability

is illustrated in Figure 12.8, which depicts a hypothetical scenario of how two cliques

could be formed. If the skip links around nodes A and E have failed and these two

nodes are powered-on later than the other nodes, disjoint cliques can form on each

side (because no messages can get past the locations of nodes A and E until they

power-up). Once either of these nodes power-up, a communication path is created

between the two cliques and clique resolution is required. As described in [314],

existing clique resolution protocols (that are based on the properties of a globally

perceived broadcast medium) cannot resolve such clique scenarios in all cases. This

is because the disjoint phases of the nonaligned TDMA schedules can cause “colli-

sions” which prevent nodes from one TDMA timeline from hearing messages sent

by nodes on another TDMA timeline. For example, in Figure 12.8 the power-up tim-

ing of nodes A and E are such that node A joins the right-hand clique (H, G, and

F) and node E joins the left-hand clique (B, C, and D). The nodes A, B, E and F

are called frontier nodes because they are the “outermost” nodes on their respec-

tive cliques. Frontier nodes belong to one clique, but they may hear messages from

BRAIN 283

another clique. These messages are rejected because they don’t meet the timeline

constraints of the clique to which the frontier node belongs.

GH F

E DB C

A

time

Clique 1 – Transmission Schedule

Clique 2 – Transmission Schedule

A

G

F

E

D

C

B

H

FIGURE 12.8
A BRAIN Clique Scenario

To address these issues, the BRAIN approaches the startup problem differently

from previous clique resolution protocols. In place of a monolithic protocol that tar-

gets both synchronization and clique resolution, the BRAIN splits the protocol ac-

tion into two layers. The BRAIN introduces a novel foundation layer in the form of

a constructive connectivity-building and clique-aggregation (CBCA) algorithm that

is used to build network connectivity and clique allegiance between adjacent fron-

tier nodes. As such, the CBCA algorithm is conceived to run underneath the normal

TMDA protocol activity. This means that it is unable to use, and does not need to use,

the TDMA coordinated activity to implement its signaling and/or link arbitration. For

this reason, the foundation of the CBCA algorithm is a simple asynchronous medium

arbitration mechanism. For half-duplex rings, nodes that share an adjacent link are

configured with relatively prime periods of transmission, as illustrated in Figure 12.9.

By using relatively prime periods, for example 200 us and 500 us as shown, it can

be assured that should a collision occur during one transmission, the next transmis-

sion will be collision free (in the fault-free case). Therefore, periodically successful

transmissions will occur from each direction. For full-duplex rings, the “collisions”

occur within frontier nodes, which receive messages that are out of sync with its

TDMA timeline. This form of collision prevents these out-of-sync messages from

being forwarded into the clique.

Similar to SINT messages, the CBCA messages leverage self-checking pair pro-

tection, where adjacent nodes collaborate to signal the CBCA messages. Each fron-

tier node and its nearest neighbor within the same clique form a pair for sending

identical CBCA messages across the frontier.

The transmission of CBCA messages is timed relative to the SINT transmission

schedule of the initiating clique. The decision to transmit CBCA messages is made

284 Time-Triggered Communication

!""#
$%

&""$%

’())*%*(+%

’,’-#.(/0#&

’,’-#.(/0#1

230+#45($65#7%4#489+%: *%%*(+#;())*/0%<#*4#*%#
6$989+400/#4594#%$=%0>$0+4#489+%: *%%*(+#?8(: #

0*4508#/*80;4*(+#@*))#A08*(/*;9))B#%$;;00/

’)*
>$
0#,

’)*
>$
0#-

7

!

C

D1

&

%B+;#
: 9%408%

%B+;#
: 9%408%

’())*%*(+%#94#;)*>$0#
=($+/98B#)*+E%

FIGURE 12.9
CBCA Link Arbitration Resolves Asynchronous TMDA Clique Boundaries

by each node determining if it is on a frontier. The full procedure is illustrated in

Figure 12.10.

a) b) c)

FIGURE 12.10
CBCA Clique Aggregation

In a simple startup scenario (to illustrate the CBCA process), one master-clock

self-checking pair of nodes happens to start up before the other nodes, e.g., nodes 4

and 5 in Figure 12.10. At the beginning of this scenario, these nodes are the master

pair and the frontier nodes. The CBCA process is initiated from this pair, following

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-13&iName=master.img-000.jpg&w=95&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-13&iName=master.img-000.jpg&w=95&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-13&iName=master.img-000.jpg&w=95&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-13&iName=master.img-003.jpg&w=99&h=89

BRAIN 285

the transmission of its SINT message. Because the nodes adjacent to the pair have not

sent or relayed any messages indicating that they are in the same clique as the master

pair, the master pair assumes that they are frontier nodes and initiate the coordinated

CBCA transmissions, sending repetitive CBCA messages on both skip and direct

links. The CBCA message comprises two fields as illustrated in Table 12.2. The

TIME TO NEXT SINT field is updated for each CBCA transmission, relative to the

sourcing-clique’s clock-master’s SINT timing interval, with the values decrementing

as the time of the next SINT transition approaches.

TABLE 12.2 CBCA fields.

Field Description

MASTER PRIORITY The priority of clock-master to which the

frontier node is synchronized
TIME TO NEXT SINT A count-down field that denotes time, or

number of remaining CBCA transmissions

that may occur before the next scheduled

SINT message

When a node adjacent to the master pair powers up and sees identical CBCA

messages on both its direct and skip links, it joins the master’s clique. If the newly

connected node had already been part of a different clique (instead of this power-up

scenario), the node would have compared the priority of the sending clique (as sent

in its CBCA message’s MASTER PRIORITY field) with the priority of the clique

to which it was already synchronized. If the CBCA message had a higher priority,

the node would join the higher priority clique and synchronize to its schedule, i.e.,

defecting from their previous clique/schedule. Following a node’s defection or inte-

gration, it extends the self-checking frontier action with its immediate neighbor not

already in the higher priority clique. This propagates the clique status and associated

priority to its neighbors, which expands the frontier out by one node. This CBCA ac-

tion continues for a duration proportional to the value of the TIME TO NEXT SINT

field received in the CBCA messages. All CBCA action is timed to cease before the

next scheduled SINT message. During the CBCA propagation in frontier expansions,

no other traffic is allowed on the newly converted links. Thus, prior to the next SINT

message transmission, the media among all newly joined nodes is reserved to enable

clean SINT message propagation through all of them. Note that, as the CBCA mech-

anism executes, each node records the status of which neighboring nodes have joined

its clique. Then, the nodes cease CBCA activity on those links that have indicated

membership in its clique, following the next SINT transmission. Therefore, normal

TDMA activity can commence between all nodes confirmed to be in the same clique,

immediately following the next SINT message transmission.

12.2.2.3 Synchronous Mode Clique Aggregation Breakthrough

The CBCA mechanism above is sufficient to mitigate all cliques given a BRAIN

with a single node fault. However, to improve robustness, additional mechanisms

286 Time-Triggered Communication

have been added to resolve dual-link and dual-benign-node failure scenarios. In such

scenarios, it is necessary to utilize the integrity reconstitution mechanisms of the

BRAIN, to qualify integrity of the CBCA status information by using information

received from the two different ring directions. To facilitate CBCA integrity reconsti-

tution, special CBCA “breakthough” slots are added to the normal TDMA schedule.

In a breakthrough slot, each node at a frontier of the clique sends the received CBCA

priority of the neighboring clique, via this TDMA slot. Unlike normal TDMA data or

synchronization slots, these slots are not assigned to individual nodes or pairs and are

not protected by Brother’s Keeper Guardianship (see next section). Instead, all nodes

are permitted to send in these slots. Hence, a suitable data authentication scheme is

required to prevent a single maliciously faulty node from signaling erroneous clique

activity. Such a scheme is described in Section 12.3.2.2.

Given suitable authentication of messages received during the CBCA break-

through slot, all nodes can perform the CBCA priority comparison. If a higher pri-

ority clique is detected via CBCA reconstitution, nodes yield by ceasing to execute

their current schedule and prepare to receive the SINT message from the confirmed

higher priority SINT source. Therefore, by using the CBCA breakthrough mecha-

nism, it is possible to resolve cliques even in the presence of two link faults or two

benign node faults.

12.3 Fault Isolation
12.3.1 Time-Triggered Sequenced Guardian Roles

The basic high-integrity data-propagation mechanisms described in previous sections

are sufficient to protect data during its transmission on the BRAIN fabric. However,

additional mechanisms are required to qualify data as it enters the BRAIN, to ensure

that the BRAIN’s data integrity is consistent for all member nodes. These additional

mechanisms can be viewed as guardian roles that cross-check and police data as it

enters the BRAIN. The specific roles are selected in accordance with the TDMA

schedule and are performed by the active transmitting nodes’ immediate neighbors

(direct links) and neighbors’ neighbors (skip links). Hence, it is called Brother’s

Keeper Guardianship. In synchronous operation, the nodes adjacent to the currently

scheduled transmitter implement guardian enforcement actions. Thus, guardianship

can be pictured as moving around the ring as the TDMA communication sequence

progresses, with Brother’s Keeper Guardians only standing on either side of the cur-

rently transmitting node. Note that the guardian, being an independent neighboring

node, ensures that guardian action is fully independent of the transmitter it is guard-

ing, even if it is embodied in the communications controller hardware. This gives

all the benefits of fully independent redundant guardian hardware, without requiring

the addition of any redundant hardware components (such as central guardians or

dedicated hardware components at each transmitter). Note that using the Brother’s

BRAIN 287

Keeper Guardian strategy, the early limitations restricting slot order and slot size for

bus topology protocols such as TTP and FlexRay can be removed.

The generic guardian role implements the TDMA selection of the schedule trans-

mitted, granting its neighbor access to initiate a transmission, during its assigned

transmission slot. This mechanism prevents a node, disturbing traffic outside its

schedule slot. Additional guardian roles, described below, may also be selected

according to a node’s relative placement to the active sender and/or self-checking

senders, and the data consistency requirements for the schedule slot.

12.3.1.1 Directional Integrity Exchange

The directional integrity mechanism is illustrated in Figure 12.11. It is performed by

nodes adjacent to an active simplex sender to ensure that the sender sends consistent

data in each direction, i.e., the copies of the data sent in each direction are identical.

For a TDMA slot in which a simplex node is scheduled to transmit, each node on

either side of the sender receives data from the sender via their direct links and im-

mediately relays it to the partner guardian on the other side of the sending node via

the skip links that connect them. The guardian nodes also perform an integrity com-

parison of the data transmitted directly from the sending node with the data reflected

via the other guardian. Data integrity is signaled using the BRAIN’s main data in-

tegrity mechanism, i.e., by setting the integrity status trailing the transmission. This

guardian action ensures that the transmitting node sends consistently in both direc-

tions. If the data sent in the two different directions is not identical, both copies of

the transmitted data are marked with integrity loss.

guar

dian

Message
(a)
(no

integrity)

Message
(a)

sender byzantine faulty:
send different data into

different directions

sen-

ding

guar

dian

Message
(b)

Message
(a)

Message
(b)

Guardians “exchange”
msg via sender’s skip link

Message
(b)
(no

integrity)

Guardian

forwards msg

only with

integrity if

sending and

guardian node

data agreeguar

dian

Message
(a) with
integrity

Message
(a)

sender correct:
sends same data into

different directions

sen-

ding

guar

dian

Message
(a)

Message
(a)

Message
(b)

Guardians “exchange”
msg via sender’s skip link

Message
(a)

(with
integrity)

ok

(a) Sender correct (b) Sender byzantine faulty

=
=

FIGURE 12.11
Consistent Data Guardian Exchange

288 Time-Triggered Communication

12.3.1.2 Skip Guardian Link Forwarding

The directional integrity mechanism described is sufficient to guarantee that data

broadcast in both directions around the ring is the same. However, it has the disad-

vantage that it requires a guardian influence on the data transmissions in both di-

rections of the BRAIN. Therefore, under guardian failure, the directional integrity

mechanism may impact communications availability (but, integrity is assured). For

example, consider the faulty guardian (FG) in Figure 12.12. This guardian corrupts

the data in both the clockwise and counterclockwise directions, i.e., the data it is for-

warding directly from the sender and the data it is reflecting to the adjacent guardian

located on the other side of the sender. In this case, the integrity is flagged as lost in

both directions. However, given that data integrity can be reconstituted, this situation

can be mitigated by the nodes adjacent to the guardians. These nodes bias their selec-

tion of the data they forward such that in the event of data conflict/mis-compare the

data from the skip link is forwarded, i.e., the data from the link directly connected to

the sender. This action overrides the normal Availability OR selection of the standard

high-integrity data propagation logic.

As illustrated in Figure 12.12, this mitigation is performed by nodes on each side

of the two guardians. Using this mechanism, the data from the sender propagates,

even with a faulty guardian. If a consistent transmission is made in both directions,

the data reconstitution mechanism performed by all nodes as part of data reception

will accept the data as good, despite the loss of integrity status induced by the faulty

guardian component.

skip_g

guardian

Message
(a)

Message
(a)

data forwarded

from skip

sending node

only

sending

guardian

skip_g

Message
(a)

Message
(a) (no

integrity)

Good data propagates to

enable integrity reconstitution

guardian can

influence integrity bit

in both directions

data forwarded

from sending

node only

faulty (^a)

good messages
available via sending

nodes skip links

Message
(a) (no

integrity)

Message
(a) (no

integrity)

FIGURE 12.12
Skip Guardian Action Mitigate

12.3.1.3 Self-Checking Pair Neighbor Guardian

For the BRAIN’s self-checking pair assumptions to be valid, the output from each

half of the pair must be cross-compared as part of any data validity evaluation. There-

fore, the BRAIN needs to implement enforcement mechanisms to ensure that such

BRAIN 289

A

B
SCP neighbors

only forward

direct links

A B

Reconstitution guaranteed to

receive data from A and B

FIGURE 12.13
Self-Checking Pair Guardian Action

an evaluation is always done. The required roles of self-checking pair neighbors are

illustrated in Figure 12.13. To ensure that data from each half of the pair can be uti-

lized by the integrity reconstitution logic, the data flow from the pair is restricted

such that the nodes adjacent to the self-checking pair only propagate data from the

direct links, with the data received from the skip links used solely for data integrity

comparison. This data flow restriction exists even in the event of the direct link being

“dead,” i.e., indicating no data. As illustrated in Figure 12.13, this restriction prevents

integrity reconstitution from evaluating the data from a single node (which would be

a violation of the integrity separation guarantees for self-checking pairs).

12.3.2 Asynchronous Guardian Roles

12.3.2.1 Startup Enforcement

Prior to entering synchronous operation, the time-triggered guardian roles above are

not applicable. Hence, the BRAIN deploys alternative enforcement actions to provide

the protection during protocol startup. Following power-up, the startup guardian ac-

tion is performed by all nodes. Before protocol startup, the SINT message is the only

message expected to flow around the BRAIN. As outlined above, the SINT message

is a very small message, comprising the frame ID and clock master priority (as well

as information to avoid a single node imitating a SCP (which is discussed later).

Therefore, the guardian is only required to limit the size and rate of SINT message

activity and ensure that no erroneous nodes send messages larger than the SINT mes-

sage. The behavior is illustrated in Figure 12.14.

Initially, a node performs a race-based arbitration on skip and direct links in each

290 Time-Triggered Communication

On detection of traffic
guardian race arbitrates skip

and direct link

erroneous babbleDirect Input

Skip Input

Node Output

Guardians enable SINT length window for each
link at a rate of once every 2 TDMA rounds

Guard. Wind. (Skip)

NOISE good SINT message

Guard. Wind. (Direct)

SINT message

FIGURE 12.14
Startup Guardian Action

direction. Once a link (i.e., direct or skip) is identified as the winner, the guardian

enables data propagation for a window slightly larger than the SINT message. Once

the SINT message window has expired, the guardian blocks the link, truncating any

activity that is still in process. The winning link is then blocked for a period that is

larger than two rounds of the minimum TDMA synchronization cycle. This blocking

action can be viewed as a toggle-based enforcement where, during the blocking pe-

riod, the guardian allows only the non-winning link to take part in arbitration. Once

the blocking timeout expires, the winning link is re-enabled to take part in arbitration

action.

12.3.2.2 Source Authentication

In the asynchronous startup mode and/or in time-triggered slots where guardian ac-

tion is disabled (for example, the CBCA breakthrough slots of Section 12.2.2.3), an

additional source authentication mechanism is required to prevent a node from mas-

querading as two independent sources. Without authentication, a faulty node would

be able to unduly influence the system and potentially disrupt protocol operation.

Many authentication schemes are possible. The key requirement for all schemes is

to ensure that data from a single node is not used for both inputs in cross-checking.

The initial authentication scheme of the BRAIN utilized a simple “port stamping”

scheme. This mechanism required frontier nodes to write their ID into the message,

together with the port of entry (i.e., skip or direct), upon reception. The topology of

the BRAIN ensures that the port stamps are independently applied from each direc-

tion. Since all data used for integrity reconstitution is a function of two directions,

this simple port stamping scheme is single-fault tolerant, requiring two nodes to agree

before the data is validated. Alternative authentication algorithms in the BRAIN can

be based on a hop count [122]. It should be noted that in all cases only the port stamp

or hop count data is used to implement the authentication, and no application data

entering the BRAIN has influence on the authentication decision.

BRAIN 291

12.3.2.3 Additional Guardian Fault Containment Behavior

Short-Circuit Detection

One vulnerability flow through guardian mechanisms, such as those used by the

BRAIN, is undetected short-circuits between links or within nodes, that may render

the node’s respective guardian ineffective (e.g., by the short-circuit bypassing the

blocking or flag-setting actions of a guardian). Although such failures may be miti-

gated by the active fault scrubbing of the guardian hardware, the overhead and system

complications of in situ guardian testing is often non-trivial, potentially introducing

significant software and system complications. The period of guardian scrubbing can

also become a limit of system reliability. Therefore, the BRAIN implements contin-

uous scrubbing. This scrubbing uses dissimilar link encoding, which is similar to the

bus encoding of SAFEbus [81]. Each link that might short to another link in a way

that could bypass a guardian function is given a trivial “cryptographic key” that is

different from the keys used by any of the other links to which it might short. These

keys are used to “encrypt” each link’s data streams using some trivial algorithms

such as XOR. If the physical layer technology uses block-coded symbols, such as

8B/10B, the “encryption” is done before the block encoding, in order to maintain

the desired spectral characteristics of the block encoding. Each encrypted signal that

meets in some geographic locality must have a different key. Six keys are sufficient

for most physical layouts of the BRAIN. This means a three-bit key.

12.4 Diagnostic and Agreement Services
12.4.1 Host Task Set Agreement

The message-stepping self-checking pair configuration of the BRAIN is an efficient

scheme for software replication and output comparison. However, for such a scheme

to be effective, the replicated task sets on both halves of the self-checking pair pro-

cessor need to be replica determinate. It is also important to prevent a fault from

entering the pair and upsetting the pair’s consistency (agreement of state between

the two halves of the pair). Therefore, the BRAIN utilizes the direct link that con-

nects configured self-checking nodes to implement input state agreement. Using this

private link, both halves of the pair agree on the data they received. Given the incon-

sistent omission fault model of the BRAIN data exchange, this agreement mechanism

is similar to the SAFEbus syndrome exchange, where the nodes simply agree on the

received status. A full value exchange is not required. This mechanism ensures that

any data not received consistently by both nodes is dropped by both nodes. Hence,

data entering inconsistently is prevented from causing state divergence within the

pair.

292 Time-Triggered Communication

12.5 Validation and Verification Efforts
The braided-ring topology of the BRAIN is arguably optimal with respect to hard-

ware and bandwidth usage for fault-tolerant systems. The reliability of braided-ring

topologies has been investigated in the literature and research on this related to the

BRAIN is described in [122]. Summarizing, the additional links provide significant

additional reliability, especially for long mission times. In [248], the reliability of the

braided-ring is compared to dual-star topologies, evaluated in the context of extended

dispatch scenarios very similar to the time-limited dispatch in engine control systems

as described in ARP5107 [287]. The results are that braided rings significantly out-

perform dual stars in typical architectures and deployment scenarios with respect to

reliability, while using less hardware.

Certain aspects of the BRAIN, such as the BRAIN high-integrity forwarding

logic, have been model-checked using SRI’s SAL (Symbolic Analysis Laboratory).

12.6 Example Configurations, Implementations and Deployment
Considerations

The BRAIN is still an evolving concept. It has a wide variety of possible implemen-

tations. It can use almost any physical layer technology to create its links. It can be

half-duplex or full-duplex. The links within a single BRAIN can use multiple types

of physical layer technologies, as long as the net speed and the type of duplexing are

the same.

As discussed earlier, a high-speed variant of the BRAIN is also under develop-

ment. Targeting higher speed protocols, such as 100Mbs or Gbs Ethernet, this variant

of the BRAIN incorporates both store-and-forward and cut-though messaging. It is

also targeted to tolerate multi-fault scenarios, i.e., to be tolerant to simultaneous ac-

tive and benign node failures. Although many of the core protocol mechanisms of

this BRAIN variant are the same as those discussed above, this new variant of the

BRAIN replaces the sequenced guardian roles of Section 12.3.1 with a more aggres-

sive source authentication scheme. Such a strategy enables greater availability to be

leveraged from the same BRAIN connectivity and amount of hardware components

while simultaneously reducing protocol complexity. Targeting full-duplex connectiv-

ity, this high-speed variant also removes the CBCA algorithm, since the possibility

of store-and-forward messaging enables messages to propagate without regard for

TDMA phase alignment.

A potential physical layer BRAIN deployment option is an optimization that is

possible with respect to BRAIN media routing. Often, the conceptual diagrams of

the BRAIN lead readers to consider that it introduces a large cabling overhead. How-

ever, the cabling of the BRAIN does not have to be routed separately, and the BRAIN

BRAIN 293

does not suffer any loss of dependability when cable layout is optimized. For exam-

ple, consider the physical wiring of Figure 12.15. Here the physical routing of skip

links passes through the same shield as the direct links and the skip connections are

routed through the neighboring nodes. This results in simple physical ring topol-

ogy with respect to wiring and connections. It should also be noted that the number

of connections for a BRAIN is also equivalent to a dual-star despite the BRAIN’s

greater dependability.

The BRAIN has yet to be deployed in series production or completely proto-

typed within a full-up system. However, the efficiencies offered by the BRAIN ap-

proach may be attractive to high-integrity control architectures. In addition, as Eth-

ernet and Time-Triggered Ethernets become more pervasive, hybrid approaches of

mixed BRAIN and COTS technology may present advantages; for example, by al-

lowing a high dependability by-wire infrastructure to coexist with non-critical Ether-

net. This may allow generic Ethernet to be used for system maintenance and loading,

allowing for the use of COTS and standard laptop or desktop derived test equip-

ment, while still providing very strong assurance and fault tolerance guarantees for

the by-wire backbones. In addition, the BRAIN’s ability to support message-stepping

self-checking pairs, together with its guaranteed inconsistent omission fault handling

for data exchange, may also allow for significant reduction of software complexity

and associated overheads. With its various flavors and forms, a version of the BRAIN

can be chosen to fit a wide variety of cost and performance targets, while providing

a guaranteed level of fault tolerance with the least amount of hardware possible.

294 Time-Triggered Communication

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

0

0

communi-
cation

controller

in N
1

in NN
2

3
out

4
pass

5

6

7

8

connector
left neighbor

pass
1

out
2

3
in NN

4
in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N
1

in NN

2

3

out
4

pass

5

6

7

8

connector
left neighbor

pass

1

out

2

3
in NN

4
in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N
1

in NN

2

3

out
4

pass

5

6

7

8

connector
left neighbor

pass

1

out

2

3
in NN

4
in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N
1

in NN

2

3

out
4

pass

5

6

7

8

connector
left neighbor

pass

1

out

2

3
in NN

4
in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N

1

in NN
2

3
out

4

pass

5

6

7

8

connector
lef t neighbor

pass
1

out
2

3

in NN
4

in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N

1

in NN
2

3
out

4

pass

5

6

7

8

connector
lef t neighbor

pass
1

out
2

3

in NN
4

in N

5

6

7

8

connector
right neighbor

in N
1

2

3
in NN

4
out

out

in NN

in N

5

6

7

8

Vcc1

0

GND

0

communication
controller

in N
1

in NN

2

3

out
4

pass

5

6

7

8

connector
lef t neighbor

pass

1

out

2

3
in NN

4
in N

5

6

7

8

connector
right neighbor

legend:
 N … neighbor
 NN .. neighbor’s neighbor

skip links are routed
via neighboring nodes
(no extra cabling)

FIGURE 12.15
Cabling of BRAIN Routed within Neighboring Nodes

13
ASCB – Avionics Standard Communications
Bus

M. Paulitsch
EADS

CONTENTS

13.1 Protocol Overview . 295

13.2 Protocol Services . 296

13.2.1 Communication Services . 296

13.2.2 Clock Synchronization, Restart, Re-Integration and

Integration . 296

13.2.3 Diagnostic Services . 299

13.2.4 Fault Isolation . 299

13.2.5 Configuration Services . 300

13.3 Protocol Parameterization . 300

13.4 Communication Interface . 300

13.5 Validation and Verification Efforts . 301

13.6 Example Configurations and Implementations . 301

13.1 Protocol Overview
ASCB stands for Avionics Standard Communication Bus and is a proprietary commu-

nication protocol for the avionics domain of general, business and regional aviation

aircraft. The general aviation market comprises small multiple seater aircraft, the

business aviation market turbo engine powered comfortable small aircraft for busi-

ness clients, and regional aviation aircraft are single-aisle, medium aircraft flying re-

gionally with up to about 100 passengers. Honeywell has developed ASCB for fault-

tolerant periodic, real-time communication between avionic modules of its Primus

Epic R© avionics suit deployed in such aircraft. ASCB is the primary bus in Primus

Epic. There are multiple ASCB versions available, some even standardized [108], the

latest being version D (abbreviated ASCB-D). Detailed information on Primus Epic

is available in [135, 222, 351, 61, 318, 348].

295

296 Time-Triggered Communication

13.2 Protocol Services
ASCB-D is based on an architecture consisting of four Ethernet buses, two for each

side of an airplane. Each of the Network Interface Controllers (NICs) is assigned

to one side of the airplane. The NICs on the left side are connected to the left side

primary, the right side primary and the left side secondary (backup) bus. The NICs

on the right side are connected to the right side primary, the left side primary and the

left side secondary (backup) bus. Each NIC can listen to and transmit messages on

its two buses on its side. Each NIC can also listen to but not transmit on the primary

bus of the other side. For example, a left side NIC can transmit and receive on the

left side primary and backup bus, and listen-only on the right side primary. It is not

connected to the right side backup bus. From the viewpoint of one NIC, the NICs on

the same side are called onside NICs; NICs of the other side are called xside NICs,

where xside stands for cross-side. Figure 13.1 depicts the structure of the main buses

and connections of NICs.

13.2.1 Communication Services

ASCB-D is a TDMA-based protocol where a minor frame (the fastest period) is run-

ning at 80 Hz. Figure 13.2 depicts the bus traffic of one bus. First, master NICs send

synchronization pulses (sync pulse) followed by periodic traffic (Ethernet frames).

The beginning of each frame is called a frame tick. The physical layer of the buses is

based on 10Mbit/s Ethernet using twinax cables and connectors. Figure 13.2 shows

the minimum period (called minor frame) on the bus. Two sync pulses (special Ether-

net frames with synchronization information) are the first frames on the bus. The two

time servers that are connected to this bus send these sync pulses. After this, individ-

ual NICs (i.e., both the time servers as well as the time slaves) send based relative to

frame tick according to a predefined dispatch schedule, where the frame tick is the

beginning of a minor frame. The synchronized time of NICs is used for avoidance of

collisions on the network. ASCB is part of the Primus Epic architecture, which does

not leverage sub-frame timing (i.e., on actions based on time offsets within the minor

period). Chapter 14.2 will explain details.

13.2.2 Clock Synchronization, Restart, Re-Integration and Integration

Clock synchronization, startup or re-integration in Primus Epic are basically the

same, as ASCB deploys a master-selection protocol between four cooperating mas-

ters called time servers. Each of the NICs (including time servers) needs to select

one time server. The arbitration on which of the four time servers is selected by

other NICs is based on a protocol of cooperating time servers leveraging strike coun-

ters and predetermined unique constants in case of conflicts between multiple time

servers (multi-master conflict) or no master is active (mastership transition). The time

server that first or last counts to its predetermined constant depending on the strike

ASCB – Avionics Standard Communications Bus 297

NIC left 2 NIC right 2

NIC left 3

NIC left 4

N
IC

left1

N
IC

 right 1

NIC right 3

NIC right 4

side 1
(left)

side 2
(right)

No 1 backup bus No 2 backup bus

No 2
primary bus

No 1
primary bus

Legend: NIC … Network Interface Card
… Termination
… RX-only connection
… TX/RX connection

Master 1

Master 2 Master 3

Master 4

FIGURE 13.1
ASCB Architecture

counter communicates its decision of being the timing master, which is then followed

by other time servers. Startup has to complete in 200 milliseconds [351].

In more detail, each time server sends on both of its onside buses and receives

the messages on the xside primary bus. A time master only receives messages on

one of the onside buses (backup or primary). A time master sends a sync pulse at an

offset from its frame tick (i.e., the start of its frame period) based on its ID. Each time

server can derive the time difference between another time server’s frame tick and

its own by measuring the time difference between that server’s sync pulse reception

time and the expected reception time. Each time server can choose to synchronize

to another time server’s sync pulse by adjusting its local clock to account for the

measured time difference with another time server’s sync pulse so that their frame

ticks are synchronized.

The protocol provides two strike counters at each time server, called mastership

298 Time-Triggered Communication

time

12.5 ms (80Hz) minor frame period

sync
“pulse”

individual
periodic frames

frame
tick

frame
tick

FIGURE 13.2
ASCB Minor Frame Period

transition and multi-master strike count, with individual unique thresholds. The time
master is the currently active time server driving the common time-base for all NICs,

hence the names multi-master and mastership transition strike counters. The incre-

ment operations of the two strike counters are mutually exclusive. Each time server

counts for different periods (using the mastership transition strike counter) in case

no time master is detected and sends a sync pulse including indication of mastership

(claiming the elected time server is the time master) on the bus in case the master-

ship transition count reaches the local unique threshold. Once the first one succeeds

in sending this, other correct time servers back off and follow the time master. During

the period of no time master, time servers run autonomously. If the situation occurs

where multiple time servers claim mastership, a time server claiming mastership in-

creases its multi-master strike count. The time server with the largest multi-master

threshold wins. A time server where the multi-master strike count reaches the thresh-

old and multiple time masters are still present, gives up mastership and restarts. In

case of connectivity issues, the synchronization master that does receive multiple

synchronization masters does not back off and receives the mastership over other

less well connected masters. This second situation already assumes multiple errors.

In case this also fails, the remaining units choose one master and follow its local

master. The protocol is not guaranteed to resolve multiple failure scenarios.

The external timing master test is performed at certain points in time and is a test

that is based upon the receiving sync pulses from other time masters and the relation-

ship of sync pulses to each other. Examples for relationships are tests for periodicity,

temporal gap between successive synchronization signals, for errors in the order of

arrival of synchronization signals and for absence of particular synchronization sig-

nals. The external time master test should prevent any time master from selecting

a timing master with unacceptable timing integrity and detects the absence of the

timing master. The self test implements a self-monitor and de-activation component

in the algorithm. Each time server validates its own timing integrity and de-activates

itself when it does not have the required integrity. The time server performs a sync

pulse wraparound monitor of the frame counter, a frame tick periodicity monitor and

a local clock integrity monitor. The break sync action in Figure 13.3 implies that a

master that is sure that it is the correct master—based on these locally performed

tests (external and self test)—does indicate this to other time masters via sending

ASCB – Avionics Standard Communications Bus 299

a synchronization signal claiming mastership or indicating that it wants to take over

mastership. Figure 13.3 provides a graphical overview of the ASCB startup and clock

synchronization algorithm.

start

Synched to time
master

Has time
master failed
external test

Has another
time master

begun sending?

A priori time
master still
sending?

Self-test fails?
Sync to new time

master
recover

Cease sending sync
signal

Self-test fails?

Send time master
signal

Rcv time
master signal
from another?

Self is the time
master?

Begin count toward
constant

Received
new time master

signal?

Cease sending sync
signal

Complete count
toward constant

Declare self time
master

yes

no

yes

yes

no

yes

nono

Break sync

no

no

no

no

yes
yes

yes

no

yes

yes

FIGURE 13.3
Flow Diagram of ASCB/D Synchronization, Integration, and Startup Algo-

rithm [348]

Please note that the algorithm may have changed slightly due to reported inci-

dents tracing back to synchronization [96].

13.2.3 Diagnostic Services

Examples of diagnostic services are already explained above in the synchronization

section, where time servers check their correctness based on externally stimulated

events. Similarly, NICs perform built-in extensive self-tests at power-up and some

continuous self-tests during operation. Heartbeats for power and microcontrollers

are deployed and are based, e.g., upon the frequency of data transmissions.

13.2.4 Fault Isolation

Fault isolation in ASCB is implemented by the separation of data buses and listen-

only connections to primary buses as a first defense. As a second level of defense

serve secondary data buses that are limited to one side only. Transceiver functions

for different buses are separated.

300 Time-Triggered Communication

13.2.5 Configuration Services

Configuration of ASCB is performed via a special network, a separate local-area

connection. This is used to configure local configuration tables of networks and pro-

cessors. This network can also be used for monitoring of operation.

13.3 Protocol Parameterization
The communication schedule is composed of multiple minor frames (12.5 millisec-

onds) in powers of two up to 1 second. Exact sending patterns are designed and

automatically scheduled by a tool called ESCAPE (Essential System Configuration

and Architecture for Primus Epic). Data groups, so called parameter groups, are han-

dled as a unit, meaning that they are only used if the correctness and completeness

checks of all elements of these groups are correct. A correctness check is, for exam-

ple, whether the error detection codes associated with this data group are correct. A

data group is a logical unit, which also implies that a group does not necessarily need

to be transmitted in the same Ethernet frame.

Data elements sent on the network are scheduled at frame level (frame is used

here in the sense of a frame period). That is, the location of a message (Ethernet

frame) within the frame period does not matter for end-to-end latency calculations

for applications. The data transmitted during a frame period is not immediately used

within this frame period, but only in the next frame period. This allows deploying

of very simple scheduling algorithms at the expense of delay. Effectively, the frame-

period-level scheduling approach decouples any dependencies between the network

timing table and operating system timing tables. Consequently, the delay from one

data element in an application is always larger than a minor frame period. Actually,

as this principle is deployed based on the frequency of the application, the delay is

always larger than the frame period of the application at which the application is run.

13.4 Communication Interface
The communication interfaces in Primus Epic are generally using ping/pong buffers.

These are double buffers, where one buffer is used by the application in one period,

while the other buffer is used for updates by the network in the same period. This

way network traffic does not overwrite the data that is currently used by the applica-

tion and vice versa. At a predefined point in time, namely at the period boundaries,

the role of the buffers changes and the other buffer that has been reserved by the

application is now used by the network for sending and receiving.

ASCB – Avionics Standard Communications Bus 301

13.5 Validation and Verification Efforts
ASCB core algorithms, such as clock synchronization, have been verified under the

covered fault assumptions and is described in [351, 61]. ASCB has been developed

using the common applicable aerospace standards for design including DO-178b.

13.6 Example Configurations and Implementations
ASCB has been used in the Primus Epic avionic platform in multiple aircrafts. Details

are mentioned in Chapter 14.

14
Industrial Applications

M. Paulitsch
EADS Innovation Works

E. Schmidt
TTTech Automotive GmbH

C. Scherrer
Thales Rail Signalling Solutions

H. Kantz
Thales Rail Signalling Solutions

CONTENTS

14.1 Introduction . 304

14.2 Time-Triggered Communication in Aerospace . 304

14.2.1 Requirements . 305

14.2.2 A General Discussion of Time-Triggered Communication to

Meet Requirements . 311

14.2.3 Use of Time-Triggered Communication Networks in

Aerospace and Space . 315

14.2.3.1 SAFEbus in Boeing 777 . 316

14.2.3.2 ASCB in Primus Epic . 321

14.2.3.3 Honeywell’s Modular Aerospace Controller 325

14.2.3.4 TTEthernet in Orion . 326

14.3 Time-Triggered Communication in Automotive Applications 333

14.3.1 Typical Design of Automotive Applications 337

14.3.2 Migration from CAN to FlexRay . 339

14.3.2.1 Event-Triggered Approach – FlexRay as CAN

Replacement . 340

14.3.2.2 Time-Triggered Approach —

FlexRay-Synchronous Task Execution 342

14.3.2.3 Discussion . 344

14.3.3 Practical Experience with the Time-Triggered Approach in

Automotive Subsystems . 345

14.4 Time-Triggered Communication Services in Railway Applications . . . 346

303

304 Time-Triggered Communication

14.4.1 Railway Applications . 346

14.4.2 Requirements on Railway Applications . 348

14.4.3 Requirements on Communication Systems 349

14.4.4 Generic System Architecture . 350

14.4.4.1 TAS Control Platform Redundancy Architecture 351

14.4.4.2 TAS Control Platform Communication System . . 351

14.4.4.3 TAS Control Platform Fault Tolerance Layer 353

14.4.4.4 Connectivity . 354

14.4.5 Application of Time-Triggered Protocols in the Railway

Domain . 355

14.4.5.1 Interlocking: Architecture (Components,

Services, Interactions) . 355

14.4.5.2 Field Element Controller . 356

14.4.5.3 Availability Concept . 357

14.4.6 Safety Concept . 357

14.4.6.1 Timing Requirements . 357

14.4.6.2 TTP-Configuration and Schedule 358

14.4.7 Conclusion and Outlook . 359

14.1 Introduction
This chapter describes industrial applications of time-triggered communication. We

present products and real-world systems, which are examples for the use of the time-

triggered networks that were introduced in the previous chapters. In particular, we

discuss the advantages and disadvantages of the properties of time-triggered commu-

nication protocols in these examples. The properties of time-triggered protocols such

as composability, determinism and predictability are most useful in safety-critical ap-

plications, where these properties facilitate the realization of fault-tolerance, timeli-

ness in all specified fault and load scenarios, rigid validation and certification. There-

fore, we present examples of safety-relevant systems from the aerospace, automotive

and railway domains. For each domain we outline a typical overall system architec-

ture and explain the role of time-triggered communication networks in this architec-

ture. We discuss the requirements of the domain and explain how these requirements

are met by the time-triggered communication protocols.

14.2 Time-Triggered Communication in Aerospace
Historically, digital data communication and time sharing of bandwidth emerged as

a way to reduce weight after digital computers were introduced in the 1970s re-

placing analog data communication and point-to-point networks between then of-

Industrial Applications 305

ten stand-alone “boxes” associated with aircraft functions. The three major aircraft

avionics functions are Communication, Navigation, and Surveillance, where commu-

nication refers to communication of the cockpit and ground and not databuses. Today,

these airplane functions are often integrated on computers in order to share not only

databuses but also computing power. A concept often referred to as Integrated Mod-

ular Avionics (IMA) and expanding to include more than these traditional functions

like utility control systems.

Digital databuses are (mostly) common standards confined to avionics addressing

special physical, electrical and logical interfaces and interactions. They are used by

avionics functions or subfunctions and lately also cabin and utility functions to send

internal data between each other. Data may comprise sensor and actuator information

(control traffic), the results of internal calculations, system commands, information

from internal storage, audio and video data, graphics, in-flight-entertainment and

passenger service data, relayed data or any information that may be generated by a

computational device.

Compared to other ground or commercial communication, the difference is of-

ten related to dependability requirements (high integrity, availability and safety) due

to safety-critical applications. Yet, not all dependability requirements are for safety-

critical applications, but the cost of diverting a flight due to failure may create eco-

nomic availability requirements. Another key characteristic of aerospace databuses

is the amount of certification required to ensure that the very high level of integrity

and safety required for aviation is reached and maintained.

Early databuses have been characterized by single transmitter and multiple

transceivers. ARINC429 [10] is the most prominent example of this architec-

ture. Such single-transmitter-and-multiple-transceiver architectures led to two basic

classes of equipment. One with single transmitters and single receivers like a sen-

sor or a switch panel. The second equipment class required information from many

receive channels (like flight management) and led to many wire bundles (often 50

to 100 receive channels). Large wire bundles led to the additional desire to multi-

source databuses. These, however, potentially suffer from the fault effects problem

that needed management by the network and system architect. Functions previously

independent were then with a certain (low) probability related to each other and

could lead to loss or corruption of data. Or even worse, with some finite probability

a function could impersonate data of another (higher criticality) function.

One other aspect of fault effects is temporal behavior, the special focus of this

book. In aerospace, databuses need to guarantee availability of the databus within

specific time intervals for a function to meet its response time independent of faults

being present.

14.2.1 Requirements

This section elaborates on the general and special network-related requirements in

aerospace: First, major high-level requirements that characterize the aerospace op-

erational and development environment; second, more network-specific ones. The

306 Time-Triggered Communication

general requirements are partially dependent on each other. Hence, in the classifica-

tion below, categories shall not be seen in sole isolation when applied later on.

Long life-time. The aerospace industry is characterized by long life-time. Aircraft

stay in operation for 30 years or more (sometimes even for over 50 years).

While certain parts like avionics are upgraded and redesigned more often, the

required operational life of electronics is still significantly higher than current

consumer electronic life-time.

Safety culture. The safety culture in aerospace is driven by minimizing accident

numbers and high publicity surrounding accidents due to large number of fa-

talities. This safety culture continuously refines cockpit features to increase

situational awareness of many possible dangerous incidents (like avoidance of

mid air collisions, potential runway overrun information, warning of controlled

flight into terrain, flight envelop protection, gust detection).

Design process and certification. The small production numbers and serious con-

sequences of any failure make the aerospace industry a highly regulated one

with the certification process as a way to ensure quality assurance and to ensure

that high dependability requirements are met.

High availability and reliability. High availability and reliability are driven by the

safety requirement and economic considerations. Aircrafts’ high cost require

operational hours of as high as 50% of a day. Dispatch numbers of 99.5% or

more for long operational sequences of a fortnight are common requirements

for new aircraft. In other words, an aircraft shall complete a schedule of 14

days with 12 operational hours a day nearly all the time (only 0.5% or less

are allowed maintenance actions). And this required in an environment with

extremely high safety requirements.

Weight. Low weight is a critical design target, because fuel and ultimately money

highly depend on weight. Often the term “SWaP” for “size, weight and power”

is used. SWaP shall be minimized, which ultimately stems from the fact of

requiring low weight designs.

Cost. Cost is a significant driver in general aviation and the helicopter market. Cost

has also become a driver in recent years in the air transport area with the in-

creased competition and reduced ticket prices. This cost aspect not only trans-

lates to decreased development cost and unit prices, but also decreased main-

tenance and service cost.

Automation. An aircraft becomes more and more automated to offload duties from

the pilot and to reduce stress on the aircraft, but the pilot is ultimately re-

sponsible for flying the aircraft and in charge at all times and monitors safe

operation. Increased automation requires functional integration and increased

cooperation and, hence, increases communication needs between functions.

Industrial Applications 307

Specific databus functional and non-functional application requirements result

from the above high-level operational and development requirements. Additionally,

databuses now transport a multitude of different traffic classes on the same network,

which are important to understand in order to achieve the best system viewpoint. The

following presents an augmented list of databus requirements derived from above,

experience in time-triggered network development and safety standards and Advi-

sory Circular 20-156 [95]:

Long life-time and cabling. The initial installation and maintenance of wire har-

ness is recognized as a significant life-cycle cost. Twenty to 30 years or more

of service life contributes to the issues such as corrosion, chaffing and vibra-

tion that eventually degrade the wiring infrastructure. Electronic components

also need long life-time (say, at least 10 years) in order for aerospace to be

interesting and in order to assure maintenance support.

Any multi-source (more than one transmitting node) buses present an oppor-

tunity to further drastically reduce the number of aircraft wires, and thus save

significant cost and weight. In addition to the reduction of cabling, the goal is

to minimize the number of databus types in an airplane for development and

maintenance reasons in order to minimize development cost and ease mainte-

nance.

Safety. Databuses must comply with legal rules like FAR/CS 25.1309 and guidelines

like ARP4754 and ARP4761 in order to determine how the databus will affect

safe operation of the aircraft. This determination shall consider the following

aspects:

Bus partitioning: The most significant challenge for multi-source topologies

is in the fault-effects domain, as the network has become a shared re-

source. For databuses that highly integrate multiple functions one must

accept that data of varying criticality will be transported by the new net-

work. The importance of separation of traditional guidance and control

parameters (those which keep the aircraft flying) is obvious. But, multi-

source topologies must also assure that non-critical – and thus for cost

reasons given less stringent scrutiny by certification processes – never

disturb critical communication.

Databus availability and reliability: Databus availability and reliability re-

quirements meet the safety requirements, like low-probabilistic failure

targets, even when considering reconfiguration modes or mechanisms.

Typically safety-related requirements for a databus (without replication

considerations) are in the order of 10−5 to 10−7 failures per hour and less

likely than 10−9 for replicated system buses.

Failure reporting: Failure detection, reporting and management features

such as the use of redundancy features, detecting the loss of nodes, the

support of transparent shadow nodes and the support of parallel nodes. A

node is a databus component capable of processing, sending and receiv-

ing over the databus.

308 Time-Triggered Communication

Common cause: Common cause (including common mode) and cascading

failures: For each aircraft, a common cause analysis must be performed

to address faults that go beyond databus fault analysis. This common

cause analysis includes a zonal safety analysis, particular risk analysis

and a common mode analysis. The location of line replaceable units

(LRUs) and the routing of wiring between those components are critical

in the achievement of acceptable zonal safety and determining the partic-

ular risk analyses. Redundant channels of the databus must not be routed

through zones where a probable risk may cause loss of all channels. To

protect databus applications, electrical and mechanical means to isolate

databus channels shall be used. One common example of common cause

considerations is power supply and lightning effects analysis. Given the

latest developments of increased use of composite hulls, scrutiny in the

area of electromagnetic effects and common cause influence is important.

Verification and validation: Databus requirements must be verified and val-

idated, which includes DO-178B/ED12B [277], DO-254/ED-80 [278],

DO-160E [279]. Verification should ensure that the requirements meet

the implementation and validation that the requirements and implemen-

tation meet the intended design and match system requirements. DO-

254/ED-80 concerns design assurance guidelines for complex electronic

devices. DO-178B/ED12B ensures that the design and development as-

surance of software related to the databus and databus architecture is met

with the respective safety levels. DO-160 ensures that emissions and sus-

ceptibility (like electromagnetic compatibility, lightning) are met and de-

scribes environmental conditions and test procedures. Properties of the

electrical signals, cabling, shielding, interconnects, etc., play a critical

role in susceptibility and emission of databuses. For validation purposes,

functional tests of the integrated databus shall ensure that it meets its

intended function. Tests should also include failure and recovery proce-

dures and ensure that built-in tests function correctly. A simple example

of a supporting functional test is when protocol messages on a databus

have a special format and include basic protocol information. This alle-

viates the functional test by allowing information about the state of the

network at all times.

Fault containment: Fault containment is one form of preventing common

cause effects (especially cascading failures). Containment of faults con-

cerns multiple aspects. Integrity of claimed addresses is one concern in

order to prevent masquerading of equipment. This is an important—

sometimes overlooked—requirement, as otherwise one function has an

inadvertent effect on another function (more on this as part of the data

integrity paragraph below). But also physical effects like over-voltage

need to be considered to contain faults.

Data integrity. Many functions not directly in the path of traditional control impose

criticality requirements. The situational awareness of the flight crew (e.g., dis-

Industrial Applications 309

plays) is a good example. Presenting misleading data to the flight crew is a

prime concern. More subtle requirements emerge regarding pilot workload (la-

tency, response time) or assuring the pilot’s trust in the system (irregularities,

unconfirmed faults). Integrity requirements deal with a system probability to

introduce errors into the system, which for databuses can be end systems (also

called nodes) and the physical media connecting the buses. In order to handle

such a data integrity requirement, the databus needs to evaluate and adequately

design the maximum error rate per byte or message expected for transmission,

the effectiveness of error detection techniques, ensure that the time integrity is

met and no stale or old data is able to remain or be on the network (data too

long in the system), consider buffer overflow and underflow aspects, order-

ing integrity is assured (no sequencing errors), and authenticity of the sender

is maintained. It is understood that no perfect system exists, but the residual

probability of faulty operation is sufficiently low to be of no concern to the

system.

Protection of integrity can, e.g., be achieved by a robust physical layer, but

also with more intelligent techniques like repetitive transmission (temporal

redundancy), successive sample filtering or periodic built-in test (BITE) for

single channels. For periodic BITE, the integrity is checked periodically during

operation. Also, multiple channels can be used for integrity or availability.

While availability is more often the goal of replication, integrity can be the goal

(a good example of integrity via replication is the braided link of the BRAIN

described in this book in Chapter 12 or the replication for self-checking of

SAFEbus described in Chapter 7).

A very important requirement to ensure integrity is ensuring that existing or

latent fault mechanisms are regularly “scrubbed” for their correct operation.

Otherwise, the long life-time of equipment in aerospace needs to consider

that the monitor can become faulty, which—given the long life-time—is very

likely. Again, testing the monitor equipment or function at regular intervals

(e.g., when powering down the avionics) is a necessary step to ensure high

integrity.

Availability. Safety-related availability requirements are described above. Addi-

tional availability requirements surface due to the cost of flight diversions or

flight cancelation, which can approach a million dollars for loss of revenue and

the expense of re-routing and providing food and lodging. Such availability re-

quirements due to economic reasons are quantified as aircraft dispatch targets.

The dispatch target is the probability that an aircraft will successfully dispatch

and is likely 99.5% or more for modern aircraft. Acceptable dispatch is defined

during design time by engineering analysis through a minimum equipment list

(MEL). The MEL is additionally tightly related to safety. In addition, a quite

complex supply chain and associated cost have led to requirements of extended

dispatch to minimize having to store significant amounts of spare equipment

at remote airports. As a consequence of allowing dispatch with faults, modern

310 Time-Triggered Communication

databuses need to assure that dispatch despite a fault does not cause interfer-

ences, which is discussed by the fault containment requirement above.

Performance considerations. Performance considerations in databuses are endless

and include end-to-end delay, effective bandwidth use (effectiveness of data

usage pattern needs mapped to actual physical bits and bytes), ability to sched-

ule the data effectively on the network, ability of determining maximum traffic

utilization for timely data delivery. Also physical layer properties need close

attention, especially as databuses often stretch through the whole aircraft with

multiple interconnects due to different aircraft production sections (up to ten

are possible) and lead to loss of signal strengths.

A property especially related to time-triggered protocols is the need of deter-

minism and bounded latency. These are driven by audio and video require-

ments due to human factors, but also due to tight control loops that run over

the network. Any variation may introduce additional test and/or functional mit-

igation (more robust control approaches).

Performance considerations also need to consider testing and loading. Flight

test equipment often needs detailed insights into the data exchanged and hence

high bandwidth data rates. Similarly, software or data (like maps) loading

needs to be considered. Airliners want load times in the order of 10 minutes for

volumes of a few hundred megabytes. Such requirements likely need parallel

load sessions and sufficient bandwidth.

Tables 14.1 and 14.2 present some databus traffic classes of modern air trans-

port airplanes. The figures are rough estimates only and depend on the actual

system architecture. The table excludes in-flight and passenger entertainment

services as these are likely separate from avionics type databuses and follow

different economical cycles. Yet, it should be mentioned that requirements for

in-flight services – if including passenger announcements – have tight timing

constraints and, hence, could be well suited to time-triggered networks.

Configuration management. Each individual aircraft databus configuration could

potentially be and likely is unique. Due to this uniqueness, any changes to the

databus configuration may result in an adverse effect on the databus perfor-

mance and reliability. In order to prevent adverse effects, manufacturers must

establish a configuration management process and guidelines for the databus.

Such installations will also require maintenance personnel and installers to use

manufacturers’ approved configuration databases and tools when maintaining

or re-establishing the airworthiness of the databus configuration. It is impor-

tant to address the system configuration management items when developing

your databus such as ensuring there are mechanisms of configuration control

for continued operational safety and configuration control of the modifications

by in-service maintenance or design changes.

Security assurance requirements. Many modern databuses introduce potential se-

curity risks that are not common in traditional networked systems. First, they

Industrial Applications 311

are better known publicly and, hence, the vulnerability potential is greater than

in the past. Second, many newer system architectures integrate many more

functions and, hence, may be open to access by non-trusted personnel. Hence,

access security and data protection of databuses should be addressed. When

airborne systems interact with the outside world through a databus or network,

they may become vulnerable to potential malicious attacks such as software

viruses. Each databus should be evaluated for this potential risk and, depend-

ing on the risk, adopt appropriate security techniques and controls to protect

access to the airborne software with techniques like encryption techniques,

authentication and access control policies and intrusion detection. Similarly,

critical information used and stored in airborne systems should be addressed

by information verification methods to ensure that the data have not been cor-

rupted during loading and storage (for example, using cyclic redundancy check

and checksum) and use of audit trails to account for data accessed.

Internet protocol. An aircraft Flight Management System (FMS) is the flight crew’s

equivalent of an industrial control plant’s control center or an engineer’s work-

station. The design and progressive improvement of such systems has de-

manded more and more computer resources. A strong argument exists that

the architecture (and capabilities!) surrounding such systems be made similar

to that of networked workstations, file servers and the like. More and more

movement of data with Internet protocols is finding support in avionics due

to widespread knowledge of engineers (important during development) and

abstractions similar to conventional network architectures. Usage of known

principles and concepts also ensures familiarity of the databus technology by

the engineers during development.

Environment. High-speed avionics networks will likely be contained in the pres-

surized portion of an aircraft and need to meet the modest requirements of

industry documents (DO-160E) and temperature -40 to +85, etc. Field-buses

on aircraft have more severe requirements, however.

14.2.2 A General Discussion of Time-Triggered Communication to
Meet Requirements

Many of the above-mentioned requirements are not specific to any bus approach –

be it time-triggered or not. In the following, we discuss some potential advantages of

time-triggered communication, but also potential drawbacks. First to the advantages:

• Time-triggered communication requires that system resource allocation needs

to be made explicit early in the design phase. This is done by creating a

schedule that is used to trigger events. This naturally fits the requirements

in aerospace of early planning of resources. The very positively seen plan-

ning requirement and assignment of resource is sometimes taken against time-

triggered communication and argued as imposing unnecessary planning too

3
1

2
Tim

e-Triggered
C

om
m

unication

TABLE 14.1
Exemplary traffic classes categorization with properties for regional or transport category airplane (Part 1).

Class Typical Applications Bandwidth Smallest Laten-

cies

Periodicity Criticality

Traditional

Control

actuation and sensing,

flight control, flight

guidance, air data,

inertial navigation, radio

altimeter

low volume traffic for

each individual subclass;

overall 1 to 2 Mbit/s

few milliseconds 100 Hz to 1 Hz traffic is highly critical

as applications include

moving aircraft flight

surfaces; fully testable;

full separation; 10−9

failures/hour or less
Utility

Control

environmental, cabin

pressure, waste

management, power

distribution

low volume traffic

individually; overall

around 1 Mbit/s

ten to 100 mil-

liseconds

100 Hz to 1 Hz power distribution and

cabin are highly critical,

others - like waste

management - have

economical availability

requirements that are

due to minimization of

cost due to flight

diversions
Video exterior cameras for

ground maneuvering

and airborne and ground

situational awareness;

interior cameras for

monitoring passenger

situations or supporting

safety investigations

tens of Mbit/s (vary

depending on

compression and video

technology); recording

requires much lower

bandwidth

hundred

milliseconds or

more (but

compression of

video may reduce

network latency

even further)

potentially moni-

tor update rates

(25-50Hz)

likely low; inherent

fault tolerance in video

due to slowness of

human visual

processing

IndustrialA
pplications

3
1

3

TABLE 14.2
Exemplary traffic classes categorization with properties for regional or transport category airplane (Part 2).

Enhanced

Vision

Systems

various sensors to

augment what the flight

crew sees due to

inclement weather,

airborne pollutants, etc.

likely tens of Mbit/s hundred

milliseconds or

lower; latencies

may need to be

lower than video

traffic

potentially moni-

tor update rates

(25-50 Hz)

critical for landing and

departure and ground

maneuvering; likely

10−9 for short critical

phases

Graphics graphics deal with

information displayed to

the flight crew with

sub-classifications for

graphics, like traditional

displays (parametric

driven), remote clients,

client-server

(implementing paperless

cockpit or moving

images like weather

radar and terrain views),

and image-based

communication support

few kilobits/sec for

parametric data through

multiple Mbit/s for

some remote clients, to

20 Mbit/s for moving

terrain systems (if

graphics module and

display are separated,

then even much higher

display rates)

latency of few

milliseconds

displays in the or-

der of 10 to 30 Hz

criticality extremely

high for air data (10−9

or lower); high

criticality for engine

indications, navigation

data, etc.

Audio cockpit intercoms, crew

intercoms, passenger

announcements, digital

radios, aural alerts,

maintenance

attachments

around 10Mbit/s

(higher bandwidth due

to higher quality

compared to telephone,

multi-channel, and

voice inflections driven

by application-level

tolerance checks with

side tone approaches

10 milliseconds

for some

channels

100 Hz cockpit, aural alerts,

and air-ground critical

to 10−9

314 Time-Triggered Communication

early in the process. Such perception may be exacerbated by missing or less

than optimal tooling support. Similarly, the requirement of creating schedules

can be perceived as arduous when “playing around with” the system in early

phases of system designs.

• It can only be argued that the requirement to create early resource allocation at-

tempts strengthens the safety case and system development approach. For fair-

ness reasons it needs to be mentioned that this design approach is by no means

confined to time-triggered systems; early planning can easily be achieved by

non-time-triggered systems.

• Time-triggered systems in general reach a good bandwidth utilization for sys-

tems with regular traffic as can be often seen in aerospace and control oper-

ations. Rate-constraint traffic, i.e., traffic that is periodic but not triggered by

time (see Section 14.8), cannot even in the best case achieve similar maxi-

mum utilization levels due to missing alignment of sending times and related

queueing needs and long sending queues. This increased bandwidth utilization

obviously is only an advantage when communication bandwidth is in need and

expensive.

• An integrated system approach where applications take advantage of the

availability of coordinated behavior based on time allows restriction of the

application-level testing cases to a few manageable parameters especially with

respect to timing variations. Long possible variations for non-time-triggered

systems require more test cases to cover all possible timing variations. De-

pending on the variations, this may reduce testing requirements significantly.

There are also the following perceived or actual disadvantages:

• Time-triggered communication requires a minimum set of operational nodes

for fault-tolerant system-level algorithms such as synchronization and startup.

This minimum set of nodes requires considerations that may become signifi-

cant during certain system-level states such as shortly after power up or when

considering maintenance modes where only sparse resources are available. All

possible operational modes may complicate definition of available resources

and may lead to design trade-offs between synchronization and power-up con-

siderations that are only present for time-triggered operation.

• For time-triggered systems, the system fault tree likely includes faults related

to synchronization. This leads to the impression that synchronization is an ad-

ditional burden on the system. This can but does not have to be the case. It

may be that the hazards are only more obvious with synchronization, but are

naturally present for time-triggered and non-time-triggered systems.

• The rigidity of synchronization and the TDMA-based approach can be seen as

a disadvantage. This perception is re-enforced especially by the unnecessary

requirement of being only able to send once per TDMA round due to early

Industrial Applications 315

bus guardian approaches (like in TTP/C; see Chapter 5). In such cases, often

present asymmetric bandwidth needs – where sensors only need to send a few

bytes and central computers need a lot of bandwidth – cannot be easily met

or require a work-around or less efficient network schedules. This early re-

striction has been recognized and been removed by later generations of time-

triggered systems such as FlexRay or TTEthernet.

• Similarly, future extensions of time-triggered schedules are argued to be much

harder due to either having to change existing schedules and re-test existing

system behavior or not having the freedom to change otherwise. While such

arguments are true, time-triggered systems are not the only systems to “suf-

fer” from such additional needs. Other system-level approaches have to retest

all applications on the bus in all cases as their timing changes all the time.

As such the perception of a restriction is more a planning requirement that

if enough freedom for future extensions can be reserved in early versions of

created schedules, time-triggered systems have an advantage.

Summarizing, the use of time-triggered communication in aerospace is not a

requirement per se, but some requirements are more easily and more efficiently

achieved with time-triggered systems. This is especially true if early in the design

cycle, the system-level approach is clear and all involved parties are aware of the

design needs of time-triggered systems. At the same time, time-triggered communi-

cation introduces system-level constraints into the architecture that may not always

be easily dealt with. Time-triggered systems are perceived to introduce a relationship

between components that may not be of advantage. Also, algorithms for synchroniza-

tion of time-triggered systems generally require a minimum operational set of net-

work resources (nodes). These introduced requirements need to be known for design

of aircraft systems. If so, time-triggered communication can be a very efficient way

to minimize resource requirements and allow reduced testing efforts during system-

level integration.

14.2.3 Use of Time-Triggered Communication Networks in Aerospace
and Space

This section describes a couple of cases where time-triggered communication is used

to the advantage of the system. In nearly all of these approaches it becomes clear that

the combined effort of all designers at different system levels leads to an advantage

for the airplane design.

The following platforms are described in more detail below.

• Boeing 777 and the use of SAFEbus

• Primus Epic and its use of ASCB

• TTP’s use in the Modular Aerospace Controller

• Orion and the use of TTEthernet

316 Time-Triggered Communication

14.2.3.1 SAFEbus R© in Boeing 777

The avionics architecture in the Boeing 777 is characterized by functional integra-

tion compared to predecessor aircraft. Classical avionics at that time had a federated

avionics architecture, where a set of functions is implemented in one or more line re-

placeable units. In the Boeing 777, this has been replaced by a more integrated archi-

tecture where multiple sets of functions are combined in fewer line replaceable units

(LRUs) all in common cabinets instead of many separate boxes. This Integrated Mod-

ular Avionics (IMA) is formed around the concept of powerful processing modules

with a deterministic operating system that hosts many applications. This integration

offers many benefits, such as lower weight, lower power consumption, increased reli-

ability, less frequent maintenance and greater flexibility. Yet, because functions share

hardware resources, greater care must be taken to ensure they will operate correctly,

even if co-resident functions fail. Integration increases the risk that unwanted inter-

actions among the functions residing on the shared hardware will lead to unforeseen

failures. This is the engineering challenge of integrated architectures [136].

An integrated cabinet typically is larger than a federated LRU, but smaller than

the sum of all LRUs that the cabinet replaces. The separate functions in a cabinet

share a power supply, general and special input/output (I/O) units and processing re-

sources. To increase availability or integrity, functions can be replicated in multiple

line replaceable modules (LRMs) or in multiple cabinets. The attraction of the inte-

grated architecture is the economies that can be achieved by sharing resources, like

power, mechanical housing, processing and I/O.

The core avionics of Boeing 777, also called AIMS (Aircraft Information Man-

agement System), attempts to make the execution environment of each function in

the cabinet as much like the environment in the discrete LRU as possible. Essen-

tially, all shared resources in the cabinet are rigidly “partitioned” to ensure that one

function cannot adversely affect another under any possible operating condition, in-

cluding the occurrence of faults or design errors in the functions. The best way to

ensure adequate partitioning is via strict deterministic control.

Functions must be partitioned both in space (memory and I/O) and in time. Deter-

ministic control over the partitioning of space means that it can be guaranteed that no

function can prevent another from obtaining adequate resources like memory space

and that the resources are assigned to one function only. In the case where some

memory space is assigned to one function, this means that it cannot be corrupted

by another function. Pre-allocated memory areas with hardware-based memory pro-

tection such as memory management units (MMUs) prevent contention for memory

space. Deterministic control over the partitioning of time means that it can be guaran-

teed that one function’s changing demand for hardware resources will never prevent

another function from obtaining a specified minimum level of service and that the

timing of a function’s access to these resources will not be affected by variable de-

mand or by the failure of another function [79].

Figure 14.1 provides an overview of one of the Boeing 777 AIMS cabinets. The

cabinet comprises three—at that time powerful—Core Processor Modules (CPMs)

for computing tasks, running display, graphic and data conversion gateway applica-

Industrial Applications 317

tions. One module is dedicated especially to communication (including flight deck

communication) and four identical modules to I/O. Other modules like local power

modules support all modules located in a cabinet. Furthermore, three slots (for one

CPM and two Input/Output Modules (IOMs)) are reserved for future growth. The

replicated applications hosted on AIMS are as follows, along with the number of

redundant copies of each application per shipset in parentheses [355]: Displays (4),

Flight Management/Thrust Management (2), Central Maintenance (2), Data Com-

munication Management (2), Flight Deck Communication (2), Airplane Condition

Monitoring (1), Digital Flight Data Acquisition (2), and Data Conversion Gateway

(4).

Applications in AIMS use the following shared platform:

1. Common processor, power supply, and mechanical housing

2. Common input/output ports

3. Common backplane bus (SAFEbus) to move data between CPMs and between

CPMs and IOMs

4. Common operating system, built-in test (BIT) and utility software

The CPMs are based on AMD 29k RISC microprocessors using an AMD 29050

for AIMS-1 and HI-29KII for AIMS-2. Each CPM operates two processors in a lock-

step configuration, which compares all output of compute applications for consis-

tency similar to SAFEbus. If an error is detected, an error is flagged and all process-

ing is halted ensuring that erroneous data is not propagated to other modules. Once

errors are processed, errors are logged, and recovery is attempted. Figure 14.2 depicts

the configuration of self-checking processors with SAFEbus.

The predictable time-driven operation of SAFEbus is extended to the processor

and operating system. The scheduling of the operating systems is static and table-

driven in order to ensure timely partitioning and minimize unwanted interactions

between applications running on the same processor. A processor cyclically executes

a schedule where different partitions (applications or parts of applications) are as-

signed different time slots and can use assigned hardware during this period. The

time slots of applications (also called partitions) are fixed similar to the time slot

of messages on the bus. This means that the dispatcher at partition level is purely

time and table-driven without any other influence leading to rigid temporal separa-

tion. Within the partition time slices, one or more tasks (called processes in [143])

may run, which can be scheduled more flexibly and do share resources. Tasks of one

partition may not require separation as they belong to the same partition and, hence,

application. The principles of operation and standardized interfaces applied to AIMS

have been standardized in ARINC 653 [143, 145, 144].

Scheduling of AIMS is described and proposed in [51]. Real-time repetition rates

for applications range from 1 Hz to 80 Hz. Synchronization between the AIMS pro-

cessors is used to control latency and allows the system to “hand over” data at points

during the repetition cycle (also called frame). When data is shared during cycles

and the processors and the network are synchronized, the latency can be minimized.

318 Time-Triggered Communication

CPM No 1
Displays
Graphics

DCG1

I/O No 1

CPM No 2
Displays
Graphics

DCG1

I/O No 2 I/O No 3 I/O No 4

Commu-
nication
DCMF
FDCF

DFDAF
CMCF
DCG2
QAR

CPM No 3
ACMF
FMF

DCG2

SAFEbus

Legend:
DCG ... Data Conversion Gateway
ACMF … Aircraft Condition Monitoring Function
FDCF … Flight Deck Communications Management Function
DFDAF … Digital Flight Data Acquisition Function
DCMF … Data Communication Management Function
CMCF … Central Maintenance Computer Function
QAR … Quick Access Recorder
I/O … Input/Output Module
CPM … Core Processor Module

FIGURE 14.1
Overview of One AIMS Cabinet Modules and Function Allocation [227]

Industrial Applications 319

FIGURE 14.2
SAFEbus Architecture Overview (Courtesy of Honeywell)

Yet, computation and communication are dependent on each other when creating a

schedule and can pose a significant challenge for getting a feasible computation and

communication schedule that meets all deadlines and ensures data consistency (i.e.,

neither a process nor the network writes data to a common buffer at the same time).

In order to get an idea of the scheduling problem in AIMS, about 3000 unique data

items had to be moved with their required frequency in each cabinet. This resulted in

17,000 total messages per period in all cabinets including messages due to oversam-

pling requirements for cabinet-external interactions.

The AIMS cabinets are just one part of the overall avionics. The integrated cabi-

nets are connected to the airplane interfaces via a combination of ARINC 429, AR-

INC 629, display buses and discrete I/O channels (see Figure 14.3; note that for clar-

ity ARINC 429 and discrete channels are not shown). In addition to the cabinet, other

flight deck hardware elements that make up the AIMS system are six Flat Panel Dis-

play Units, three Control and Display Units, two Electronic Flight Instrument Sys-

tem (EFIS) Display Control Panels, one Display Select Panel, two Cursor Control

Devices and two Display Remote Light Sensors. Not all are depicted in Figure 14.3.

The system bus in Boeing 777 is mainly ARINC 629 [9], a non-time-triggered, but

periodically driven system bus. Boeing 777 avionics is synchronous only within each

cabinet (in the domain of ARINC 659), but not at an airplane level.

The synchronization of the bus and software also assists debugging and vali-

dation. First, due to the nature of SAFEbus’ independent determinism, a function

experiences the same system timing whether the cabinet is fully populated or nearly

empty. Second, since each processor in a cabinet is synchronized to the bus, the func-

tions running in different processors are implicitly synchronized and timing errors at

application level will be more quickly exposed, making the system simpler to debug.

In asynchronously scheduled multi-processor systems, such timing problems show

up as intermittent failures, which can be very costly to track down and make it impos-

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-000.jpg&w=334&h=158

320 Time-Triggered Communication

tenibaCSMIAthgiRtenibaCSMIAtfeL

System
ARINC 629

Fly-By-Wire ARINC 629

Left
Middle

Middle 2

Left
Middle

Right

Left
MCDU

Center
MCDU

Right
MCDU

Left
Outboard
Display

Left
Inboard
Display

Primary
EICAS

Seconda-
ry EICAS

Right
Outboard
Display

Right
Inboard
Display

Legend:
EICAS … Engine Information and Crew Alert System
MCDU … Management Control and Display Unit
AIMS … Aircraft Information Management System
ACE … Actuator Control Electronics
PFC … Primary Flight Computer

ARINC 659 - SAFEbusARINC 659 - SAFEbus

ACEs PFCACEsACEsACEs
PFCPFCs

1
2
3
4

Inter-Cabinet Buses
ARINC 629

Many other
avionics and

utility systems

Right

Some flight
control

systems

Engine-
related

systems

Display Buses

FIGURE 14.3
Boeing B 777 Avionics Overview (Courtesy of Honeywell)

Industrial Applications 321

sible to validate the system. Third, whenever the system is stopped or single-stepped,

it passes through a succession of clearly defined states. The clear relationships be-

tween the processes, which are defined by the SAFEbus table, make it easier to trace

behavior [79].

Many of the elements of Boeing 777 have led to ARINC standards such as the

cabinet backplane, SAFEbus has been standardized as ARINC 659 [8]; the system

bus as ARINC629 [9]; ARINC Report 651 “Design Guidance for Integrated Modular

Avionics” is the top-level design guide for IMA.

Boeing 777 is said to be the first but not last plane to leverage IMA extensively.

Related to SAFEbus, VIA (Versatile Integrated Avionics) is a derivative of AIMS and

also uses SAFEbus on the Boeing 737NG, Boeing 717, McDonnell Douglas MD10,

McDonnell Douglas MD90.

14.2.3.2 ASCB in Primus Epic R©

Primus Epic is one of Honeywell’s avionics platforms for general, business and re-

gional aviation. The general aviation market comprises small, multiple-seater air-

craft; the business aviation market mainly consists of turbo-engine-powered, com-

fortable, small aircraft for business clients; and regional aviation aircraft are single-

aisle, medium aircraft flying regionally with up to about 100 passengers. Honeywell

deploys the Primus Epic R© avionics suite in such aircrafts. In one instance, Primus

Epic is also deployed on a helicopter. The biggest market, however, is business avi-

ation. Specifically, Primus Epic is used on the following certified airframes: Agusta

AW139 (helicopter), Cessna Citation Sovereign, Dassault Falcon 2000DX, Dassault

Falcon 2000LX, Dassault Falcon 900DX, Dassault Falcon 900EX, Dassault Falcon

900LX, Dassault Falcon 7X, Gulfstream 350, Gulfstream 450, Gulfstream 500, Gulf-

stream 550, Gulfstream 650, Raytheon Hawker 4000, Embraer 170/175, Embraer

190/195. Further aircrafts using Primus Epic are under development.

Primus Epic is an avionics suite consisting of single or multiple racks and cab-

inets with integrated circuit cards/modules, which are installed in slots in the cabi-

nets. Each module can contain one or more functions. Each cabinet’s configuration

can vary by the number of modules installed in each cabinet and the functions loaded

into the modules. There can be multiple racks and cabinets installed on the aircraft.

The software loaded into the modules determines the functionality of the systems

modules. The Modular Avionics Unit (MAU) is a hardware cabinet containing field-

replaceable modules that represent the “building blocks” of the Primus Epic system.

The MAU incorporates input/output (I/O), processing and database storage modules

linked to ASCB and LAN aircraft-wide networks via the NIC modules. Primus Epic

deploys a concept called Virtual Backplane, meaning that the physical location (e.g.,

cabinet) of a module is not important. All data generated by any one function within

the system is “globally” available to any other function. This makes the MAU flexible

and adaptive, allowing for more options in locating and mounting equipment on the

aircraft. The integration of processing into a single processing unit (in the meaning

of a card) means that it can be shared to perform multiple tasks previously requir-

ing individual processors. This increases the integration results in improved power,

322 Time-Triggered Communication

weight, reliability, maintainability and volume. The Primus Epic system redundancy

can support multiple redundancy concepts, among others a dual-dual replication ar-

rangement for system redundancy [318].

Summarizing, Honeywell claims that deployment of Primus Epic with its Mod-

ular Avionics Unit (MAU), modular radio cabinets, and flat panel displays provides

the following advantages over existing avionics suites mainly due to integration and

improved technology deployment:

• Lower total acquisition costs

• Higher reliability, dispatchability

• Improved maintainability

• Lower weight, power

• Lower wire count, installation costs

• Increased functionality

• Large growth capability

• Lower pilot workload, increased safety

• Open architecture by supplying development kits to third party module suppli-

ers

Figure 14.4 provides a high-level diagram of Primus Epic’s compute and on-

board communication architecture. Primus Epic in this example consists of multi-

ple MAUs (Modular Avionics Units). ASCB-D is depicted as one network in Fig-

ure 14.4. The detailed four-bus diagram can be found in Figure 14.6. Furthermore,

a LAN is shown, which is used for system maintenance, diagnostics, software and

table loading tasks, and a printer. The LAN is an Ethernet 10Base2 network. In each

MAU one or two NICs connect the system-level data sent on ASCB with the back-

plane databus, a version of Compact PCI (industrial version of PCI derated to 25

MHz being 32-bit-wide). Power modules provide local power to the modules in the

cabinet. I/O cards provide interfaces to sensor and actuator data as well as integrate

other more federated aircraft systems into the Primus Epic architecture.

Figure 14.5 shows a picture of one Primus Epic cabinet (MAU).

Figure 14.6 depicts an example Primus Epic deployment with two MAUs in the

center. Many peripheral, display, utility, sensor and actuator systems/devices are also

shown.

Primus Epic distinguishes itself from other avionics platforms in that it deploys a

special operating system (OS) called DEOS, which stands for Digital Engine Operat-
ing System. DEOS is a DO-178B level A operating system deployed in FAA-certified

environments. It allows multiple software applications/levels to execute on the same

processor and provides time and space (memory, I/O) partitioning. Associated with

DEOS is a consistent software development method throughout engineering using

Industrial Applications 323

FIGURE 14.4
Primus Epic Buses (Courtesy of Honeywell)

FIGURE 14.5
Primus Epic Cabinet (MAU) (Courtesy of Honeywell)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-001.jpg&w=334&h=189
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-002.jpg&w=332&h=195

3
2

4
Tim

e-Triggered
C

om
m

unication

FIGURE 14.6
Primus Epic Example System Diagram (Courtesy of Honeywell)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-003.jpg&w=294&h=174

Industrial Applications 325

COTS and custom tools that help in isolating software from hardware. DEOS sup-

ports reduction of re-validation and verification efforts of software that changes.

DEOS differs from earlier ARINC 653 [143, 145, 144] systems in that it uses

preemptive fixed priority (PFP) scheduling, and consequently the time partitioning

model includes preemption. The most well known PFP algorithm is Rate Monotic

Scheduling [202], where tasks with higher rate have higher priority. Additionally,

DEOS supports dynamic thread and dynamic time partition allocation. Upgrades of

DEOS slack and time partitioning lead to several improvements. For example, about

a threefold increase in communication throughput between a processor and a remote

file server and approximately a sevenfold reduction in the amount of a priori reserved

execution time required for response times of noncritical applications were reported.

Also, certain display tasks were able to achieve higher average refresh update rates

using slack. DEOS algorithms provide robust time partitioning capabilities, enabling

the safe co-hosting of COTS software with safety critical software without decreases

in the COTS software performance [33].

The concept of slack stealing has been a unique feature in safety-critical op-

erating systems deployed in aerospace and is deployed in DEOS. It enables many

improvements like higher processor utilization and quicker response times. Slack

stealing is a preemptive processor scheduling algorithm that delays the execution of

high-priority periodic tasks to improve response times of aperiodic tasks provided

the periodic tasks will not miss any of their deadlines. When the set of periodic tasks

is fixed, there is predictable slack inherent in the execution timeline, known as time-

line slack, for threads scheduled using Preemptive Fixed Priority (PFP) scheduling.

Timeline slack can be calculated offline and table lookups can be used at runtime, in

combination with other quantities, to quickly determine the amount of time a periodic

task can be delayed and still meet its deadline. Slack stealing also makes available

reclaimed slack, or equivalently unused worst-case compute time of periodic tasks at

the priority at which the compute time was initially reserved [33].

The key for the success of slack stealing in DEOS are the relatively high worst-

case execution times compared to actual average execution times. Slack stealing

boosts processor utilization efficiency and reduces response times significantly. As

can be imagined, slack “moves” the actual execution time of tasks within a frame pe-

riod. This may be a good illustration to readers why Primus Epic does not deploy sub-

frame-level scheduling. As described already in Chapter 13, sub-frame-level schedul-

ing is a concept denoting the fact that data sent on a network is used by an application

with its frame-period. This may tightly couple processor and network execution time.

As slack requires some “freedom” of moving actual task execution times within its

frame period, Primus Epic designers have chosen not to leverage end-to-end worst-

case latency improvements obtained by deploying sub-frame-scheduling, but rather

leverage the slack of execution time to boost performance. Each approach has its

advantages, but both cannot practically be deployed at the same time.

326 Time-Triggered Communication

Legend:
PSM … Power Supply Module
IOM … Input/Output Module
CPM … Core Processor Module
SFM … Special Function I/O Module
pS … Power Supply

FIGURE 14.7
Concept behind Modular Aerospace Control (MAC) [345] (Courtesy of Honeywell)

14.2.3.3 Honeywell’s Modular Aerospace Controller

The Honeywell Modular Aerospace Control (MAC) has been developed using TTP/C

as a backplane databus for intermodule communication. For engine control, MAC

facilitates simplified overspeed and uncommanded thrust protection. Honeywell has

created the MAC platform having re-usable modules in mind. Module functions are

scaled to the control needs of multiple applications. Furthermore, reduced develop-

ment cycle times are possible due to reuse. This reduces non-recurring cost by reuse

of modules. The core architecture comprises multiple modules (i.e., cards) connected

by TTP/C scalable within a wide range of anticipated use cases. The replication level

for each module is scalable to the needs of the application for this one module. If one

compares this to the most prevalently existing dual-lane engine control dependabil-

ity paradigm where everything is deployed at the same dual replication needs, this

can be more efficient. In addition, this reduces recurring cost. Figure 14.7 depicts

the concept behind MAC. Figure 14.8 compares traditional dual-lane and the MAC

distributed engine control.

MAC modules are partly pre-qualified and, hence, decrease certification cost.

Furthermore, MAC supports pro-active obsolescence management by enabling a

building block approach where obsolete modules can easily be re-developed and

exchanged due to well-defined interfaces. Furthermore, TTP/C not only should en-

sure proper communication, but also partitioning between modules. This supports

deterministic integration and keeps efforts low.

MAC is deployed in the FADEC of F124 used, for example, on Alenia Aermac-

chi’s M-346. M-346 is an advanced/lead-in fighter trainer. MAC is also used for the

engine control of General Electric’s F110 Turbofan deployed, for example, on newer

generations F-16 Fighting Falcon.

Industrial Applications 327

I/O
M

o
d

u
le

#1

Host
Processor

Bus
Interface
Controller

I/O Conditioning

M
ai

n
P

ro
ce

ss
in

g
C

o
re

Host
Processor

Bus
Interface
Controller

P
o

w
er

S
u

p
p

ly
 M

o
d

u
le

Host
Processor

Bus
Interface
Controller

Power and
I/O Conditioning

I/O
M

o
d

u
le

#2

Host
Processor

Bus
Interface
Controller

I/O Conditioning

S
p

ec
ia

lF
u

n
ct

io
n

I/O
M

o
d

u
le

Host
Processor

Bus
Interface
Controller

I/O Conditioning

S
p

ec
ia

lF
u

n
ct

io
n

 I/
O

M
o

d
u

le

Host
Processor

Bus
Interface
Controller

I/O Conditioning

I/O
 M

o
d

u
le

#2

Host
Processor

Bus
Interface
Controller

I/O Conditioning

I/O
 M

o
d

u
le

#1

Host
Processor

Bus
Interface
Controller

I/O Conditioning

P
o

w
er

S
u

p
p

ly
M

o
d

u
le

Host
Processor

Bus
Interface
Controller

Power and
I/O Conditioning

M
ai

n
P

ro
ce

ss
in

g
C

o
re

Host
Processor

Bus
Interface
Controller

 Bus Channel A

Bus Channel B

Lane A- Sensors and Actuators

Lane B- Sensors and Actuators

I/O Conditioning

Host
Processor

Bus
Interface
Controller

Peripheral
Processor

Power and
I/O Conditioning

I/O Conditioning I/O Conditioning

I/O ConditioningI/O ConditioningI/O Conditioning
Power and

I/O Conditioning

Host
Processor

Bus
Interface
Controller

Lane A- Sensors and Actuators

Lane B- Sensors and Actuators

Peripheral
Processor

Bus
Interface
Controller

Bus
Interface
Controller

Peripheral
Processor

Peripheral
Processor

Bus
Interface
Controller

Bus
Interface
Controller

FIGURE 14.8
Engine Control Architectures–Dual-Lane Versus Distributed [345] (Courtesy of

Honeywell)

328 Time-Triggered Communication

14.2.3.4 TTEthernet in Orion

In the U.S. under President G.W. Bush, Orion has been planned and started to be

developed under the leadership of NASA as the next-generation Crew Exploration

Vehicle (CEV) replacing the Space Shuttle. Orion is part of the NASA Constellation

program, which comprises several projects, among others the Ares programs, which

are the rockets for lifting Orion and other space vehicles into low earth orbit to go,

e.g., to the international space station, to our moon, and to Mars – at least this has

been the plan. The Orion vehicle consists of two parts, the crew module (CM) and

the service module (SM). The crew module provides all the facilities for housing up

to six astronauts for about two weeks to lower earth orbit in initial configurations

and up to six months for going to the moon. The crew module is also used for re-

entry into earth atmosphere to bring the crew back to earth. The service module

provides the necessary supplementary equipment for the crew to live in space and

is jettisoned before re-entry. The concept of operation of the constellation program

for space exploration is very similar to the Apollo program. Figure 14.9 sketches the

structure of the Orion and Ares I as docked vehicles for the reader to get an idea

of the configuration. At the time of writing this text, the future of the Constellation

program is under discussion and further development unclear due to the new U.S.

administration under President Barack Obama.

Both Ares I and Orion comprise separate avionics architectures due to opera-

tional constraints and control aspects. Orion deploys an Integrated Modular Avionics

(IMA) architecture approach as this allows an open architecture, a key characteristic

to NASA. With an open architecture, the system is easier to integrate and main-

tain. For example, the central processing unit is standardized allowing the use of

commercial-off-the-shelf (COTS) hardware without any single supplier constraint

and, hence, reduction of non-recurring cost for components within the system. Sim-

ilarly, the use of COTS will decrease the upgrade cost since competition drives sup-

plier upgrades to low or no cost to the project. Additionally, maintenance costs are

reduced, since the COTS producers can leverage the development and maintenance

tools already available. NASA’s systems, such as the human-rated Orion, tend to be

deployed for long durations. The space shuttle, for example, has been operational for

about 30 years. An IMA architecture used in such systems benefits of more easily

supporting midlife upgrades to the system and, hence, incorporating mid-life tech-

nology upgrades into the system. Furthermore, with varying mission durations, it is

also important that the avionics architecture allows for different safety and criticality

protections. IMA architectures support this flexibility [219]. Figure 14.10 shows the

Orion/Ares interface and some avionics architecture aspects of Orion and Ares.

Orion has very specific mission requirements. It has to meet a mission require-

ment of up to 5000 hours (about 200 days) of continuous operation at a time. It must

be a flexible vehicle that will interface to several other space elements (the Interna-

tional Space Station, the Altair Lunar Lander, Ground Systems and the Space Net-

work, in addition to the Ares I interface) over the next several decades. Additionally,

Orion has strict weight and power restrictions that make it desirable for its avionics

system to maintain full protection against erroneous behavior even when operated in

Industrial Applications 329

se
rv

ic
e

m
od

ul
e

cr
ew

m
od

ul
e

la
un

ch
ab

or
t

sy
st

em

O
rio

n

ro
ck

et

A
re

s

FIGURE 14.9
Sketch of Orion (Not to Scale)

a low power partial system mode, which is a mode when part of the avionics system

is shut off to conserve power [219].

Early trade studies that have been conducted favored an IMA approach due to the

Orion’s requirements [219]:

• The Orion CEV shall meet an ascent reliability allocation of 0.9999.

• The Orion CEV shall meet an overall mission reliability allocation of 0.999.

• The Orion CEV shall be one fault-tolerant for safe return of the crew with

exceptions for design for minimum risk.

• The Orion CEV shall safely recover from, and return the crew in case of loss of

output and erroneous output from the vehicle flight computers due to software

common cause failure.

• The Orion CEV shall allow the crew to manually control, inhibit and/or over-

ride autonomous or ground controlled critical functions.

• The Orion CEV shall be one fault-tolerant for mission completion with excep-

tions for design for minimum risk.

330 Time-Triggered Communication

FIGURE 14.10
Orion and Ares I Interface [219]

In order to meet requirements like full error detection in low power partial system

mode, a simple high-integrity, self-checking computing approach has been designed

building on implementations and knowledge from avionics programs of aircraft like

the Boeing 787, Boeing 777 and Boeing 777RS. Figure 14.11 provides a detailed

block diagram of a typical self-checking pair computer design, which in a similar

manner is deployed on Orion. Orion actually does deploy an IBM PowerPC 750

processors as indicated in Figure 14.11 with self-checking support logic such as an

interface to the bus and external memory (BIPM) and backend interfaces. Yet, the

actual main interface is a variant of TTEthernet, named TT-GbE, and not ARINC 659

as indicated in Figure 14.11. It shall also be noted that it is typical to perform local

power and clock monitoring for a pair of processors. The presented and deployed

architecture has the following advantages:

• Good error detection for bit flips in processors as well as in associated memo-

ries. In all cases, no inadvertent action is performed due to single event upsets

with a very high probability (or in other words, the probability of undetected

failures is smaller than 10−9).

• No inadvertent violation of space partitioning (memory and I/O) due to fea-

tures like memory management units (MMUs).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-032.jpg&w=334&h=247

IndustrialA
pplications

3
3

1

BIPM

IMM SRAM
(0.5 MByte)

EEPROM Array
(256 Kbytes)

Flash
Array

(128 Mbytes)

DRAM
Array

(512 Mbytes)

Buffer

Processor
Control
EPLD IBM 750FX,

EDCs &
Comparators

EEPROM Array
(256 Kbytes)

Flash
Array

(128 Mbytes)

DRAM
Array

(512 Mbytes)

Buffer

BIPM

IMM SRAM
(0.5 MByte)

ARINC 659 Bus

Scan

10BT Ethernet

PWR_RESET IPF

ARINC 659 Bus10BT Ethernet

PWR_RESET IPF

X
-

L
an

e
D

ata

Y
-

L
an

e
D

ata

ARINC 600 Connector

CCA #1
(Processor)

Scan

Power
Interface

Power
Interface

Hot Insert

BATT_RST

Long_Term

Operational
Voltages

Hot Insert

BATT_RST

Long_Term

Operational
Voltages

VBATT VBATT

Distribution
Voltage _ A

VBATT_ A Enable
(for hot insertion) VBATT_ B Distribution

Voltage _ B

Y- Lane Buffer

PMC Connector

IBM 750FX,
EDCs&

Comparators

X
-

L
an

e
A

d
d

ress

Y
-

L
an

e
A

d
d

ress

PLL

Osc (Proc
Reference)

Osc (Proc
Main)

PLL

X- Lane
Control

Y- Lane
Control

Clock
Control

Y- Lane
Dual Port RAM

X-Lane
Dual Port RAM

Clock
PLL

PCI Macro
Backend I/F

PCI Master
Macro

Processor
Control
EPLD

CCA #2
(CP Client, IOM, SFM)

Error Immunity
100% detection & correction
of single-bit errors
100% detection of double-bit
errors

Space Partitioning (MMU)
Write protection over IMM,
SRAM, H/W Resources

Fault Containment
(Dual Cross-Compare
Monitors)

- Lockstep comparison
- MMU integrity

validation

Data Integrity Mgt
-Freshness Monitoring for
Partition Usage

Bus Error Containment
- Dual Lockstep transactions
- Total fault containment
- 100% detection of single-bit

transmission errors
- Dual redundant transmission
- De-centralized control

FIGURE 14.11
Self-Checking Pair Computer [103] (Courtesy of Honeywell)

332 Time-Triggered Communication

• Cross compare monitors perform constant comparison of computing outputs

and validate MMU integrity.

• Data integrity management (freshness monitoring for partition usage).

• Support of bus error containment (more Orion details below).

The system network is an implementation variant of TTEthernet described in

detail in Chapter 8. The Orion TTEthernet deployment is called Time-Triggered Gi-
gabit Ethernet (or TT-GbE). As the name implies, it is leveraging a standard Giga-

bit Ethernet physical layer and the standard TTEthernet IP core including all fea-

tures and support up to ISO/OSI layer 2 (i.e., not including layer 3 according to

ISO/OSI). Given the harsh natural radiation environment in space, the TTEthernet IP

is embedded in a space-hardened technology together with a special space-hardened

SERDES (serializer/deserializer) physical layer technology, compatible with Ether-

net, and other interfaces like PCI. TT-GbE supports normal and high-integrity end

systems and high-integrity switches. The high-integrity variant is based on a com-

mand/monitor configuration. Figure 14.12 shows the command/monitor configura-

tion for the TTEthernet network for an end system. It is deployed for the switches

and some end systems (such as the ones interfacing to the self-checking comput-

ers) [121, 103, 219]. Such command/monitor component configurations ensure a

validated fail-silence model in that all output of a component is checked bit-for-bit

against independent monitor copy and any violation forces a consistently detectable

fault output. The command/monitor end system and switch and self-checking com-

pute components enable a reduction of end-to-end integrity augmentation normally

deployed in high-integrity end systems. It also helps leaving the high dependability

implementation aspects out of the application and at the electronic platform system

level, which simplifies platform development.

Figure 14.13 presents a very high-level overview of the Orion avionics archi-

tecture at one time during the development. The platform was under development

at the time publications [103] and [219] were written and has slightly changed in

the meantime. Orion in general had to adapt to weight requirements due to Ares I

rocket design. Adaptation of architectures to a certain extent is a typical system de-

sign refinement. On the left side of the dotted line of the diagram labeled CM is the

equipment in the crew module. On the right side is the equipment in the service mod-

ule (SM) of Orion. The crew module contains the majority of the different electronic

units. The component-connecting lines in Figure 14.13 (in blue in the original publi-

cation) show the major onboard data network, which is implemented using TT-GbE

and labeled by the FCNet interface cards. The architecture contains – in this instance

– two major computer-related cabinets called VMCs for Vehicle Management Com-

puters. VMCs contain three different computer modules (CMs labeled FCM, LCM

and RCM) with associated network cards and power supply modules. Remote Inter-

face Units (RIUs) are cabinets with input/output interfacing cards. Orion has three

display units (DUs) implementing modern glass cockpits, interface devices (keypad,

RHC, THC, CCD), (external) communication means (e.g., audio I/F Unit, S-Band),

absolute and relative navigation units (inertial measurement units (IMUs), star track-

Industrial Applications 333

Monitor (MON)Command (COM)

PHY
A

PHY
A’

sy
nchost data

interface
host data
interfacesy

nc

PHY
A

T
X

R
X

PHY
B

PHY
B’

PHY
B

T
X

R
X

PHY
C

PHY
C’

PHY
C

T
X

R
X

RX (TX wrapback)

A B C

to network cables

PHY
A’

PHY
B’

PHY
C’

clock

power

power
monitor

to host (half of pair) to host (half of pair)

dual port RAM
(host interface)

network redun-
dancy management

protocol logic
(synchronization, send, receive, ...)

test interface +
config logic

test interface +
config logic

dual port RAM
(host interface)

network redun-
dancy management

protocol logic
(synchronization, send, receive, ...)

host interface bus logichost interface bus logic

RX (from network)TX/RX

clock

Copper (for space) or
fiber optics, using the
same IC/FPGA design

FIGURE 14.12
TTEthernet Self-Checking Pair End System [121] (Courtesy of Honeywell)

ers, GPS), environmental control units (ECLSS) and multiple vehicle power man-

agement units (MBSUs) among others.

14.3 Time-Triggered Communication in Automotive Applica-
tions

The typical automotive system is a passenger car. This system consists of several

subsystems which have evolved from the typical main mechanical components of

the car (e.g., the engine, the transmission, the brakes, etc.). In a modern car, nearly

each mechanical component also has a dedicated node computer for controlling it.

The node computers are called Electronic Control Units (ECUs) in the automotive

3
3

4
Tim

e-Triggered
C

om
m

unication

FCM

PS SCP FCNET

FCM

PS SCP FCNET

FCM

PS SCP FCNET

FCM

PS SCP FCNET

FIGURE 14.13
Orion Avionics Overview [103] (Courtesy of Honeywell)

Industrial Applications 335

domain and they are typically interconnected to distributed systems using different

types of automotive networks such as Controller Area Network (CAN) [151], Me-

dia Orientated Systems Transport (MOST) [229] and FlexRay [226]. Figure 14.14

displays a typical automotive system with several CAN buses forming a subdivided

network of interconnected subsystems.

Gateway

Braking
ECU

Power Steering
ECU

Navigation
System

Adaptive
Cruise Control

Tester

Transmission
ECU

Engine
ECU

CAN1

CAN2

CAN4

CAN3

S
A

S
A

S
A

S
A

S (yaw rate 1)

S (yaw rate 2)S (radar)

CAN priv.

Gateway

Braking
ECU

Power Steering
ECU

Navigation
System

Adaptive
Cruise Control

Tester

Transmission
ECU

Engine
ECU

CAN1

CAN2

CAN4

CAN3

S
A

S
A

S
A

S
A

S (yaw rate 1)

S (yaw rate 2)S (radar)

CAN priv.

FIGURE 14.14
Typical Automotive System (CAN-Based)

Due to the continuously increasing functionality (and complexity) within a mod-

ern car, several separated CAN buses are used. This helps to overcome the band-

width limitations of the physical layer of CAN to a certain extent. On the other hand,

a significant number of CAN messages need to be forwarded from one CAN bus to

another via a gateway. The shown example uses five CAN buses which are associated

to certain function domains. In the displayed typical example, these domains are:

• CAN1 – Diagnostic CAN: Used for connection to an intelligent tester in the

service station

• CAN2 – Drivetrain CAN: Used for the drivetrain ECUs

• CAN3 – Chassis CAN: Used for the ECUs controlling the chassis mechanical

components

• CAN4 – Driver assistance CAN: Used for driver assistance functions

• CAN priv. – Private CAN: Used for acquisition of time-critical yaw rate sensor

data by the braking ECU

Each ECU controls its dedicated mechanical component by reading the relevant

sensors (S) and driving the dedicated actuators (A). Most sensors are directly con-

nected to their dedicated ECU – using analog or digital interfaces. Even though some

smart sensors have a CAN interface, they typically are still connected to a dedicated

ECU via a private CAN (like the sensor “yaw rate 1”). A yaw rate sensor gives

336 Time-Triggered Communication

precise data of a very important portion of vehicle movement – namely the angular

velocity of the vehicle turning around its vertical axis. Especially sensors providing

time-critical data are not suitable for being connected to a heavily loaded CAN bus

since the data will only be available for the control algorithms in the ECUs with a

significant – maybe intolerable – delay and/or jitter. On top of this technical reason,

quite often the simpler organization of the series production oriented development

process of a subsystem leads to the private usage of a sensor by only one ECU. This

may lead to the fact that certain sensors (like the yaw rate sensor) are in the vehicle

more than once – not for redundancy reasons – but in order to keep the subsystems

(and their development processes) independent from one another. The strongly cost-

driven automotive industry has pushed the development of subsystems toward less

private usage of the sensors and therefore several smart sensors with CAN inter-

faces and even smart sensor clusters sending a large set of different sensor data via a

FlexRay interface have evolved.

S4
sensor
inputs

actuator outputs

ECU2

loose
coupling
to other

sub-
systems

CAN

time critical
control loop

S1
A

S5

S6

S7

wheel speed
sensors

yaw rate /
lateral accel.

sensor
steering angle

sensor
S2 S3

ECU1

S4
sensor
inputs

actuator outputs

ECU2

loose
coupling
to other

sub-
systems

CAN

time critical
control loop

S1
A

S5

S6

S7

wheel speed
sensors

yaw rate /
lateral accel.

sensor
steering angle

sensor
S2 S3

ECU1

FIGURE 14.15
Typical Automotive System (CAN-Based)

Industrial Applications 337

Figure 14.15 gives a more detailed insight into a typical automotive subsystem

within the vehicle. At the current state of today’s series production cars, the intercon-

nection between the subsystems is typically less time-critical and also less essential

for fulfilling the designed function than the very close interaction of the ECU with

its dedicated mechanical component. Not only sensors (like “S1”) directly connected

to the mechanical component but also other sensors (like “S2” – perhaps available

as CAN message) may be evaluated by the ECU in order to monitor the mechanical

component and the state of the vehicle and to control the actuators (A).

Let’s take a modern braking ECU as an example: The wheel speed sensors of

the four wheels are directly connected to the braking ECU (ECU1) so it can fulfill

the time-critical ‘anti-lock brake’ function even without any available CAN com-

munication. For the more complex functionality of the ‘electronic stability control,’

additional sensor data is required which is only available via the CAN buses (steer-

ing angle, yaw rate, lateral acceleration, etc.). The overall control loop timing for

the ‘electronic stability control’ allows a slower control loop cycle (approximately

40 ms) compared with the time-critical ‘anti-lock brake’ function (approximately 5

ms). The CAN’s temporal behavior on a public or perhaps a private CAN bus is ac-

ceptable for the ‘electronic stability control’ function – even though an improvement

toward less latency and less jitter would be desirable in order to improve the respon-

siveness of the function. Additionally the need for synchronizing the available data in

order to obtain a precise view of the vehicle movement finally led to the development

of a FlexRay-based sensor cluster which provides a large set of vehicle movement

data with a high update rate. It suits the needs of the ‘electronic stability control’ just

as the needs of other driver assistance functions.

Even though taking advantage of the higher bandwidth of FlexRay will lead to

further enhancements and redistributions of functions among the subsystems, the ba-

sic design principles of the described subsystems represent today’s accepted state of

the art in passenger cars. It is the result of an evolutionary process of engineering

and reengineering to fulfill customer requirements and the cost targets of the auto-

motive industry while continuously increasing the overall functionality of the elec-

tronically controlled subsystems. It has its roots in the independence of the former

purely mechanical components. Today’s electronic subsystems still try to keep their

independence whenever possible. The brake subsystem is a ‘fail silent’ subsystem

with a two-step degradation model. If the CAN communication is not available, the

‘electronic stability control’ function is not available anymore while the ‘anti-lock

brake’ function remains active. If the complete braking ECU fails (is switched off)

the mechanical braking performance is still available for the driver to stop the car

– even though he will not receive the assistance of the higher level functions while

braking.

14.3.1 Typical Design of Automotive Applications

The typical automotive application running on an ECU is focused on controlling

the dedicated mechanical component in accordance with a large set of requirements

(e.g., performance, efficiency, availability, robustness, safety, diagnostic capabilities,

338 Time-Triggered Communication

hard real-time, etc.). The toughest real-time requirements typically need to be ful-

filled reliably under all operating conditions and are normally handled via interrupts

which are triggered by sensors of the controlled mechanical component. Also the ac-

tuators often require very short reaction times measured from the correlating sensor

interrupt event. As an example, the interrupt may be generated by an engine speed

signal which is used to monitor the exact rotary movement of the engine and also

to trigger the engine ECU to perform the next injection and ignition with the pre-

cise timing matching the current operating conditions. Within the application design,

this environment-controlled hard real-time functionality is performed using an in-

terrupt which typically receives the highest priority within a preemptive scheduling

design. The remaining algorithms within the control unit will typically be executed

at a lower priority level either as interrupts (event-triggered) or as a set of periodic

tasks (time-triggered). Also the processing of CAN messages can be performed in

both these ways. For stability reasons, the general approach typically is to shift as

much software execution (CAN message processing and algorithms) as possible into

a time-triggered ‘main algorithm’ which is executed according to a periodic activa-

tion scheme derived from the local timer of the CPU as shown in Figure 14.16.

Interrupts

Software Tasks:

ogla.tirc-emit.ogla.tirc-emit:dereggirt-tneve . time-crit. algo.
(e.g. engine speed synchronous interrupts)

loose coupling

xTNAC.oglaniam:)lacol(dereggirt-emit
(e.g. 10 ms periodic activation - synchronous to local timer)

1S1S

CAN Rx S2

AAS1 A

preA

FIGURE 14.16
Typical Automotive Application Design (CAN-Based) – Timing of Software Execu-

tion

The above figure displays a typical software execution timing situation in a sim-

plified schematic way. Note that typically the ‘time-critical algorithm’ will take a

smaller portion of the CPU execution time – while a ‘main algorithm’ in most appli-

cations will be much larger (execute longer) than displayed here. At the high priority

level, the reading of sensor S1, the ‘time-critical algorithm’ and the output control

for the actuator (A) are performed in an event-triggered manner. At the lower prior-

ity level, the reception of the CAN message containing sensor value S2, the ‘main

algorithm,’ the CAN transmit operations and a ‘prepare actuator operation’ (preA)

are performed according to a periodic time-triggered activation scheme. The high

and the low priority software parts recur with different rates and therefore can appear

with different phase shifts against each other. As all software executed at the lower

priority level is not performed strictly synchronized to the S1-interrupts – and ad-

ditionally can be interrupted (and delayed) by the high-priority software parts – the

coupling between these software parts is quite loose. This means that S1 has a quick

influence on the actuator control (A) while the latency and the jitter of S2 – which

can only influence the actuator via the ‘main algorithm’ and the ‘prepare actuator

Industrial Applications 339

operation’ – is much larger. This design is only to be used when this large latency

and jitter of the sensor value S2 is acceptable for the according function.

14.3.2 Migration from CAN to FlexRay

The migration from CAN to FlexRay has already taken place for a certain set of sub-

systems in a limited number of series production cars today. The main reasons for

this migration were the increased bandwidth and the improved determinism – result-

ing in an expected communication behavior leading to more precision and stability

together with shorter latency and less jitter than CAN-based systems.

The new automotive subsystems shall increase the coupling between the subsys-

tems by usage of the FlexRay network and the large amount of sensor data which can

be shared among the subsystems. “Private” sensors of one ECU can become “pub-

lic” when the values are sent across the FlexRay network with a sufficient frequency

and are processed with short latency and jitter. This also helps to avoid equipping

the vehicle with double or even triple sensors of the same kind. The intended basic

subsystem design is shown in Figure 14.17.

ECU1

FlexRay (high bandwidth, low latency, strong coupling)

A1

S1

ECU2
output: A2 =
f(S1,S2,S3,..)

A2

S2

ECU3

A3

S3

ECU1

FlexRay (high bandwidth, low latency, strong coupling)

A1

S1

ECU2
output: A2 =
f(S1,S2,S3,..)

A2

S2

ECU3

A3

S3

FIGURE 14.17
New Automotive Subsystems with FlexRay (CAN-to-FlexRay Migration)

The typical new automotive system now contains a mixture of CAN and FlexRay

subsystems as not all CAN-based subsystems can be replaced immediately. It also

is not required to migrate all subsystems from CAN to FlexRay. Today’s typical

solution is shown in Figure 14.18. The gateway remains the central device for in-

terconnection between the CAN buses and also the FlexRay cluster. The gateway

CPU now performs CAN-to-CAN, CAN-to-FlexRay and FlexRay-to-CAN routing.

Even though today’s series solutions with FlexRay typically contain only one sin-

gle channel FlexRay cluster, this cluster is subdivided into four FlexRay branches

on the physical layer. These four branches are interconnected by a FlexRay ‘active

star’ which is a multiple transceiver device which forwards data from any incom-

340 Time-Triggered Communication

ing FlexRay branch to all other branches. This helps to keep the number of nodes

connected to one twisted wire pair rather small and the wire lengths short which sig-

nificantly reduces reflections on the physical layer and improves the robustness of the

data transmission under electromagnetic disturbances. From a timing perspective the

‘active star’ inserts a very small – actually negligible – delay (approximately 250 ns).

Gateway

Dashboard

Adaptive
Cruise Control

Tester

CAN1 CAN2

S
A

S
A

S
A

S
A

S (radar)

Braking
ECU

Power
Steering

Transm.
ECU

Engine
ECU

Airbag
ECU

S A
Sensor
Cluster

S
S

Chassis
Control

Image
Processing

S (video)

S A

FlexRay Branch 4FlexRay Branch 1

Navigation
System

F
lexR

ay
B

ranch
2

F
lexR

ay
B

ranch
3

CPU

Active
Star

Gateway

Dashboard

Adaptive
Cruise Control

Tester

CAN1 CAN2

S
A

S
A

S
A

S
A

S (radar)

Braking
ECU

Power
Steering

Transm.
ECU

Engine
ECU

Airbag
ECU

S A
Sensor
Cluster

S
S

Chassis
Control

Image
Processing

S (video)

S A

FlexRay Branch 4FlexRay Branch 1

Navigation
System

F
lexR

ay
B

ranch
2

F
lexR

ay
B

ranch
3

CPU

Active
Star

FIGURE 14.18
Typical New Automotive Systems (CAN + FlexRay)

The migration from CAN to FlexRay also has to take place in the application

design. Here the key issue is the software and especially its execution timing. Even

though the FlexRay network permits stronger coupling, short latency and low jitter,

the main timing effects result from the application design on the ECUs. The differ-

ent subsystem suppliers have developed two major application design approaches

which shall be explained in the following – the event-triggered approach and the

time-triggered approach.

14.3.2.1 Event-Triggered Approach – FlexRay as CAN Replacement

The event-triggered approach is based on the idea of the simplest possible migration

by just replacing CAN driver software functions with the according FlexRay drivers

without any other software changes. Especially application designs which were based

on interrupt driven CAN communication were simply converted to FlexRay in this

way. The typical adapted automotive application design is shown in Figure 14.19.

This adapted automotive application design basically inserts a third priority level

in-between the event-triggered ‘time-critical algorithm’ and the time-triggered ‘main

algorithm.’ This intermediate priority level performs the FlexRay receive and trans-

mit operations synchronously to the FlexRay global time. Even though this might

appear as a time-triggered solution, in most cases it actually is implemented in

a purely event-triggered way. The typical automotive implementation is built by

adding FlexRay–synchronous interrupts on top of the “normal” time-triggered soft-

Industrial Applications 341

Interrupts

Software Tasks:

ogla.tirc-emit.ogla.tirc-emit:dereggirt-tneve . time-crit. algo. time-crit. algo.
(e.g. engine speed synchronous interrupts)

xTRF2SxRRF:)labolg(dereggirt-emit FR Rx S2 FR Tx loose coupling
(synchronous to FlexRay global time)

gnilpuocesoolgnilpuocesool

time-triggered (local): pre Tx
(e.g. 10 ms periodic activation - synchronous to local timer)

1SA1SA1S

Aerp.oglaniam

AS1A

read S2

FIGURE 14.19
Adapted Automotive Application Design (Event-Triggered Approach) — Timing of

Software Execution

ware tasks. As a result, the according software parts are not synchronized since they

are triggered by two independent and not synchronized time sources (the FlexRay

global time and the local timer). The loose coupling, which mainly results from soft-

ware parts being executed on different priority levels, increases even more with this

intermediate priority level in place and leads to additional delays between the actual

reception of a sensor value (FR Rx S2 in Figure 14.19) and the processing by the

‘main algorithm.’ There are also delays between the preparation of transmit values

(pre Tx in Figure 14.19) and the actual transmit operation (FR Tx) and another delay

until the message is really sent over the FlexRay bus (in the pre-assigned slot). This

third-priority level finally leads to less determinism of the execution timing because

the worst-case delays and the maximum observed jitter increase.

Even though the event-triggered approach was intended to simply replace CAN

with FlexRay, there still is one logical difference to be taken care of. Since FlexRay

uses pre-assigned slots for transferring messages, the transmit operation should be

performed before this slot starts. If this time constraint is not met, the according

FlexRay frame will be sent anyway – but marked as containing no data (which of

course is detected by the receiver). The next chance for transmitting the data is at the

next slot assigned to the according message (one message period later). As shown in

Figure 14.20, this leads to a certain amount of lost messages in the situation when the

transmitter is “asynchronous” to FlexRay (and has a small jitter) and generates the

messages at the “same” rate as they are to be sent on the FlexRay bus. This cannot

be compensated by the receiver since the data really was not transmitted over the

FlexRay bus.

This behavior can be observed in “bursts” which recur periodically with a quite

long time interval – typically several minutes (resulting from the small clock speed

deviation between the local timer and the FlexRay global time). A practical mea-

surement of such a “burst” where every second message is not transmitted on the

FlexRay bus is shown in Figure 14.21.

The receiver as the second part in the process of exchanging data can addition-

ally miss incoming messages when its receiver application is not checking the re-

ceive buffer at the appropriate times which typically happens when the receiver is

342 Time-Triggered Communication

FlexRay CC

Transmitter
Application

Buffer

FlexRay Bus

5ms FlexRay CC

Receiver
Application

Buffer

Legend:

… FlexRay Cycle Start

Legend:

… FlexRay Cycle Start

… Receive Operation of Application… Receive Operation of Application
… Reserved Slot on FlexRay Bus… Reserved Slot on FlexRay Bus

4.9ms 5.1ms

too late

no data! no data!

4.9ms 5.1ms5.1ms

no data!

too late too late
FlexRay

cycle

… Transmit Operation of Application

FIGURE 14.20
FlexRay Communication Timing (Event-Triggered Approach) — Transmitter

“Asynchronous” to FlexRay — with Lost Messages

“asynchronous” to FlexRay. In this case, the number of lost messages (actually ‘non-

received’ messages) may even increase as the timing behavior of the transmitter and

the receiver are not synchronized. As a consequence of the shortcomings described

above, the synchronization of the application software of the transmitter and the re-

ceiver to the FlexRay global time is the corrective measure which shall be discussed

in the following chapter of the time-triggered approach.

14.3.2.2 Time-Triggered Approach — FlexRay-Synchronous Task Execution

The time-triggered approach requires an adaptation of the software scheduling in

such a way that the global time of FlexRay is used to schedule all time-triggered

software parts. This reduces the number of priority levels back to two again and ad-

ditionally gives the application designer the opportunity to align his main algorithm

with the communication schedule of the messages. This especially helps to provide

measurement data as FlexRay messages without any lost messages. This rigorous

time-triggered automotive application design is shown in Figure 14.22.

This rigorous time-triggered automotive application design uses the FlexRay

global time (whenever available) for scheduling the FlexRay receive operations, the

‘main algorithm,’ the transmit operations and the ‘prepare actuator operation.’ If sen-

sor S1 does not require interrupts, the whole application design can even be simpli-

fied to run on only one priority level. The messages on the FlexRay bus (relevant for

this ECU) are completely received and also sent without any gaps or jumps within

the sequence of messages. The timing of the software execution needs to be synchro-

nized to the FlexRay global time (which is typically done at the recurring cycle start

Industrial Applications 343

sequence
counter

data valid

data

no data

sequence
counter

data valid

data

no data

FIGURE 14.21
Practical Measurement Results with an “Asynchronous” Transmitter on FlexRay —

with Lost Messages

Interrupts

Software Tasks:

ogla.tirc-emit.ogla.tirc-emit:dereggirt-tneve . time-crit. algo.
(e.g. engine speed synchronous interrupts)

time-triggered (global): FR Tx
(synchronous to FlexRay global time)

A1SA1S

preAFR Rx S2 main algo.

S1 A

FIGURE 14.22
Rigorous Time-Triggered Automotive Application Design (Time-Triggered Ap-

proach) — Timing of Software Execution

event) as shown in Figure 14.23. With a “synchronous” transmitter and receiver, no

messages are lost.

Whenever the FlexRay global time is not available (before the FlexRay startup or

during a temporary loss of communication), the local timer shall be used for schedul-

ing instead – this in return leads to the need for a resynchronization strategy when-

ever the FlexRay global time becomes available again. This is performed by a smooth

synchronization as shown in Figure 14.24.

The smooth synchronization is performed according to the following design

rules:

• The application runs on the local timer and re-synchronizes smoothly when

the global time is available

344 Time-Triggered Communication

FlexRay CC

Transmitter
Application

Cycle
Start
Cycle
Start

Buffer

FlexRay Bus

5ms FlexRay CC

Receiver
Application

Cycle
Start

Legend:

… FlexRay Cycle Start

Legend:

… FlexRay Cycle Start

… Receive Operation of Application… Receive Operation of Application
… Reserved Slot on FlexRay Bus… Reserved Slot on FlexRay Bus
… Transmit Operation of Application

Buffer

FIGURE 14.23
FlexRay Communication Timing (Time-Triggered Approach) — Transmitter “Syn-

chronous” to FlexRay — without Lost Messages

• The maximum jump width of the resynchronization steps is limited to a spec-

ified range

• After reaching the synchronous operation mode, only tiny resynchronization

adjustments are necessary to stay synchronous with the global time

• Some messages may be lost before reaching the synchronous operation

14.3.2.3 Discussion

When comparing the event-triggered and the time-triggered approach, the fundamen-

tally simpler timing behavior is achieved with the time-triggered design which leads

to “synchronously” operating application software on the CPUs within the subsys-

tems and to a deterministic behavior of the data transfer without losing messages.

This does not mean that asynchronous operation does not exist in such systems but

it is limited to startup and resynchronization scenarios. The overall performance of a

rigorous time-triggered system is not only more stable than of an event-triggered one

but it also achieves the shorter maximum values for latency and jitter. Even though

time-triggered is in fact the simpler design and has more robustness and performs

in a more deterministic way, the automotive industry only progresses slowly toward

this direction.

The author has identified the following main reasons for the reluctance of the

developers working in the automotive industry to migrate to rigorous time-triggered

designs:

• Time-triggered design is significantly different to the normal human models of

Industrial Applications 345

Cluster cycles (FlexRay)

Application cycles

Startup or
Resynchronization

synchronous!

time

FIGURE 14.24
Smoothly Synchronizing the Local Time to the FlexRay Global Time (Time-

Triggered Approach)

behavior. A human being is an event-triggered performer driven by multiple

dynamic priority levels and that is also how most of our software is designed.

• The complexity of the current automotive subsystems is ranked to be “man-

ageable without any special measures” – even though the coupling between

the subsystems is becoming stronger and hidden dependencies are present in

many ways but not so easy to identify.

• The timing of the software scheduling – normally controlled by an operating

system – is not dared to be touched. Even though modern operating systems

do provide an interface to “tune” the starting point of the time-triggered tasks,

there’s a certain fear of possible side effects of such a manipulation.

• The fact that FlexRay has a different temporal behavior than CAN is often de-

nied. FlexRay is simply seen as a kind of high-bandwidth version of the well-

known CAN. Even though FlexRay introduces a new notion of time (namely

its own global time which is quite independent from the subsystems), the soft-

ware is not redesigned to reflect this difference.

14.3.3 Practical Experience with the Time-Triggered Approach in Au-
tomotive Subsystems

Even though only a small number of automotive subsystems have been developed

following the rigorous time-triggered design principles (and the author has only had

detailed insight to a limited number of such application designs), the experiences

with these time-triggered subsystems were quite promising. The author’s personal

experience from such projects is condensed into the following list:

• All projects which “dared” to switch to a time-triggered design kept up this

new design (and didn’t switch back) since they achieved a stable subsystem

development level and had less “surprises” while testing.

346 Time-Triggered Communication

• The positive effect of stable time-triggered behavior helps to find software

errors during testing. For example, a deadline miss of a single task execution

is not accepted as a sporadic interrupt-timing-effect and not ignored any more.

• The complete timing behavior of the different existing tasks needs to be re-

viewed and re-aligned with the new time-triggered design. This should be done

at the very beginning of the development work and may require some “search-

ing time” to find the right documents and persons. If you get it right at the very

beginning, it will be a stable migration project.

• In order to reach synchronous operation, the time-triggered software parts not

only need to be synchronized to the FlexRay cycle start, but even the whole ap-

plication cycle needs to be synchronized to the relevant FlexRay cluster cycle

which typically is an integer number of FlexRay cycles long.

14.4 Time-Triggered Communication Services in Railway Appli-
cations

This section will introduce the reader to requirements and solutions for applications

in the railway domain with special emphasis on communication aspects. Starting

with a brief sketch of the spectrum of applications needed to safely operate trains,

we will outline general characteristics of safety critical applications in the railway

domain and discuss requirements on communication services. Since all these appli-

cations share similar requirements with respect to fault tolerance and reliability, it is

beneficial to have a common technology basis to build upon. In the following, we

will briefly describe the realization of such a common architecture for applications

in the railway domain.

A more in-depth discussion on the use of time triggered communication in the

railway domain will be based on the example of an interlocking system. After a brief

introduction to the communication needs of interlocking systems in general, a more

detailed elaboration on the use of the time-triggered protocol TTP/C will be given.

A discussion on further trends concludes this chapter.

14.4.1 Railway Applications

Figure 14.25 gives an overview on the landscape of safety-critical applications for

train routing and train protection. The main building blocks are the interlocking sys-

tem and track-side equipment such as axle counters and on-board systems. Within

this ensemble, interlocking guarantees the establishment of non-conflicting routes

and train movements by assigning a movement authority to each train in the realm

of control. A critical input to any interlocking system is the capturing of track oc-

cupancy. In Figure 14.25 this functionality is realized with so-called axle counters

Industrial Applications 347

FIGURE 14.25
Train Routing and Train Protection

which count the number of axles entering and leaving a block section. In conven-

tional signalling systems, the movement authority is indicated to the train by track-

side light signals.

In turn, train protection systems are in charge of enforcing movement authorities

to prevent a train from overrunning a red signal. One example for such a train pro-

tection system is ETCS, the European Train Control System, as depicted in Figure

14.25. In the most basic specification of ETCS (ETCS Level 1), the signal aspect is

picked up from the signal post and transmitted to an on-board vital computer through

a Euro-Balise1 via a radio signal. The on-board unit in turn calculates the braking

curve and activates the brakes when necessary. A more advanced level of ETCS in-

volves a Radio Block Center (RBC). The RBC is fed the movement authority from

the interlocking and relays this information to the train via a GSM-R2 network. This

approach eliminates the need for track-side signal poles.

1A Euro-Balise is a transponder placed within the rail tracks and informs a bypassing train about its

location and/or the aspects of an attached signal.
2GSM-R is a variant of GSM adapted for the specific needs in the railway domain.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-298.jpg&w=345&h=236
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-298.jpg&w=345&h=236

348 Time-Triggered Communication

14.4.2 Requirements on Railway Applications

The railway applications pointed out in the last section share a great number of non-

functional properties:

Product life-time: Typically a railway control product has an operating life in the

order of 20–30 years, including software maintenance, function upgrades and

the delivery of spare computing elements and replacement of faulty compo-

nents.

Safety: The most important aspect of railway signaling applications is safety. CEN-

ELEC 50129 [57] requires less than 10−9 safety-critical failures per hour for

interlocking systems.

Reliability and availability: High availability and reliability are essential to keep

trains operating on schedule, thereby avoiding any loss of profit and reputa-

tion. As an example, for an interlocking system the Austrian Federal Railway

Authority requires less than one service interruption in 10 years.

Performance: Railway applications can be seen as soft real-time applications.

Timeliness constraints are determined by operational sequences, i.e., all safety

conditions are fulfilled before the movement authority for a train is changed.

For example, all switches are set to the correct position before the correspond-

ing signals are set. Timing constraints typically result in deadlines by which

some activities need to be completed in the order of hundred milliseconds.

Fail safe systems: In general, railway applications are fail safe systems, i.e., there

exists a safe state which can be entered in case anomalies, either temporal,

behavioral or in the value domain, are detected. One example for driving the

system into a safe state is to set signals to red and thus stop all trains.

Certification: Railway signalling applications need to be certified by a railway au-

thority according to CENELEC standards [54] and [57]. Four Safety Integrity

Levels (SIL 1 to SIL 4) are distinguished. The CENELEC certification pro-

cess includes the various product development phases, verification, validation,

etc. It also covers the certification of all the hardware and software, including

driver software, operating system software, compilation tool-chain and appli-

cation software.

Costs: Competition in the railway control area has increased cost pressures and

raised the demand for quickly realized, cost-effective and competitive solu-

tions with low maintenance costs. Separating the complex railway-specific ap-

plications from the hardware and software technologies is a major step in the

direction of guaranteeing long product life-times with reasonable maintenance

costs.

Visibility of basic technology: For suppliers and customers, the value of the system

lies in the applications. The use of computer technology (operating system,

Industrial Applications 349

fault-tolerance, communication, etc) is only a means to provide the required

system services. However, the product price is dominated by the delivered sys-

tem services and not by the system realization.

14.4.3 Requirements on Communication Systems

In the following, we will discuss requirements on communication systems which are

shared by all or most communication subsystems of a railway application. In terms of

required throughput, addressing, routing capabilities, physical layer, etc., the require-

ments are quite heterogeneous. Communication systems range from Internet connec-

tions over closed or public networks to remotely control rural interlocking stations

over local area networks within an interlocking to field-buses for reading sensor data

on-board a train or connecting hardware which drives signals and switches. However,

in terms of certification, safety and real time aspects, these communication systems

share the same properties and requirements.

Certification

All safety-critical railway applications targeted for the European market have to be

compliant with the relevant CENELEC standards describing the requirements for

the approval of safety-related systems. The safety requirements for safety-related

communication in the railway domain are stated in EN 50159-1 [55] and EN 50159-

2 [56]. While EN 50159-1 refers to closed transmission systems, EN 50159-2 deals

with open transmission systems.

These standards do not assume any specific precautions toward safety of the

underlying transmission system. Upper layers have to independently guarantee the

safety of the communication.

Fault Model

The CENELEC standard 50159-1 [55] lists the following protective measures to be

taken:

• Detection of transmitter identifier error.

• Detection of data type error.

• Detection of data value error.

• Detection of out-dated data or data not received in due time.

• Loss of communication after a predefined delay.

As an additional protective measure, the functional independence of the safety-

related transmission functions and the used layers of the non-trusted transmission

system has to be ensured.

The fault detection mechanisms to cover these faults have to be implemented in-

dependently from the used layers of the underlying non-trusted transmission system.

350 Time-Triggered Communication

In the context of 50159-1, the transmission system is only specified to exhibit the

following properties:

• The physical characteristics of the transmission system have to be fixed

• The number of communication participants has to be fixed

• The transmission system has to be closed

No other assumptions on the transmission system are being made by the stan-

dard. The fault detection mechanisms to cover these faults have to be implemented

independently from used layers of the underlying non-trusted transmission system.

Technical and functional safety of the communication system are governed by the

measures and procedures described in EN 50128 [54] and EN 50129 [57].

Real Time Aspects

In railway applications in general, there is a safe state the system can enter upon

the detection of a fault in either the time or the value domain. To detect failures in

the time domain, one approach is to implement a hierarchy of supervision systems

checking the temporal behavior of the respective underlying components. If a tem-

poral deadline has been missed, a safety reaction is initiated. Such a missed deadline

causes system downtime but is not considered safety critical. In this context, it is

worth noting that the standard does not require any properties with respect to real

time delivery of messages.

Redundancy

To reach the required level of availability of railway applications, the system must be

able to cope with all single node and network failures. Based on an in-depth failure

analysis, a redundancy concept for each system component has to be elaborated. In

an architecturally heterogeneous system, the redundancy concept for the inter-node

communication links always depends on the redundancy architecture of the involved

components. As such, communication redundancy is solved on an architectural level

rather than on a link level.

14.4.4 Generic System Architecture

Important aspects for products in the railway domain include stringent technical and

functional application characteristics in terms of safety, reliability and real-time as-

pects as well as their long service life in the order of 20–30 years. On the other hand,

basic technology such as available processor boards and operating systems change

at a much quicker pace. To bridge this gap and to decouple long lived railway prod-

ucts from fast changing technologies, a generic technology platform for the great

majority of safety-critical railway applications, provided by THALES, has been de-

veloped. The objective of this platform (named TAS Control Platform3) is to provide

3The name “TAS Control Platform” has its origin as the former Transportation Automation Solution

division of Alcatel.

Industrial Applications 351

a technology basis in terms of computer systems, operating system, communication

system and redundancy mechanisms for safety and fault tolerance.

In particular, TAS Control platform comprises:

Operating system: Railway applications can be classified as soft real-time systems.

As such, there are no stringent real-time requirements on the underlying op-

erating system. Hence, TAS Control platform builds upon readily available

POSIX compliant operating systems.

Generic safety strategy and safety case: TAS Control Platform users shall be able

to build upon a generic safety case that covers fault tolerance and redundancy

aspects, safe communication aspects and hardware aspects.

Fault tolerance system: TAS Control Platform provides all services needed to tol-

erate all single stochastic hardware faults.

Connectivity: The communication system offers a number of standard communica-

tion services, such as Internet Protocol (IP), serial lines and field-buses (con-

troller area network (CAN), time-triggered protocol (TTP/C), multifunction

vehicle bus (MVB), Profibus (PB)), as well as specific safe communication

services conforming to European Committee for Electrotechnical Standard-

ization (CENELEC) standards.

Defined hardware platform: TAS Control platform supports two classes of hard-

ware platforms. One class is dedicated to the requirements of indoor appli-

cations, whereas the other class is dedicated to the requirements for outdoor

applications located on-board or near the track-side.

TAS Control Platform is established as basic technology for the vast majority

of safety-critical railway applications provided by Thales. The spectrum of railway

applications supported by TAS Control Platform comprises track-side and on-board

equipment such as axle counters or vital on-board systems and indoor applications

such as interlocking systems, signal controlled warning systems and radio block cen-

ters.

14.4.4.1 TAS Control Platform Redundancy Architecture

The fault tolerance concept to cope with hardware faults is based on active redun-

dancy. Figure 14.26 depicts a so called Computing Node (CN) consisting of three

Computing Elements (CEs) working in active redundancy as a loosely coupled sys-

tem (2-out-of-3 system). Cyclic resynchronization is done via dedicated Ethernet

based synchronization links. For cost optimization, in (sub)systems with less strin-

gent reliability and availability requirements, a Computing node (CN) can be config-

ured as a 2-out-of-2 system.

14.4.4.2 TAS Control Platform Communication System

The key element for providing fault tolerance services is the enforcement of replica

determinism [259], which means that in a fault free scenario replicas starting from

352 Time-Triggered Communication

CE
Platform SW

Application

CE
Platform SW

Application

CE
Platform SW

Application

Sync
Medium

Sync
Medium

Sync Medium

CN

External LAN/WAN
Field Buses

FIGURE 14.26
TAS Control Platform Redundancy Architecture

an identical initial state and consuming the same input messages in the same order,

produce output messages also in the same order. In TAS Control Platform, the ser-

vices needed to ensure replica determinism are provided by the TAS Control Platform

Communication System.

The communication system is a run-time environment that supports replica de-

terminism of actively redundant applications. Communication between these replica

deterministic applications is realized solely as message-based. The communication

system implements the following services (also see [156]):

Redundancy handling: The application knows nothing about its own redundancy

or about the redundancy of its receivers or senders. Replication and fault tol-

erance are transparent to the application.

Location transparency: Transmission of messages is not bound to a local computer

at the application level.

Authorization: To supervise communication in the system, authorization has to be

explicitly defined in a static, off-line described configuration file. Message flow

in the system is then checked against this configuration file.

Industrial Applications 353

Replica deterministic time-base: As the local clock cannot be used for replica de-

terministic applications, the communication system provides a replica deter-

ministic time-base.

Application scheduling: Different application task sets (sets of closely related pro-

cesses) are executed asynchronously, with pre-emptive priority scheduling al-

lowing different interleavings of their executions on each replica. Within an ap-

plication task set, run to completion scheduling is applied between pre-emption

points.

Support for programming models: To preserve replica determinism of redundant

applications, some semantic restrictions of the full POSIX API apply. To re-

duce the complexity of handling these restrictions, the communication system

supports programming models to ensure the deterministic behavior of redun-

dant applications.

14.4.4.3 TAS Control Platform Fault Tolerance Layer

Fault tolerance is achieved by comparing the message flow of actively redundant ap-

plications. All fault tolerance mechanisms are realized solely in software without the

need for dedicated hardware components. To guarantee that fault-free applications

perform the same operations and behave replica deterministically, the applications

have to follow the programming models supported by the communication system

(see [156]).

Configurable redundancy: The fault tolerance layer supports various configurable

redundancy schemes at the computer and application levels. At the Computing

Element level, it supports 2-out-of-3 and 2-out-of-2 configurations. In 1-out-

of-1 configurations, an empty layer represents the fault tolerance layer. On

the redundant computer systems, applications can execute using various re-

dundancy schemes, ranging from 1-out-of-1 to 3- out-of-3. It is worth noting

that the redundancy configuration for the applications need not be identical to

that of the Computing Element. For example, it is possible to run a 2-out-of-

3 application together with a 1-out-of-1 application on a 2-out-of-3 computer

system.

Message-based comparison: Application data is forwarded via the communication

system to the fault tolerance layer. Data is consolidated across all replicas after

an interactive consistency exchange via fault tolerance dedicated synchroniza-

tion links. In the next step, the fault tolerance system votes on this data accord-

ing to the configured redundancy scheme and delivers the voted result to the

communication system for forwarding to the receiver application.

Message comparison method: The fault tolerance system supports different com-

parison methods, such as majority decision, master-slave processing, byte-

wise comparison and semantic comparison.

354 Time-Triggered Communication

Generation of replica deterministic time-base: The fault tolerance system pro-

vides the communication system with a synchronized replica deterministic

time-base.

Operational scheme: TAS Control Platform provides round based operational

schemes. The start of a new execution round is driven by the progression of

the synchronized time-base. In addition, external events can also initiate the

beginning of a new round.

Fault management: As well as comparing redundant messages, the fault tolerance

system gathers fault information from all subsystems and components, reports

this information to a diagnostic system and coordinates the actions taken to

resolve the problem (e.g., isolating an application, rebooting a computer).

On-line recovery: In 2-out-of-3 redundancy schemes, fault management includes

the re-integration of faulty components (applications and/or computers) dur-

ing operation without service interruption. To achieve this, the state of the two

remaining active Computing Elements is transferred to the recovered Comput-

ing Element. Recovery units are applications and/or computers. In the event

of a Computing Element failure, the entire computer and all the applications

executing on it are recovered. Recovery of an application means that only the

failed application is recovered, without affecting other applications running on

the computer.

14.4.4.4 Connectivity

Communication to other entities outside of a computing node for system I/O is sup-

ported by a large spectrum of protocols to accommodate the communication needs

of a large spectrum of safety-critical applications in the railway domain. In the fol-

lowing, a brief summary on the available protocols is given together with the scope

of application in railway systems.

Controller Area Network: The Controller Area Network (CAN) bus is widely used

in the railway domain. In particular, CAN is in use for axle counters, field

element controllers, on-board units.

Time-Triggered Protocol: TAS Control Platform supports TTP/C for field element

controllers.

Multifunction Vehicle Bus: The Multifunction Vehicle Bus (MVB) is a time-

triggered data bus defined in IEC 61375 - 3 and mainly applied in traction

units. As such, MVB is used for various on-board systems in the Thales prod-

uct portfolio.

Process Field-Bus: The Process Field-bus (ProfiBus) is used for on-board systems

to interface with Balise transfer modules which pick up the air gap signals

from Euro-balises (see Section 14.4.1).

Industrial Applications 355

Redundancy possible

CCA CCB
Central

Controller

HMI

LDA LDB

“Warm
Stand-by”

“Hot
Stand-by”

Communication
via X.25 or
Ethernet

Element
ControllerECA ECAECB ECB

1 N

ESM
2fr LAN
(Ethernet)

ICA

IF1 IF4

ICB 1 Interface
Controller to

outdoor elements

)suB-C/PTT(subdleiF)suB-C/PTT(d-busleiF

ICAICA BCIACI ICBICB

IF1IF1 4FI1FI IF4IF4

NN 1

DGP Diagnosis
Processor

Time Triggered
Protocol - Bus

FIGURE 14.27
Architecture of the ELEKTRA Interlocking System

Ethernet-based Communication: For Ethernet-based LAN communication within

an interlocking system, TAS Control Platform provides a connection oriented

communication protocol which extends the concept of host-local POSIX mes-

sage queues to remote message queues.

14.4.5 Application of Time-Triggered Protocols in the Railway Domain

14.4.5.1 Interlocking: Architecture (Components, Services, Interactions)

The application of TTP in the railway domain will be illustrated in the context of the

TAS Control platform based interlocking system ELEKTRA. Figure 14.27 gives an

overview of the components of the ELEKTRA system. The system consists of three

layers, the Central Controller (CC), the HMI and the Field Element Controller (FEC)

which is composed of the Element Controller (EC) and the Interface Controller (IC).

The train operator interfaces with the system via an HMI showing a schematic of

the track layout of the railway station under control. The HMI indicates the status of

each block, which is either occupied or free, as well as the status of the switches and

signals. By selecting a starting point and an end point, the operator commands the

generation of a route.

The heart of the system is the Central Controller which is responsible for gener-

ating and setting the train routes in a safe manner. Roughly speaking, a train route

can be seen as an ensemble of signals and switches that have to be driven into a cer-

tain state to establish a route. After checking that the intended route does not conflict

356 Time-Triggered Communication

with other already existing routes, the switches are moved to the required position

to establish the route. As soon as all switches have reached their end position, the

switches are locked. Afterwards, the signals are set to indicate the new movement

authority to the train passing the route.

14.4.5.2 Field Element Controller

The Field Element Controller (FEC) is responsible for interfacing the Central Com-

puter layer to the track-side elements in the field. The FEC is composed of the fol-

lowing subsystems:

An Element Controller (EC): The Element Controller has the knowledge of the

anatomy of a field element (e.g., signal) and maps the abstract notation of a

signal aspect4 commanded by the Central Controller to serial port commands

for the Interface Controller (IC) subsystem, and which translates the serial

scanner data generated by the IC subsystem into logical element states for the

Central Controller. The EC is based on TAS Control Platform.

An Interface Controller (IC): A subsystem which transforms the serial port com-

mands generated by the Element Controller (EC) subsystem into parallel data

to control the HW interfaces, and which transforms parallel data, representing

the state of HW interfaces, into the interface board specific scanner data for the

Element Controller subsystem. An IC is an embedded micro-controller based

computer system which consists for safety reasons of two micro-controllers (A

and B) with an independent parallel IO-subsystem.

In the ELEKTRA system, time-triggered communication is used between the

Element Controller and the Interface controller. The reason for this design decision

was driven by the following considerations:

Quality of service: TTP provides fixed communication bandwidth in a field-bus en-

vironment. Thus the system reaction time is guaranteed even in high load sit-

uations. This is an advantage especially in case of a general scan of all field

elements during the startup or a reconfiguration phase of the system.

System composability: While the number of communication partners is fixed on

the HMI and Central Computer layer of the interlocking system, the number of

field elements that have to be driven scales with the size of the railway station

under control. This can range from a couple of signals for small stations up to

several hundred signals and switches for large-scale stations.

Figure 14.28 gives an overview of the network architecture with the communica-

tion network between EC and IC.

4The term signal aspect refers to the state of a railway signal from the operational point of view, e.g.:

Next block free with 40 km/h speed limit or stop.

Industrial Applications 357

FIGURE 14.28
TTP/C Network Architecture

14.4.5.3 Availability Concept

Since Element Controllers are crucial to the availability of the overall system, the

redundancy concept arranges for two redundant ECs working in a hot-hot standby

mode. Interface Controllers are non-redundant, since it does not make a difference

whether the field element itself fails or the corresponding IC. The failure of an Inter-

face Controller must thus be handled by the Central Controller by entering a degraded

mode depending on which field elements are no longer available for routing a train.

14.4.6 Safety Concept

The safety of the communication between Element Controller and Interface Con-

troller is realized by the implementation of the requirements on safe communication

as stated in Section 14.4.3. This means that each message is secured by a safety code

on application level and holds a sequence number to detect the loss of messages.

Since TTP/C can only ensure timeliness on field-bus level, the timeliness of message

delivery is also supervised on application level.

14.4.6.1 Timing Requirements

From a system point of view, the following timing requirements affect the communi-

cation between the Element Controller and the Interface Controller:

• The maximum time allowed to diagnose a failure of any subsystem component

is 1 second.

• The maximum time needed to drive the system into a safe state shall not exceed

1 second.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-319.jpg&w=333&h=152
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-15&iName=master.img-319.jpg&w=333&h=152

358 Time-Triggered Communication

14.4.6.2 TTP-Configuration and Schedule

Each element controller can be connected to up to four TTP-segments of which each

segment can be populated with up to 21 interface controllers. And the number of

element controllers in each segment is limited to two. A basic design requirement

to ensure composability is that for each TTP-segment the same TTP configuration is

used.

Each EC needs 16 N-frames to send its data to the interface controllers and in

turn each interface controller needs two TTP N-frames to send its data to the ECs.

Every TTP round consists of seven slots of which the first two slots are reserved

for the element controllers. In the next two slots, the non-multiplexed interface con-

trollers send their data while all other IC share the remaining three slots. The two

non-multiplexed ICs are needed to re-integrate failed ICs even in a scenario when

one element controller has failed.

The reason for multiplexing ICs is to meet the timing requirements stated in

Section 14.4.6.1 while enabling 21 communication partners 5 with different message

sizes in one TTP cluster cycle. These timing requirements translate to a maximum

duration of a cluster cycle of 50 ms.

Table 14.3 lists the whole TTP-Cluster-Cycle. For each slot, it is indicated which

node is sending data (N-Frames, normal frames) or TTP-protocol frames containing

no user data (I-frames, frames with explicit controller state).

TABLE 14.3
TTP-cluster cycle.

Slot Number 0 1 2 3 4 5 6
Round 1 EC1 EC2 IC01 (I) IC02 (I) IC03 (I) IC10 (I) IC17 (I)
Round 2 EC1 EC2 IC01 (N) IC02 (N) IC03 (N) IC10 (N) IC17 (N)
Round 3 EC1 EC2 IC01 (I) IC02 (I) IC04 (N) IC11 (N) IC18 (N)
Round 4 EC1 EC2 IC01 (I) IC02 (I) IC05 (N) IC12 (N) IC19 (N)
Round 5 EC1 EC2 IC01 (I) IC02 (I) IC06 (N) IC13 (N) IC20 (N)
Round 6 EC1 EC2 IC01 (I) IC02 (I) IC07 (N) IC14 (N) IC21 (N)
Round 7 EC1 EC2 IC01 (I) IC02 (I) IC08 (N) IC15 (N) IC22 (I)
Round 8 EC1 EC2 IC01 (I) IC02 (I) IC09 (N) IC16 (N) IC23 (I)
Round 9 EC1 EC2 IC01 (I) IC02 (I) IC03 (I) IC10 (I) IC17 (I)
Round 10 EC1 EC2 IC01 (N) IC02 (N) IC03 (N) IC10 (N) IC17 (N)
Round 11 EC1 EC2 IC01 (I) IC02 (I) IC04 (N) IC11 (N) IC18 (N)
Round 12 EC1 EC2 IC01 (I) IC02 (I) IC05 (N) IC12 (N) IC19 (N)
Round 13 EC1 EC2 IC01 (I) IC02 (I) IC06 (N) IC13 (N) IC20 (N)
Round 14 EC1 EC2 IC01 (I) IC02 (I) IC07 (N) IC14 (N) IC21 (N)
Round 15 EC1 EC2 IC01 (I) IC02 (I) IC08 (N) IC15 (N) (IC22) (I)
Round 16 EC1 EC2 IC01 (I) IC02 (I) IC09 (N) IC16 (N) (IC23) (I)

5Nodes 22 and 23 do not have N-frames in the communication network interface (CNI).

Industrial Applications 359

14.4.7 Conclusion and Outlook

Historically, when the first electronic interlocking systems were introduced in the

late 1980s, time-triggered technology has not been broadly available.

As railway applications are soft real-time applications, safety and availability

targets have been met by thorough and conservative system design with respect to

timing aspects, with event driven approaches based on readily available OSI layer 1

to 3 solutions.

In the railway industry, there is a trend to integrate more functionality and ser-

vices on existing system architectures. This means that sharing resources gains more

and more importance. Time-triggered communication is an excellent approach to

guarantee bandwidth and provide a required level of quality of service.

Concerning the interfacing of field elements, there is a clear trend to move from

centralized architectures to locally distributed solutions. Instead of driving distant

analogue elements from controllers located at the central interlocking control room,

the signal posts will be equipped with intelligent and network compatible interfaces.

The adoption of time-triggered technology based on Ethernet for this kind of appli-

cation is certainly interesting.

15
Development Tools

P. Pop
Technical University of Denmark

A. Goller
TTTech Computertechnik AG

T. Pop
Ericsson AB

P. Eles
Linköping University

CONTENTS

15.1 Introduction . 363

15.2 Design Tasks . 365

15.3 Schedule Generation . 368

15.3.1 Requirements and Application Model . 371

15.3.1.1 Application Model . 374

15.3.2 Scheduling Complexity and Scheduling Strategies 374

15.3.2.1 Incremental Scheduling . 376

15.3.2.2 Host Multiplexing . 378

15.3.2.3 Dynamic Messaging . 380

15.3.2.4 Scheduling Strategies in TTPPlan 381

15.3.3 Schedule Visualization . 383

15.3.3.1 The Schedule Browser . 384

15.3.3.2 The Schedule Editor . 384

15.3.3.3 The Round-Slot Viewer . 387

15.3.3.4 Visualization of Message Paths 387

15.4 Holistic Scheduling and Optimization . 391

15.4.1 System Model . 392

15.4.2 The FlexRay Communication Protocol . 393

15.4.3 Timing Analysis . 396

15.4.3.1 Schedulability Analysis of DYN Messages 397

15.4.3.2 Holistic Schedulability Analysis of FPS Tasks

and DYN Messages . 401

361

362 Time-Triggered Communication

15.4.4 Bus Access Optimization . 402

15.4.4.1 The Basic Bus Configuration 404

15.4.4.2 Greedy Heuristic . 406

15.4.4.3 Simulated Annealing-Based Approach 407

15.4.4.4 Evaluation of Bus Optimization Heuristics 407

15.5 Incremental Design . 408

15.5.1 Preliminaries . 410

15.5.1.1 System Architecture . 410

15.5.1.2 Application Mapping and Scheduling 411

15.5.2 Problem Formulation . 414

15.5.3 Characterizing Existing and Future Applications 416

15.5.3.1 Characterizing the Already Running Applications 416

15.5.3.2 Characterizing Future Applications 418

15.5.4 Quality Metrics and Objective Function . 419

15.5.4.1 Slack Sizes (the first criterion) 419

15.5.4.2 Distribution of Slacks (the second criterion) 421

15.5.4.3 Objective Function and Exact Problem

Formulation . 421

15.5.5 Mapping and Scheduling Strategy . 422

15.5.5.1 The Initial Mapping and Scheduling 423

15.5.5.2 Iterative Design Transformations 424

15.5.5.3 Minimizing the Total Modification Cost 427

15.5.6 Experimental Results . 431

15.5.6.1 Evaluation of the IMS Algorithm and the Iterative

Design Transformations . 431

15.5.6.2 Evaluation of the Modification Cost

Minimization Heuristics . 435

15.6 Integration of Time-Triggered Communication with Event-Triggered

Tasks . 437

15.6.1 Software Architecture . 437

15.6.2 Optimization Problem . 438

15.6.3 Schedulability Analysis . 439

15.6.3.1 Static Single Message Allocation (SM) 440

15.6.3.2 Static Multiple Message Allocation (MM) 442

15.6.3.3 Dynamic Message Allocation (DM) 443

15.6.3.4 Dynamic Packet Allocation (DP) 444

15.6.4 Optimization Strategy . 446

15.6.4.1 Greedy Heuristics . 447

15.6.4.2 Simulated Annealing Strategy 450

15.6.5 Experimental Results . 452

15.7 Configuration and Code Generation . 455

15.7.1 Communication Configuration . 456

15.7.1.1 TTP — Personalized MEDLs 456

15.7.1.2 Monitor MEDL for TTP . 457

15.7.1.3 Buffer Configuration for FlexRay 457

Development Tools 363

15.7.2 Middleware Configuration . 458

15.7.2.1 Configuration Format . 460

15.7.2.2 FlexRay Interface Configuration 461

15.7.2.3 HS-COM Configuration . 466

15.7.3 Code Generation . 468

15.7.3.1 Feature Configuration . 468

15.7.3.2 Implementation . 472

15.7.4 Configuration of Third-Party Software . 476

15.8 Verification . 477

15.8.1 Process Requirements . 478

15.8.1.1 DO-178B . 479

15.8.1.2 IEC 61508 . 480

15.8.1.3 ISO 26262 . 481

15.8.2 Verification Best Practices . 482

15.8.2.1 Reuse of Processes . 482

15.8.2.2 Extending Checklists . 483

15.8.2.3 Use of COTS Products . 483

15.8.2.4 Modular Certification . 484

15.8.2.5 Requirements Management . 484

15.8.2.6 Test Vectors . 486

15.8.2.7 Test Suite . 486

15.8.3 Verification Tooling Approach . 486

15.8.3.1 Output Correctness . 486

15.8.3.2 Manual vs. Automated Verification 487

15.8.3.3 Qualification of Verification Tools 488

15.8.3.4 TTPVerify . 489

15.8.3.5 TTPTD-COM-Verify . 490

15.1 Introduction
Embedded systems are now everywhere: From medical devices to vehicles, from mo-

bile phones to factory systems, almost all the devices we use today are controlled by

embedded computers. Over 98% of microprocessors are used in embedded systems,

and the number of embedded systems in use has become larger than the number

of humans on the planet, and is projected to increase to 40 billion worldwide by

2020 [11, 84]. The embedded systems market size is about 100 times larger than the

desktop market, with over 160 billion Euros worldwide and a growth rate of 9% [84].

The complexity of embedded systems is growing at a very high pace and their

constraints in terms of performance, reliability, cost and time-to-market are getting

tighter. The embedded software size is increasing 10 to 20% per year, depending on

the application area. Today’s cars have more than 100 million object code instruc-

tions [84], while in avionics, the size of the certified software has increased from 12

Mbytes in Airbus A340 to 80 Mbytes in A380 [11].

364 Time-Triggered Communication

At the same time, high complexity, increasing density and higher operational

frequencies have led to an increasing number of faults [65]. Embedded systems are

increasingly used in safety-critical contexts, such as automotive applications, avion-

ics, medical equipment, control and telecommunication devices, where any devia-

tion from the specified functionality can have catastrophic consequences. In addition,

many industries are very cost-sensitive, and thus the dependability requirements have

to be met within a tight cost constraint.

Therefore, the task of designing such systems is becoming increasingly impor-

tant and difficult at the same time. The difficulty of designing embedded systems is

reflected by the share of the development and implementation costs from the final

product price, which is 36% in the automotive area, 22% in industrial automation,

37% in the telecommunications area, 41% in consumer electronics and 33% for med-

ical equipment [276]. This has led to a design productivity gap: The number of on-

chip transistors is growing each year by 58% (according to Moore’s law), whereas

the productivity of hardware designers is only growing by 21% per year, and the

software productivity is lagging even further behind [276].

Many organizations, including automotive manufacturers, are used to designing

and developing their systems following some version of the “waterfall” [94] model

of system development. This means that the design process starts with a specification

and, based on this, several system-level design tasks are performed manually, usually

in an ad-hoc fashion. Then, the hardware and software parts are developed indepen-

dently, often by different teams located far away from each other. Software code

is written, the hardware is synthesized and they are supposed to integrate correctly.

Simulation and testing are done separately on hardware and software, respectively,

with very few integration tests.

If this design approach was appropriate when used for relatively small systems

produced in a well-defined production chain, it performs poorly for more complex

systems, leading to an increase in the time-to-market. New approaches and tools

have been proposed, which are able to: Successfully manage the complexity of em-

bedded systems, meet the constraints imposed by the application domain, shorten the

time-to-market, and reduce development and manufacturing costs. There are many

development tools, and their use depends on the application area. The most important

embedded systems tools are presented in [191].

In the next section, we present the typical design tasks, emphasizing the commu-

nication synthesis task, which is the focus of this chapter. We will present state-of-

the-art techniques and tools for the communication scheduling and communication

configuration. In Section 15.3, we will define the general problem of scheduling, dis-

cuss its complexity and the typical strategies employed. Once a schedule is generated,

it can be manipulated, extended and visualized.

As we will show, communication synthesis has a strong impact at the system-

level. In this context, in Section 15.4, we will discuss the integrated (holistic)

scheduling of tasks and messages, and the bus schedule optimization to support the

fulfillment of timing constraints. Systems are seldom built from scratch, hence, in

Section 15.5 we discuss the issues related to incremental design, where a schedule

has to be generated such that it is flexible, i.e., supports the addition of new func-

Development Tools 365

tionality. Although this book is focused on time-triggered systems, using an event-

triggered approach at the processor level can be the right solution under certain cir-

cumstances [205]. Hence, in Section 15.6, we present an approach to integrate event-

driven tasks with a time-triggered communication infrastructure.

Once a schedule is generated, it has to be translated into a communication con-

figuration, particular for the communication protocol used, such as TTP1 or FlexRay.

In Section 15.7 we illustrate this issue using the tool chain from TTTech. Finally, in

the last section of this chapter, we discuss verification and certification aspects.

15.2 Design Tasks
The aim of a design methodology is to coordinate the design tasks such that the time-

to-market is minimized, the design constraints are satisfied and various parameters

are optimized. The following are the state-of-the-art methodologies in embedded

systems design:

• Function/architecture co-design: Function/architecture co-design is a design

methodology [162, 323] which addresses the design process at higher ab-

straction levels. Function/architecture co-design uses a top-down synthesis ap-

proach, where trade-offs are evaluated at a high level of abstraction. The main

characteristic of this methodology is the use, at the same time with the top-

down synthesis, of a bottom-up evaluation of design alternatives, without the

need to perform a full synthesis of the design. The approach to obtain accurate

evaluations is to use an accurate modeling of the behavior and architecture, and

to develop analysis techniques that are able to derive estimates and to formally

verify properties relative to a certain design alternative. The determined esti-

mates and properties, together with user-specified constraints, are then used to

drive the synthesis process.

Thus, several architectures are evaluated to determine if they are suited for

the specified system functionality. There are two extremes in the degrees of

freedom available for choosing an architecture. At one end, the architecture is

already given, and no modifications are possible. At the other end of the spec-

trum, no constraints are imposed on the architecture selection, and the synthe-

sis task has to determine, from scratch, the best architecture for the required

functionality. These two situations are, however, not common in practice. Of-

ten, a hardware platform is available, which can be parameterized (e.g., size

of memory, speed of the buses, etc.). In this case, the synthesis task is to de-

rive the parameters of the architecture such that the functionality of the system

is successfully implemented. Once an architecture is determined and/or pa-

1Throughout this chapter, we use “TTP” instead of “TTP/C,” as it is the commercial and more custom-

ary term.

366 Time-Triggered Communication

rameterized, the function/architecture co-design continues with the mapping

of functionality onto the instantiated architecture.

• Platform-based design: In order to reduce costs, especially in the case of

a mass market product, the system architecture is usually reused, with some

modifications, for several product lines. Such a common architecture is de-

noted by the term platform, and consequently the design tasks related to such

an approach are grouped under the term platform-based design [163].

One of the most important components of any system design methodology is

the definition of a system platform. Such a platform consists of a hardware

infrastructure together with software components that will be used for several

product versions, and will be shared with other product lines, in the hope to

reduce costs and the time-to-market.

The authors in [163] have proposed techniques for deriving such a platform for

a given family of applications. Their approach can be used within any design

methodology for determining a system platform that later on can be parame-

terized and instantiated to a desired system architecture.

Considering a given application or family of applications, the system platform

has to be instantiated, deciding on certain parameters, and lower level details,

in order to suit the particular application(s). The search for an architecture

instance starts from a certain platform, and a given application. The applica-

tion is mapped and compiled on an architecture instance, and the performance

numbers are derived, typically using simulation. If the designer is not satisfied

with the performance of the instantiated architecture, the process is repeated.

• Incremental design process: A characteristic of the majority of approaches

to the design of embedded systems is that they concentrate on the design, from

scratch, of a new system optimized for a particular application. For many ap-

plication areas, however, such a situation is extremely uncommon and appears

only rarely in design practice. It is much more likely that one has to start from

an already existing system running a certain application and the design prob-

lem is to implement new functionality (including also upgrades to the existing

one) on this system. In such a context, it is very important to operate no, or

as few as possible, modifications to the already running application. The main

reason for this is to avoid unnecessarily large design and testing times. Per-

forming modifications on the (potentially large) existing application increases

design time and, even more, testing time (instead of only testing the newly im-

plemented functionality, the old application, or at least a part of it, has also to

be retested) [264].

However, minimizing the modification cost is not the only aspect to be con-

sidered. Such an incremental design process, in which a design is periodically

upgraded with new features, is going through several iterations. Therefore,

after new functionality has been introduced, the resulting system has to be im-

plemented such that additional functionality, later to be mapped, can easily be

accommodated [264].

Development Tools 367

There is a large body of literature on systems engineering that discusses vari-

ous methodologies for systems development. Many methodologies employed in the

development of safety-critical systems are a variant of the “V-Model” [94], named

after the graphical representation in a “V” shape of the main development phases,

that starts with the requirements phase, followed by hazard and risk analysis, spec-

ification, architectural design, module design, module construction and testing (at

the bottom of the “V” shape), system integration and testing, system verification,

system validation and, finally, certification. For example, the V-model is employed

in the SETTA approach [6], which proposes system development methodologies for

time-triggered systems in the automotive and aerospace domains.

The design tasks that have to be performed depend on the type of system be-

ing developed and on the design methodology employed. For safety-critical systems,

the design tasks are often dictated by certification requirements, or by the devel-

opment approach used. For example, the Automotive Open System Architecture

(AUTOSAR) defines, besides the models for system development, the design tasks

that have to be performed [18]. Regardless of the design tasks performed, model-
based design is used throughout the development process: The interaction among

design tasks is facilitated by the use of models, and the modeling is supported by

graphical modeling tools. The following are the typical design tasks:

• Functional analysis and design: The functionality of the host system, into

which the electronic system is embedded, is normally described using a for-

malism from that particular domain of application. For example, if the host

system is a vehicle, then its functionality is described in terms of control al-

gorithms using differential equations, which are modeling the behavior of the

vehicle and its environment. At the level of the embedded real-time system

which controls the host system, the functionality is typically described as a set

of functions, accepting certain inputs and producing some output values.

During the functional analysis and design stage, the desired functionality is

specified, analyzed and decomposed into sub-functions based on the experi-

ence of the designer.

• Architecture selection: The architecture selection task decides what compo-

nents to include in the hardware architecture and how these components are

connected. Architecture selection relies heavily on the experience of the de-

signer and previous product versions. If needed, new hardware components

may be designed and synthesized, part of the hardware design task.

• Mapping: The mapping task has to decide what part of the functionality

should be implemented on which of the selected components.

The automotive companies integrate components from suppliers, and thus the

mapping choices are often limited.

• Software design and implementation: This is the phase in which the soft-

ware is designed and the code is written. The code for the functions is devel-

oped manually or generated automatically. The low-level software that inter-

368 Time-Triggered Communication

acts closely with the hardware is sometimes called firmware, and the task of

designing it is hence called firmware design.

At this stage, the correctness of the software is analyzed through simulations,

but no analysis of timing constraints is performed, which is done during the

scheduling and schedulability analysis stage.

• Scheduling and schedulability analysis: Once the functions have been de-

fined and the code has been written, the scheduling task is responsible for

determining the execution order of the functions inside an ECU, and the trans-

mission of messages such that the timing constraints are satisfied.

Schedulability analysis is used to determine if an application is schedulable. A

detailed discussion about scheduling and schedulability analysis is presented

in the next section.

• Integration: In this phase, the manufacturer has to integrate the ECUs from

different suppliers. The performance of the interacting functionality is ana-

lyzed using analysis tools and time-consuming simulation runs using the real-

istic environment of a prototype car.

Detecting potential problems at such a late stage may lead to large delays in

the time-to-market, since once a problem is identified, it takes a very long time

to go through all the previous stages in order to fix it.

• Communication synthesis: Many real-time applications, following physical,

modularity or safety constraints, are implemented using distributed architec-
tures. The systems addressed in this book are composed of several different

types of hardware components, interconnected in a network.

In this context, an important design task is the communication synthesis task,

which decides the scheduling of communications and the configuration param-

eters specific to the employed protocol. These decisions have a strong impact

on the overall system properties such as predictability, performance, depend-

ability, cost, maintainability, etc.

• Calibration, testing, verification: These are the final stages of the design

process. If not enough analysis, testing and verification has been done in earlier

stages of the design, these stages can be very time consuming, and problems

identified here may lead to large delays.

15.3 Schedule Generation
According to [49], a scheduling policy provides two features: (i) an algorithm for

ordering the use of system resources (in particular the processors, the buses, but also

I/Os) and (ii) a means of predicting the worst-case behavior of the system when

Development Tools 369

the scheduling algorithm is applied. The prediction, also known as schedulability
analysis, can then be used to guarantee the temporal requirements of the application.

The aim of a schedulability analysis is to determine sufficient and necessary con-

ditions under which an application is schedulable. An application is schedulable if

there exists at least one scheduling algorithm that is able to produce a feasible sched-

ule. A schedule is a particular assignment of activities to the resource (e.g., tasks to

processors). A schedule is feasible if all tasks can be completed within the specified

constraints. Before such techniques can be used, the worst-case execution times of

tasks have to be determined. Tools such as aiT [98] can be used in order to determine

the worst-case execution time of a piece of code on a given processor.

The analysis and optimization techniques employed depend on the scheduling

policy and the model of the functionality used. The design techniques typically take

as input a model of the functionality consisting of sets of interacting tasks. A task is

a sequence of computations (corresponding to several building blocks in a program-

ming language) which starts when all its inputs are available. When it finishes execut-

ing, the task produces its output values. Tasks can be preemptible or non-preemptible.

Non-preemptible tasks are tasks that cannot be interrupted during their execution.

Preemptible tasks can be interrupted during their execution. For example, a higher

priority task has to be activated to service an event; in this case, the lower prior-

ity process will be temporarily preempted until the higher priority process finishes

its execution. Tasks send and receive messages. Depending on the communication

protocol, message transmission can be preemptible or non-preemptible. Large non-

preemptible messages can be split into packets before transmission.

There are several approaches to scheduling:

• Non-preemptive static cyclic scheduling (SCS) algorithms are used to build,

offline, a schedule table with activation times for each task (and message),

such that the timing constraints of tasks (and messages) are satisfied.

• Preemptive fixed priority scheduling (FPS). In this scheduling approach, each

task (and message) has a fixed (static) priority which is computed offline. The

decision on which ready task to activate (and message to send) is taken online

according to their priority.

• Earliest deadline first (EDF). In this case, that task will be activated (and that

message will be sent) which has the nearest deadline.

For static cyclic scheduling, if building the schedule table fulfills the timing con-

straints, the application is schedulable. In the context of online scheduling methods,

there are basically two approaches to the schedulability analysis: Utilization-based

tests and response-time analysis.

• The utilization tests use the utilization of a task or message (its worst-case

execution time relative to its period) in order to determine if the task sets (or

messages) are schedulable.

• A response-time analysis has two steps. In the first step, the analysis derives the

370 Time-Triggered Communication

worst-case response time of each task and message (the time it takes from the

moment it is ready for execution, until it has finished executing). The second

step compares the worst-case response time of each task and message to its

deadline and, if the response times are smaller than or equal to the deadlines,

the application is schedulable.

As mentioned throughout this book, another important distinction is between two

basic design approaches for real-time systems, the event-triggered and time-triggered

approaches.

• Time-Triggered: In the time-triggered approach, activities are initiated at pre-

determined points in time. In a distributed time-triggered system, it is assumed

that the clocks of all nodes are synchronized to provide a global notion of time.

Time-triggered systems are typically implemented using non-preemptive static
cyclic scheduling, where the task activation or message communication is done

based on a schedule table built offline.

• Event-Triggered: In the event-triggered approach, activities happen when a

significant change of state occurs. Event-triggered systems are typically imple-

mented using preemptive priority-based scheduling, or earliest deadline first,
where, as response to an event, the appropriate task is invoked to service it.

In this chapter, we are interested in time-triggered systems implemented using

non-preemptive static cyclic scheduling. A static schedule is a list of activities that is

repeated periodically. Each activity has an associated start time, capturing, for exam-

ple, when the particular task has to be activated or the message has to be transmitted.

There are several types of schedules in time-triggered systems.

• Message schedules: These are the schedules for the messages and frames

transmitted on the bus. The message schedules are organized according to a

TDMA policy: Each processor can transmit only during a predetermined time

interval, the so-called TDMA slot. In such a slot, a node can send several mes-

sages packaged in a frame (TTP), or even several frames (TTEthernet). Some

protocols require a fixed sequence of slots, each slot corresponding to a node,

and covering all the nodes in the architecture. This sequence is called a TDMA

round. Several TDMA rounds can be combined together in a cycle that is re-

peated periodically (cluster cycle). Other protocols (like TTEthernet) are less

strict and allow a basically arbitrary pattern within a cluster cycle. However,

the design of control algorithms often implies the use of TDMA rounds, and

several TDMA rounds with different length may be folded into a cluster cy-

cle. The sequence and length of slots may be required to be the same for all

TDMA rounds (FlexRay). In TTP, different lengths of slots are allowed, but a

fixed sequence must be maintained.

• Task schedules: These are the schedules for tasks running on the processors,

according to a SCS policy. Such a scheduling scheme is also called “time-

line scheduling,” and is the most used approach to handle periodic tasks in

Development Tools 371

safety-critical systems. The advantages and disadvantages of timeline schedul-

ing (especially compared to fixed-priority preemptive scheduling) are well un-

derstood [203]. The tasks are repeated periodically, with a period called the

major cycle. In most cases, the task periods are not identical, so the major cycle

is set to the least common multiple of all periods, and is subdivided into minor
cycles. A task with a smaller period will appear in several minor cycles, thus

achieving its desired rate. The task schedules are implemented using a cyclic
executive, typically based on a clock tick (an interrupt), which triggers the

start of the minor cycle. Often, other interrupts are disabled (or severely lim-

ited) and when the tasks in the minor cycle finish executing, control is passed

to a background scheduler that attends to less important activities.

• Partition schedules: In safety-critical systems, applications of different crit-

icality levels are often separated from each other using spatial and temporal

partitioning. Thus, with temporal partitioning, each application is allowed to

run only within predefined time slots, allocated on each processor. The se-

quences of time slots for all applications on a processor are grouped within a

major frame, which is repeated periodically.

• Interrupt schedules: While task and partition schedules mainly focus on the

user application, interrupt schedules are used for middleware tasks. Certain

actions, like reading and unpacking a frame, have to be executed actually for

every frame received. An interrupt (or middleware task activation) therefore

may occur several times within a cluster cycle or even within a TDMA round.

The interrupt schedule specifies what specific actions to execute in this partic-

ular instance of an interrupt occurrence.

• Cluster schedules: To implement a schedule in a distributed system, a global

notion of time is required. The previously mentioned schedules are typically

specified at the cluster level, since clock synchronization is performed at the

cluster level. A cluster schedule captures task, message and partition schedules

within a cluster. Several cluster schedules can be present in a system, but they

will not be synchronized with each other.

15.3.1 Requirements and Application Model

The requirements imposed on an embedded system depend on the particular ap-

plication that it implements. Requirements are divided into functional requirements

and non-functional requirements. The difficulty of designing embedded systems lies

in the many competing non-functional requirements that have to be satisfied. Typ-

ical non-functional requirements are: Performance (in terms of latency, through-

put, speedup), unit cost (the cost of manufacturing each copy of the system), non-

recurring engineering cost (the one-time monetary cost of designing the system),

size, power consumption, flexibility (how easy is it to change the functionality, to

add new functions), time-to-prototype, time-to-market and dependability attributes

such as reliability, maintainability and safety.

372 Time-Triggered Communication

In a real-time system, the timing constraints are of utmost importance: “The cor-

rectness of the system behavior depends not only on the logical results of the com-

putations, but also on the physical instant at which these results are produced” [169].

In hard real-time systems, missing a deadline can lead to a catastrophic failure. De-

sign methodologies for these systems are based on their worst-case execution times.

In soft real-time systems, missing a deadline does not cause catastrophic failures in

the system but leads to a certain performance degradation. The following are typical

constraints imposed in a hard real-time system:

• Timing constraints. The worst-case execution time (WCET) Ci is an upper

bound on the execution times of a task τi, which depends on its functionality

and the particular processor Ni where it runs. Tasks can have constraints on

their completion or activation. Thus, a deadline Di of a task τi is a time at which

the task must complete its execution. Tasks which must be executed once every

Ti units of time are called periodic tasks, and Ti is called their period. (Each

execution of a periodic task is called a job.) All other tasks are called aperiodic.

Release times restrict the start time of task activations (often to avoid resource

contention). Another important timing constraint, especially in the context of

control applications, is jitter, which captures the time-variation of a periodic

event. Note that all these constraints also apply to messages.

• Precedence constraints: They impose an ordering in the execution of activi-

ties. The behavior of the system is often modeled as a sequence of activities.

Thus, before a task can start, it has to wait for the input from another task. For

example, to perform an image recognition, first the image has to be acquired.

Distance constraints express a minimum distance between two activities, on

top of a precedence constraint. The opposite of distance constraints are the

freshness constraints, which express the maximum distance between two con-

secutive activities. Freshness constraints are typically placed on sensor data.

• Resource constraints: To perform their function, tasks have to use resources.

A task may have a locality constraint which requires the allocation of a task

to a specific processor, for example, because it has to use an actuator attached

to this particular processor. When several tasks want to use the same resource

(e.g., shared memory), we impose mutual exclusion constraints. Messages

exchanged between tasks on different processors have to use the bus, thus im-

posing communication constraints.

• Extendability constraints: Of specific interest are changes that are considered

“local.” Such a local change is a new message mi+1 that shall be transmitted

from one node A to another node B, but not to all other nodes C to Z. Ideally, the

communication configuration of nodes C to Z need not be updated due to this

change. A slightly different case is if message mi, which only is transmitted

between nodes A and B, gets changed in its size.

Unfortunately, this view does not provide enough detail to decide whether this

change is local or not. If it is necessary to move another message m j due to the

Development Tools 373

now bigger size of message mi, it is obviously not simply a local change. Con-

straints may exist regarding the placement and alignment of messages within

frames. A certain amount of bandwidth (per host) could be reserved for fu-

ture extensions. Users may want to specify the layout of the frame manually,

but leave the scheduling of the frames to a tool. The objective is to be able

to modify and extend an existing schedule throughout the whole development

and product lifetime just by local changes in order to save verification and

certification efforts.

These requirements dictate the types of schedules that have to be produced, and

the types of tools needed to generate the schedules. For example, the precedence con-

straints will capture if the interaction between components is synchronous or asyn-

chronous. A fully synchronous application (the tasks and the communication are in

phase and with the same speed) needs a more interacting design tool chain, that will

produce synchronized cluster-level schedules for both tasks and messages, than an

asynchronous application. There can be several setups, which will be reflected in

the tools used and the tool flow employed: The time-triggered network communi-

cation and application are synchronous; the time-triggered network communication

and application are asynchronous (causing oversampling and undersampling issues);

the network communication is not time-triggered and the application is bound to a

local clock (e.g., a control loop with CAN); and the network communication is not

time-triggered and the application reacts on events.

Thus, in this section we discuss the tools needed for generating message sched-

ules for time-triggered communication. In Section 15.4, we consider a complex

setup, where tasks can be both time-triggered and event-triggered, and messages

are transmitted using FlexRay, which has both static (time-triggered) and dynamic

(event-triggered) segments. The assumption is that tasks and messages are syn-

chronous. We discuss holistic scheduling: How to generate the cluster-level task

and message schedules such that the timing constraints are satisfied for both time-

triggered and event-triggered activities. We show how schedulability analysis has to

be integrated with schedule generation to guarantee the timing constraints. In Sec-

tion 15.5, we discuss how the schedules can be generated such that they are flex-

ible, i.e., easy to extend with new functionality. Section 15.6 focuses on the in-

teraction between event-triggered tasks, which produce event-triggered messages,

and the time-triggered frames scheduled over TTP. Several approaches that sched-

ule event-triggered messages over time-triggered frames are proposed and discussed.

We propose both problem-specific heuristic algorithms and meta-heuristics for the

optimization of the generated schedules. Section 15.3.2 discusses the complexity of

the scheduling problem and the typical solutions employed. As we will show in the

remainder of this chapter, the way the schedules are generated and optimized has a

significant impact not only on the timing constraints, but also on flexibility, latency,

jitter, buffer size, switching devices required and others.

374 Time-Triggered Communication

15.3.1.1 Application Model

There is a lot of research in the area of system modeling and specification, and an im-

pressive number of representations have been proposed. An overview, classification

and comparison of different design representations and modeling approaches is given

in [85]. The scheduling design task deals with sets of interacting tasks. Researchers

have used, for example, dataflow process networks (also called task graphs, or pro-

cess graphs) to describe interacting tasks, and have represented them using directed

acyclic graphs, where a node is a process and the directed arcs are dependencies

between processes.

In this subsection, we describe the application model assumed in the following

sections. Thus, we model an application A as a set of directed, acyclic, polar graphs

Gi(Vi,Ei) ∈ A. A node τi j ∈ Vi represents the jth task or message in Gi. An edge

ei jk ∈ Ei from τi j to τik indicates that the output of τi j is the input of τik. A task

becomes ready after all its inputs have arrived, and it issues its outputs when it termi-

nates. A message will become ready after its sender task has finished, and becomes

available for the receiver task after its transmission has ended. The communication

time between tasks mapped on the same processor is considered to be part of the

task’s worst-case execution time and is not modeled explicitly. Communication be-

tween tasks mapped on different processors is performed by message passing over

the bus. Such message passing is modeled as a communication task inserted on the

arc connecting the sender and the receiver task.

We consider that the scheduling policy for each task is known (either SCS or

FPS), and we also know how the messages are transmitted. For example, for FlexRay,

we would know if the message is sent in the static or dynamic segment. For a task

τi j ∈ Vi, Nodeτi j is the node to which τi j is assigned for execution. When executed

on Nodeτi j , a task τi j has a known worst-case execution time Cτi j . We also consider

that the size of each message m is given, which can be directly converted into com-

munication time Cm on the particular bus.

Tasks and messages activated based on events also have a priority, priorityτi j
. All

tasks and messages belonging to a task graph Gi have the same period Tτi j = TGi

which is the period of the task graph. A deadline DGi is imposed on each task graph

Gi. In addition, tasks can have associated individual release times and deadlines. If

dependent tasks are of different periods, they are combined into a merged graph

capturing all activations for the hyper-period (LCM of all periods) [261].

15.3.2 Scheduling Complexity and Scheduling Strategies

As mentioned earlier, a schedule defines the assignment of activities to the resources.

The complexity of deriving a schedule depends on the type and quantity of resources

available, the constraints imposed, and the objective function that has to be opti-

mized. Scheduling is probably one of the most researched problems in computer sci-

ence, and there is an enormous amount of results. There are several surveys available

which present the scheduling problems, their complexity and the strategies used.

Development Tools 375

The following are the main findings regarding the complexity of the scheduling

problems related to time-triggered systems, as reported in [300]:

• The integrated task and message scheduling problem to find the optimal sched-

ule (the one with minimum length) is NP-complete. Thus, given a task graph

model of the application, a limited number of processors interconnected by a

time-triggered bus, the problem of finding a feasible schedule that minimizes

the schedule length does not have a polynomial-time solution.

• The optimal task scheduling problem on a limited number of processors, but

without considering the communication costs, is also NP-complete.

• The scheduling problem, considering communication costs, on an unlimited

number of processors is NP-complete.

• The task scheduling problem, without the communication costs, is polynomial

on an unlimited number of processors. Of course, there are never unlimited

resources in a real system.

• The problem of deriving a schedule for messages, with the aim of optimizing

a given design metric, is NP-complete if it can be reduced to the “knapsack”

or “bin-packing” problems, which themselves are NP-complete.

These results mean that the schedules cannot be derived manually, and tool sup-

port is necessary. The scheduling problem is a very well-defined optimization prob-

lem, and has been tackled with every conceivable approach.

• Mathematical techniques: Researchers have proposed integer linear pro-

gramming, mixed-integer programming and dynamic programming. Decom-

position strategies (such as Benders-decomposition), enumerative techniques

such as Branch-and-Bound and Lagrangian relaxation techniques have also

been proposed. Such mathematical approaches have the advantage of produc-

ing the optimal solution. However, they are only feasible for limited problem

sizes due to the prohibitive run times.

• Artificial intelligence (AI): AI techniques have been used for scheduling,

such as expert/knowledge-based systems, distributed agents and neural net-

works.

• Scheduling heuristics: The most popular scheduling heuristics are list
scheduling and clustering [300]. List scheduling (LS) is the dominant schedul-

ing heuristic technique. LS heuristics use a sorted priority list, containing the

tasks ready to be scheduled, while respecting the precedence constraints. A

task is ready if all the predecessor tasks have finished executing and all the

incoming messages are received. LS generates the schedule by successively

scheduling each task (and message) onto the processor (bus). The start time

in the schedule table is the earliest time when the resource is available to the

respective task (or message). The allocation of tasks to processors has a direct

376 Time-Triggered Communication

influence on the communication cost. When the allocation of tasks to proces-

sors is not decided, clustering can be used to group tasks that interact heavily

with each other, and allocate them on the same processor [300].

• Neighborhood search: Although very popular, the drawback of scheduling

heuristics such as list scheduling is that they do not guarantee finding the op-

timal solution, i.e., they get stuck in a local optimum in the solution space.

Neighborhood search techniques are meta-heuristics (i.e., they can be used for

any optimization problem, not only scheduling) that can be used to escape

from the local optimum. Neighborhood search techniques use design transfor-

mations (moves) applied to the current solution, to generate a set of neigh-

boring solutions that can be further explored by the algorithm. Popular meta-

heuristics in this category are Simulated Annealing, Tabu Search and Genetic

Algorithms [46].

In the following subsections, we will use constructive heuristics such as list

scheduling to generate schedules, and meta-heuristics (neighborhood search tech-

niques) such as Simulated Annealing and Tabu Search to optimize a given schedule

for a certain metric. In the next subsections, some concepts based on and extending

the list-scheduling heuristic are discussed in detail. These concepts are partly imple-

mented in the scheduler of TTPPlan [344], the cluster design tool for TTP clusters

from TTTech. Lastly, we provide further details on the scheduling approach chosen

for TTPPlan.

15.3.2.1 Incremental Scheduling

Once a schedule has been generated and optimized, an important aspect is the ex-

tension of a schedule. The goal is to keep the scheduled tasks or messages as they

are, and to only add new tasks or messages in the free places. Incremental scheduling

(a.k.a. schedule extension) thus means that scheduling is done in discrete steps.

Schedule Steps

Each time a schedule is made, this is called a “schedule step.” These schedule “steps”

do not really form a sequence of different steps, but the whole process is a quite it-

erative one: After an initial schedule has been created, some properties or objects

may be changed, and a new schedule is made, which is possibly analyzed. Due to

this analysis or to change requests, further modifications are done, and a new sched-

ule is made. Each such cycle of changing and scheduling is considered a schedule
step. It is possible to make as many schedule steps as needed, until the result is sat-

isfactory. The concept of schedule steps fits well into the list-scheduling approach

as discussed above. Furthermore, a schedule step does not imply that already placed

tasks or messages are kept in their places. Any modification of the output is possible.

Freezing and Thawing

One can keep a schedule by “freezing” the current schedule step. By adding new

Development Tools 377

messages (with their type, period and further attributes, such as sender and receiver)

to it, and scheduling again, the “holes” in the original schedule are filled without

changing the already placed parts. The inverse operation is to “thaw” a schedule

step. This means to actually throw away the schedule that was computed in this very

step, but keeping the schedule parts from previous schedule steps. The additions

made in this step are then merged with the new additions (made after the just thawed

schedule step), and together considered the change set for the current schedule step.

Obviously, only the last frozen schedule step can be thawed. The concept of freezing

and thawing schedule steps also nicely fits into the list-scheduling approach.

Apart from adding new messages, other possible additions after a frozen schedule

step are:

• Additional hosts and subsystems

• Additional message types

• Mapping of new subsystems to hosts

In TTPPlan, only “frozen” schedule steps are stored and actually counted as steps.

Schedule steps are numbered to identify them later on. The first schedule step is also

called the “base step.” It contains all information necessary to make the MEDL (Mes-
sage Descriptor List, see Chapter 5, Section 5.3.1) for each host. In later schedule

steps, additional messages can be added for transmission in previously unused por-

tions of frames. Since the MEDL only contains information about the lengths of the

frames, but not their contents, the addition of messages can be done without changing

the MEDL.

TTXPlan

TTXPlan is the cluster design tool for FlexRay clusters. Incremental scheduling is of

special interest here, as the Field-Bus Exchange Format (FIBEX) [13] is used, and

FIBEX also allows us to save just parts of a cluster schedule. Furthermore, FlexRay

comprises a static and a dynamic segment, but the concept of schedule steps is not

applicable to the dynamic segment.

During FIBEX import, any already existing schedule information is imported

first, then the static part of the schedule is frozen and the rest of the information is

imported. With the command “Make new schedule,” this remaining data, including

the whole dynamic segment, is included in the schedule. The dynamic segment is

always scheduled from scratch, regardless of any already existing schedule informa-

tion. Part of the reason is that the length and the structure of dynamic frames change

when messages are added.
TTXPlan adds all schedule increments to its model. When the scheduler is then

started to generate a new schedule, it takes into account the original schedule while

computing a schedule for the “extended” model. It will not change the global

FlexRay configuration, but will eventually allocate additional free slots to hosts and

map additional messages to empty spaces in frames. Hosts, subsystems, messages,

frames and their associations that were present in the original cluster design remain

378 Time-Triggered Communication

unchanged. The advantage of this concept is that hosts which are not affected by a

change need not be touched. Moreover, a host may support different versions of the

schedule by identifying which messages are sent.

Change Management

If, for example, only two hosts A and B need additional messages, only these two

must be updated, while all other hosts can remain at the base step of the scheduling.

Later, host C might be updated to use the second schedule step, too. Eventually,

hosts A, D, and E might get updated to yet another schedule step with additional

messages. At runtime, a cluster using incremental scheduling can thus contain hosts

with differing schedule steps.

Each schedule step is an extension of the cluster’s communication properties.

It can place messages into unused parts of already allocated frames or assign yet

unused frames to the host and put messages there. When a host has exhausted the

spare capacity of its frames, or is known not to want to participate in any further

schedule steps, it should be excluded from further schedule steps. The user may

then still add increments to other hosts. The dynamic segment is not affected by this

exclusion.

To allow for safe interoperation of hosts at various steps of an incremental sched-

ule, each of the hosts participating in a schedule step should send one message per

schedule step carrying the schedule-step checksum (e.g., computed by a design tool)

which allows for online consistency checks. For a schedule step to be safely usable,

the schedule-step checksum sent by the sender must be equal to the schedule-step

checksum expected by the receiver.

15.3.2.2 Host Multiplexing

Host Multiplexing is a means to describe the fact that two or more hosts use the

same sending slot in different rounds. Although this is a general concept, it is only

available for TTP clusters.

A rather simple scenario is given in Figure 15.1. The first three slots are occupied

as usual: Each slot is assigned to one node. The last slot is assigned to three nodes,

where “Node 3” occupies two rounds, and “Node 4” and “Node 5” each occupy a

single round in this four-round schedule.

In the following example scenario, a special kind of host has been designed to

be non-periodic and still participate in the multiplexing. It is important to notice that

the messages of this host are still periodic! It meets additional requirements like the

following:

• One slot (in a schedule of 32 rounds) shall be shared by six hosts.

• Each host shall be assigned one round-slot every 8th round (periodic data).

• In the remaining 4∗2 rounds (two per multiplexing period), each host shall be

assigned one additional round-slot (event data, higher-level protocols).

Development Tools 379

Node 0 Node 1 Node 2 Node 3

Node 0 Node 1 Node 2 Node 4

Node 0 Node 1 Node 2 Node 3

Node 0 Node 1 Node 2 Node 5

R
ou

nd
0

1

2

3

NodeX Transmission of Node X

Slot
0 1 2 3

FIGURE 15.1
Multiplexed Slots

• With hosts A to F, the 32 round-slots shall be shared like this (typed in four

lines, each representing 8 rounds, for better readability):

A B C D E F A B
A B C D E F C D
A B C D E F E F
A B C D E F ? ?

• The remaining two round-slots (marked “? ?”) can be assigned to any multi-

plexing partner.

The pattern required is non-periodic in the sense that transmissions by one mul-

tiplexing host are not separated by a constant number of rounds anymore. However,

it can still be modeled by assigning multiple periods to a single multiplexing host

(e.g., in the above example, both “mux periods” 8 and 32 could be assigned to the

same host). This type of host is called “MUX Ghost” (in the following, simply called

“ghost”) and has the following properties:

• A ghost behaves like a host in that it can run subsystems in a cluster and can

thus send messages. In addition, it must be assigned a “mux period” and a

“mux round.”

• It is linked to a specific host which implements the subsystems specified for

the ghost. (Note: A ghost must be linked to the same slot as the linked host.)

• A ghost has no “Host in Cluster” link in the object model.

380 Time-Triggered Communication

• A ghost has no MEDL.

• The MEDL of a host contains the host’s own round-slots (“R Slot”) and the

round-slots of all ghosts linked to it.

15.3.2.3 Dynamic Messaging

Dynamic messaging is a concept to support the separation of concerns. One concern

is the time, period and data size in which a specific host is permitted to send its

data. The other concern is the actual layout and content of the frame being sent. This

means that the middleware (e.g., the COM layer) needs to know both “when” and

“what” to receive. Hence, it must be configured accordingly. Any time the “what”

changes, it needs to be reconfigured.

The general idea — or rather: the requirement — behind dynamic messaging is

that the middleware only should know the “when,” and consequently only should

need to be reconfigured in case of big changes, such as the timing of frames, if at all.

Reconfiguration shall not be necessary if a message is added to a “hole” in an ex-

isting frame. It definitely shall not be necessary for all hosts in the cluster. Dynamic

messaging therefore allows us to keep changes local, and to reduce certification ef-

forts.

With dynamic messaging, every message is assigned an ID that is part of the

message. It is placed at the beginning of the message, similarly to a frame header,

and has a fixed length. With this ID, the embedded software or the COM layer can

identify the message within a frame. The obvious disadvantage is that an additional

ID per message needs to be transmitted, which requires more bandwidth. The major

advantage is that a middleware layer (e.g., the COM layer) does not need any in-

formation about the location of a message within a frame. The middleware is able

to pack and unpack any message without the communication configuration (MEDL)

being modified, too. Allocation is statically predefined, so that overloading of frames

cannot occur.

Initially, all hosts get a description of all possible messages that exist in the clus-

ter, including their ID, length and other relevant properties for packing and unpack-

ing. Once known, there is no need to update this information, regardless of whether

the middleware is transferred to another host, or the message is placed at another

position in the frame. Middleware configuration data only needs to be created once,

and is the same for all hosts of the cluster. Having host hardware with preloaded and

preconfigured middleware on stock becomes feasible, as it can be used right out of

the box.

Dynamic messaging can be seen as an alternative to incremental scheduling.

While for incremental scheduling, the bin-packing problem needs to be solved for

placing messages in frames, and enough room must be reserved for potential future

extensions, this is not relevant for dynamic messaging. The layout of the frame is

determined at runtime.

Development Tools 381

15.3.2.4 Scheduling Strategies in TTPPlan

The basic input data for the message scheduler of TTPPlan consists of general cluster

information (e.g., cycle durations, transmission speed, topology), information about

hosts connected to this cluster and the messages sent by these hosts (e.g., size, period,

redundancy).

The message scheduler of TTPPlan is an algorithm to produce a static, cyclic

schedule. It is implemented as a heuristic scheduler, or more precisely, as a combi-

nation of a list scheduler, followed by an optimization step. The schedule output is

basically a set of frames with a specific message allocation and a predefined trans-

mission time instance.

In terms of programming, the message scheduler consists of five steps:

1. Initialization of the scheduler

2. Preparation for the scheduling (including checking the input object model)

3. Scheduling of the messages (including placement of the messages within a

frame)

4. Write back the scheduling results to the object model

5. Finish scheduling

Preparation for Scheduling

Before the actual message scheduling takes place, various preparation steps have

to be performed inside the message scheduler. This includes increasing the global

cluster schedule step and figuring out the number of cluster modes. Usually, there is

one user mode and one pseudo mode for TTP startup, but there might be more.

Afterwards, some messages are created that are needed for certain services. Such

messages include “RPV messages” for the remote-pin-voting feature, as well as sub-

system status messages. Every subsystem that was designed to send its status needs

to send such a message. If the cluster allows schedule extensions, special messages

carrying schedule step checksums have to be created as well.

Algorithmic Steps

In terms of algorithmic structure and complexity, only the third step from the above

list is of interest. It can be broken down further into eight steps. These — basically in-

dependent — steps of the message scheduler are described in the order of invocation

inside TTPPlan.

1. Increment the schedule step. The “scheduled” attribute of all objects is in-

creased by one. This attribute is initially zero if no schedule step has been

made so far (base step), and therefore incremented to one. If a schedule of an

old, not frozen schedule step exists, this schedule is deleted. All frozen sched-

ule information will be kept.

382 Time-Triggered Communication

2. Create the grid. This step is only done inside the base step and is skipped for

every additional schedule step. The grid is derived from the basic bus parame-

ters like bus speed, the shortest and longest period of messages to be sent and

the number of hosts in the cluster. Each cell of the grid represents a round-

slot, and an “R Slot” object is created accordingly. In this step, the number of

rounds per cluster cycle is calculated, too.

3. Schedule messages.

(a) Assign one slot to each host, depending on the shortest message period

this host wants to use.

(b) Assign additional slots to hosts according to the user settings regarding

reserved bandwidth. With bandwith reservation, the amount of free space

within a frame can be influenced, thus facilitating extensions in future

schedule steps.

(c) Determine the “difficulty” of a host by the number of messages, the

replica level, and the ID of the host. (The ID is used to obtain a deter-

ministic ordering.)

(d) For every host, starting with the most difficult one, do the following:

i. Determine the difficulty of a message in the following order: Chan-

nel freedom, redundancy degree, round-delta, round freedom, size

and name.

ii. Assign messages to frames starting with the most difficult message.

iii. For each message: If there is an available R Slot, use the R Slot with

“good” round-delta. Otherwise, try to assign a new R Slot.

iv. For each slot: Try to balance channels, then try to balance rounds.

Slots are not balanced.

4. Schedule messages in frame. Place the messages in a specified position inside

the frame. There are several options for this placement: The placement can

be optimized for data access, leading to messages aligned with byte and word

boundaries, as far as possible. It is also possible to specify that a message may

be placed in fragments (i.e., not contiguously). A very simple approach is to

place one message after the other, in the order they have been added to the

frame.

5. Schedule messages in message boxes. If message boxes exist, place the mes-

sages inside the defined message box depending on alignment, size and ID.

6. Place I-Frames.: Place the frames necessary for synchronization of TTP wher-

ever possible. If too few locations can be identified, a warning is issued. In this

case, the user may try scheduling with different parameters, or switch over to

using X-frames.

7. Check schedule invariants. These checks are executed to ensure the consis-

tency of the schedule itself. If an internal error occurs, all schedule information

Development Tools 383

collected so far will be deleted again. In addition, the schedule signatures and

the checksum are computed and set during this check.

15.3.3 Schedule Visualization

The more complex a communication system is, the greater the need for a means to

visualize its schedule. It has been shown that increased complexity makes it more

difficult to recognize design faults, simply due to a lack of overview. Thus, if the

system can be visualized in terms of underlying communication structures instead

of just pouring out all schedule details over the user, design comprehension is im-

proved [280].

Many characteristics of time-triggered systems — such as their repetitive char-

acter (i.e., periodic transmission), predefined “active intervals,” the use of state mes-

sages for data sharing and highly self-contained components — provide this kind of

structure and hence support design comprehension.

For example, the points in time when events in a time-triggered system take place

are well-defined. This information can be used to add to an understanding of the

system, as the time axis can serve as the basis for conceptual structuring.

On the application level, strictly time-triggered systems just use interfaces based

on state messages. This means that the interfaces of all components only consist

of a number of state messages that must either be read or written. No other com-

munication or coordination mechanisms are required. As time-triggered systems are

of repetitive nature, a component regularly reads the same input messages and then

writes the same set of output messages — usually at about equidistant points in time.

Only the content of the messages changes, but not the messages themselves.

With these characteristics of a time-triggered system in mind, we can define ba-

sically three possibilities for schedule visualization: a textual representation (in the

following called schedule browser), a graphical one (in the following called schedule
viewer or schedule editor) and animation.

While a schedule editor may give a better overview of the whole schedule and

eases real “schedule editing” (for example, manually moving frames), a schedule

browser may be simpler to use when searching for specific information or wanting to

compare certain properties of messages. Animation, although trendy, is not covered

here, as we do not consider it a viable solution. In our opinion, it does not satisfy

the user’s need for interaction (editing) and customized views the way browsers and

editors do. Therefore, only examples of these two types are briefly outlined in the

following, as they are also implemented in TTTech’s readily available cluster design

and scheduling tool TTPPlan. TTPPlan can generate a cluster (i.e., message) schedule

either from scratch or by extending an existing schedule (schedule extension), and

provides both textual and graphical schedule editing. Further details can be found

in [344].

384 Time-Triggered Communication

FIGURE 15.2
The Schedule Browser of TTPPlan

15.3.3.1 The Schedule Browser

The schedule browser of TTPPlan employs a hierarchical structure, similar to the

well-known treeview of other browsers, listing all objects participating in the sched-

ule (hosts, frames, transmission slots). See Figure 15.2 for a screenshot. Each object

is displayed as clickable hyperlink, allowing for direct access to the corresponding

object editor, where the object’s attributes can be edited. Expanding an object node

in the browser displays the actual timing information of the schedule, e.g., slot dura-

tions, frame and message sizes and transmission periods.

A shorter version of the schedule browser, the schedule summary, can be useful

for a first quick overview. It could be automatically displayed in a design tool right

after successful schedule generation, as it is done in TTPPlan. It only displays the

basic data of the generated schedule (number and duration of rounds, transmission

speed of messages and frames).

15.3.3.2 The Schedule Editor

In TTP and FlexRay, the communication schedule is based on rounds and slots. This

fact lends itself to a grid-like representation, with the rows corresponding to rounds

and the columns corresponding to slots. Each intersection of a row and a column

thus represents a round-slot, the basic “transmission window” for scheduled data.

The grid as a whole displays one cluster cycle in its entirety. Due to the periodic

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-16&iName=master.img-004.jpg&w=300&h=228

Development Tools 385

nature of a time-triggered schedule, where only the transmitted contents change, but

not the timing behavior, this gives a perfect overview.

In TTP, each transmitting host in the cluster is assigned its own transmission slot.

Consequently, the columns automatically also represent the hosts. For FlexRay, an

indication which slot is used by which hosts needs to be added.

In a redundant system, i.e., with data being transmitted twice on two different

communication channels, each round-slot can be split into two sections to display the

frames transmitted on both channels. Vertical alignment of these sections is preferred

as the structure of the frames on both channels can be compared quickly, giving an

immediate understanding of whether the frames are truly redundant (i.e., have exactly

the same structure), or only some messages in the frames are redundant, while others

are not.

The schedule editor of TTPPlan is shown in Figure 15.3. It provides drop-down

lists to select certain parts of the schedule; this is very helpful when dealing with

huge and complex schedules. If a host, frame or message is selected, all occurrences

of it are highlighted (as far as the schedule is displayed, that is). For example, se-

lecting a message is useful to see in which slots or rounds it has been scheduled for

transmission.

For working with large clusters, the display area of the schedule grid can be set

by selecting the desired number of hosts/slots or rounds. On the one hand, this makes

the frames larger, easier to see and easier to select with the mouse. On the other hand,

it allows us to obtain an overview by viewing all slots and rounds at the same time

and to identify “similar” patterns in the communication structure.

As the round-slot fields of the grid may not be large enough (even with a re-

duced number of visible slots/rounds) to display all relevant information, a “magni-

fier” function, like the “magnifier window” shown in Figure 15.3, allows the user to

view the frames of a selected round-slot — as well as the messages contained in the

frames — in a separate window area. In addition, details about the messages (size

and timing) are listed below the magnifier window.

Actual schedule editing is best done by drag-and-drop: Drag a message from

its current position (frame or round) to another and release it there. This implicitly

changes the affected attributes of the message. In this way, one can optimize the

current schedule and generate shorter slots, thus allowing for shorter overall rounds.

Manual editing also can provide a way out in case the scheduling tool failed to find

a feasible schedule.

However, certain actions are prohibited by the schedule editor because they

would either violate design constraints or have to be performed prior to rescheduling,

i.e., in the scheduling tool itself:

• Drop messages into rounds where their period or phase constraints would be

violated

• Drop messages on I-frames (for TTP)

• Move replicated messages to a round-slot where there is not enough space on

the other channel (in TTP: where there is an I-frame on one of the channels)

386 Time-Triggered Communication

FIGURE 15.3
The Schedule Editor of TTPPlan

Development Tools 387

• Move messages out of their slot (in TTP) or out of the slots the sending host

may use (in FlexRay). We consider it bad practice to implicitly change the

communication requirements (i.e., who sends what) by editing the schedule.

Editing should only refine the timing in detail.

• Move messages within the frame (there should never be a need for this).

15.3.3.3 The Round-Slot Viewer

Similar to a schedule editor, a round-slot viewer has a grid-like structure, with the

rows representing rounds and the columns representing slots. Each intersection of

a row and a column thus represents a round-slot. For large schedules, scrolling and

limiting the number of displayed items can be useful. After the successful generation

of a schedule, one might want to open the round-slot viewer to have a look at the

schedule timing.

Like the schedule editor, the round-slot viewer shown in Figure 15.4 provides a

magnifier window below the schedule grid. Selecting a round-slot highlights it and

also shows it in the magnifier window. At the top of the magnifier window, the slot

time is displayed for both channels (first channel above, second one below). The time

is split into four parts that are equal for both channels (from left to right):

• Transmission phase: The time span needed for transmission of the frames.

I-frames and N-frames are displayed in different colors. Overfull N-frames

would be displayed in red to highlight them.

• Post-receive-phase (prp): The time span immediately after transmission

phase, during which certain services are performed.

• Idle time: This time is needed to stretch the durations of the slots to meet the

specified round duration. This idle time is unused bandwidth.

• Pre-send-phase (psp): The time span immediately before action time, during

which frame transmission is prepared. The sum of prp, idle time and psp de-

termines the inter-frame gap (IFG). It is limited by the slowest controller in the

cluster.

Below the slot time, the user interrupts for both channels are displayed. The mag-

nifier window itself displays additional information about the selected round-slot.

Among this information there is the kind of each item in the round-slot, as well as a

time grid showing the time from the beginning of the cluster cycle.

15.3.3.4 Visualization of Message Paths

TTEthernet communication, although time-triggered, is not as strict in its structure

as TTP. It is not based on rounds and individual sending slots for each device, but

rather on “communication links,” i.e., physical connections between sender and re-

ceiver, that are basically independent of each other. In contrast to TTP, TTEthernet

388 Time-Triggered Communication

FIGURE 15.4
The Round-Slot Viewer of TTPPlan

Development Tools 389

allows the simultaneous reception and transmission on the same link, as well as si-

multaneous communication on several links. Therefore, a rigid grid like that of the

schedule editor or the round-slot viewer presented above is not the optimal visual-

ization strategy.

The approach presented here is instead based on the communication links and

“message paths.” A message path denotes the logical path a message takes through

the network from the original sender to the last receiver or receivers, including in-

termediate receiving and resending by one or more switches. Figure 15.5 shows a

possible schedule viewer for TTEthernet, based on such a visualization approach.

Note that — for simplicity — only strictly time-triggered messages are considered

here (i.e., no rate-constrained or best-effort messages).

As usual, the schedule viewer is based on a horizontal time axis. In parallel to

it there are the lines representing the communication links. Each link connects two

devices, whose names are stated at the left edge of the schedule, above and below the

line. The colored rectangles above each line are the messages transmitted from the

upper to the lower device, the rectangles below the line those in the other direction.

The example schedule in Figure 15.5 displays one cluster cycle with a duration

of 1 ms, with the first 100 μs being reserved (by design) for special purposes, e.g.,

clock synchronization. For simplicity, all messages are transmitted once per cluster

cycle, i.e., their periods equal the cluster cycle duration.

Following the path of the message OUT (gray rectangle) from the main controller

to all other devices provides some insight into the way of interpreting the displayed

schedule. Moving along the time axis, the following transmissions take place:

1. The Main Controller sends OUT to switch sw1 (lower left corner of the sched-

ule).

2. sw1 takes some time processing OUT, hence the gap between the first and the

second transmission.

3. sw1 simultaneously sends OUT to the end system IO Node1 and the switch

sw2.

4. sw2 takes some time processing OUT.

5. sw2 sends OUT to sw3 just after the processing time.

6. sw2 simultaneously sends OUT to IO Node2 and IO Node3. This transmis-

sion takes place later than that to sw3 because there are some other messages

scheduled for transmission in the same direction on these links.

7. sw3 takes some time processing OUT.

8. sw2 simultaneously sends OUT to IO Node4 and IO Node5.

In the same way, the paths of the messages INX and IN MC X can be traced

from the end systems (IO NodeX) to the main controller (starting at the upper left

corner of the schedule).

3
9

0
Tim

e-Triggered
C

om
m

unication

FIGURE 15.5
Illustration of Data Traffic on All Full-Duplex Connections of a TTEthernet Network

Development Tools 391

Clicking on a message not only highlights all its occurrences, but even shows its

message paths as arrows indicating the intra-network communication. User interac-

tion is not viable here, as drawing all arrows for all messages would result in a mess.

However, showing the paths of a selected message on request gives the user a quick

notion of where processing delays occur and which way the data flows, resulting in

a good impression about the latency of this message.

Displaying messages with a transmission period of exactly one cluster cycle —

as in the above example — is simple, but a system is not always designed this way.

For messages with a higher frequency, i.e., that are transmitted more than once per

cluster cycle, additional “depth” of the display is needed. Basically, there are two

possibilities to include the periodicity in the displayed schedule:

• To draw one message instance after the other, with the schedule viewer always

displaying one whole cluster cycle. The advantage is that this representation is

simple. The disadvantage is that the viewing area can become very long and

thus will need a lot of scrolling and zooming. By introducing a magnifier or

an overview window, navigation in this “wide” schedule representation can be

made more comfortable.

• To wrap each link after the shortest period (cf. the TTP schedule editor), which

means that each instance of the shortest period starts “at the beginning,” i.e.,

the left edge. The advantage is that the messages with the highest frequency

are placed below each other, and messages with periods that are integer mul-

tiples of the shortest period are also nicely displayed. But there are at least

two disadvantages. First, it is difficult to keep an overview with several links.

Second, adding arrows to show the communication paths makes the schedule

quite unreadable, as the arrows may cross message instances of interest.

15.4 Holistic Scheduling and Optimization
Applications consist of a set of interacting tasks that communicate through messages.

Depending on the functionality, tasks and messages may be time-triggered or event-

triggered, or, in certain situations [205], a combination of both. There are many ap-

plications where the interaction between the functions is tightly coupled, and design

decisions cannot be taken in isolation, they have to be taken considering the complete

system, i.e., in a holistic manner. For example, when TT tasks and TT messages are

synchronized, the schedule of the tasks has to be constructed at the same time with

the message schedule. Also, the worst-case end-to-end delays for ET messages may

impact the worst-case response times of ET tasks, and in this case the analysis and

optimization of messages has to be considered at the same time with the analysis and

optimization of tasks.

In this section, we present an approach to holistic analysis and optimization of

392 Time-Triggered Communication

FlexRay-based systems. Although the work here considers FlexRay, the holistic anal-

ysis and optimization principles are also valid for other protocols. FlexRay is com-

posed of static (ST) and dynamic (DYN) segments, which are arranged to form a bus

cycle that is repeated periodically. The ST segment is similar to TTP, and employs a

generalized time-division multiple-access (GTDMA) scheme. The DYN segment of

the FlexRay protocol is similar to Byteflight and uses a flexible TDMA (FTDMA)

bus access scheme. We propose techniques for determining the timing properties of

messages transmitted in the static and the dynamic segments of a FlexRay communi-

cation cycle. We first briefly present a static cyclic scheduling technique for TT mes-

sages transmitted in the ST segment. Then, we develop a worst-case response time

analysis for ET messages sent using the DYN segment, thus providing predictability

for messages transmitted in this segment. The analysis techniques for messages are

integrated in the context of a holistic schedulability analysis algorithm that computes

the worst-case response times of all the tasks and messages in the system.

Such an analysis, while being able to bound the message transmission times on

both the ST and DYN segments, represents the first step toward enabling the use of

this protocol in a systematic way for time-critical applications. The second step to-

ward an efficient use of FlexRay is concerned with optimization techniques that con-

sider the particular features of an application during the process of finding a FlexRay

bus configuration that can guarantee that all time constraints are satisfied.

15.4.1 System Model

We consider architectures consisting of nodes connected by one FlexRay commu-

nication channel2 (see Figure 15.6a). Each processing node connected to a FlexRay

bus is composed of two main components: A CPU and a communication controller

(see Figure 15.7a) that are interconnected through a two-way controller-host inter-

face (CHI). The controller runs independently of the node’s CPU and implements the

FlexRay protocol services.

For the systems we are studying, we have made some basic assumptions about

the features of a software architecture which runs on the CPU of each node. The

main component of the software architecture is a real-time kernel that contains two

schedulers, for static cyclic scheduling (SCS) and fixed priority scheduling (FPS),

respectively3 (see Figure 15.6b).

When several tasks are ready on a node, the task with the highest priority is ac-

tivated, and preempts the other tasks. Let us consider the example in Figure 15.6b,

where we have six tasks sharing the same node. Tasks τ1 and τ6 are scheduled using

SCS, while the rest are scheduled with FPS. The priorities of the FPS tasks are in-

dicated in the figure. The arrival time of a task is depicted with an upward pointing

arrow. Under these assumptions, Figure 15.6b presents the worst-case response times

of each task. SCS tasks are non-preemptable and their start time is offline fixed in the

2FlexRay is a dual-channel bus.
3EDF can also be added, as presented by us in [266].

Development Tools 393

FIGURE 15.6
System Architecture Example

schedule table (they also have the highest priority, denoted with priority level “0” in

the figure). FPS tasks can only be executed in the slack of the SCS schedule table.

FPS tasks are scheduled based on priorities. Thus, a higher priority task such as

τ3 preempts a lower priority task such as τ4. SCS activities are triggered based on a

local clock in each processing node. The synchronization of local clocks throughout

the system is provided by the communication protocol.

15.4.2 The FlexRay Communication Protocol

In this section, we will describe how messages generated by the CPU reach the

communication controller and how they are transmitted on the bus. Let us consider

the example in Figure 15.7 where we have three nodes, N1 to N3 sending messages

ma,mb, . . . ,mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic cycles (Figure 15.7b de-

picts two cycles of length Tbus). Each cycle contains two time intervals with different

bus access policies: An ST segment and a DYN segment.4 We denote with STbus and

DYNbus the length of these segments. In Figure 15.7 there are three static slots for

the ST segment. For details on the FlexRay communication protocol, the reader is

directed to the FlexRay chapter.

In Figure 15.7, node N1 has been allocated ST slot 2 and DYN slot 3, N2 trans-

mits through ST slots 1 and 3 and DYN slots 2 and 4, while node N3 has DYN slots

1 and 5. For each of these slots, the CHI reserves a buffer that can be written by

the CPU and read by the communication controller (these buffers are read by the

4The FlexRay bus cycle also contains a symbol window and a network idle time, but their size does not

affect the equations in our analysis. For simplicity, they will be ignored during the examples throughout

the section.

3
9

4
Tim

e-Triggered
C

om
m

unication

FIGURE 15.7
FlexRay Communication Cycle Example

Development Tools 395

communication controller at the beginning of each slot, in order to prepare the trans-

mission of frames). The associated buffers in the CHI are depicted in Figure 15.7a.

We denote with DYNSlotsNp the number of dynamic slots associated to a node Np
(this means that for N2 in Figure 15.7, DYNSlotsN2

has value 2).

We use different approaches for ST and DYN messages to decide which messages

are transmitted during the allocated slots. For ST messages, we consider that the

CPU in each node holds a schedule table with the transmission times. When the time

comes for an ST message to be transmitted, the CPU will place that message in its

associated ST buffer of the CHI. For example, ST message mb sent from node N1 has

an entry “2/2” in the schedule table specifying that it should be sent in the second

slot of the second ST cycle.

For the DYN messages, we assume that the designer specifies their FrameID. For

example, DYN message me has the frame identifier “2.” While nodes must use dis-

tinct FrameIDs (and consequently distinct DYN slots) in order to avoid bus conflicts,

we allow for a node to send different messages using the same DYN FrameID.5 For

example, messages mg and m f on node N2 have both FrameID 4. If two or more

messages with the same frame identifier are ready to be sent in the same bus cycle, a

priority scheme is used to decide which message will be sent first. Each DYN mes-

sage mi has associated a priority prioritymi
. Messages with the same FrameID will

be placed in a local output queue ordered based on their priorities. The message from

the head of the priority queue is sent in the current bus cycle. For example, message

m f will be sent before mg because it has a higher priority.

At the beginning of each communication cycle, the communication controller of

a node resets the slot and minislot counters. At the beginning of each communication

slot, the controller verifies if there are messages ready for transmission (present in

the CHI send buffers) and packs them into frames.6 In the example in Figure 15.7,

we assume that all messages are ready for transmission before the first bus cycle.

Messages selected and packed into ST frames will be transmitted during the bus

cycle that is about to start according to the schedule table. For example, in Fig-

ure 15.7, messages ma and mc are placed into the associated ST buffers in the CHI in

order to be transmitted in the first bus cycle. However, messages selected and packed

into DYN frames will be transmitted during the DYN segment of the bus cycle only

if there is enough time until the end of the DYN segment. Such a situation is veri-

fied by comparing if, in the moment the DYN slot counter reaches the value of the

FrameID for that message, the value of the minislot counter is smaller than a given

value pLatestTx. The value pLatestTx is fixed for each node during the design phase,

depending on the size of the largest DYN frame that node will have to send during

run-time. For example, in Figure 15.7, message mh is ready for transmission before

the first bus cycle starts, but, after message m f is transmitted, there is not enough

room left in the DYN segment. This will delay the transmission of mh for the next

bus cycle.

5This assumption is not part of the FlexRay specification. If messages are not sharing FrameIDs, this

is handled implicitly as a particular case of our analysis.
6In this section, we do not address frame-packing [263], and thus assume that one message is sent per

frame.

396 Time-Triggered Communication

GlobalSchedulingAlgorithm()
1 while TT ready list is not empty
2 select τij from TT ready list
3 if τij is a SCS task then
4 schedule TT task(τij, Nodeτij)
5 else // τij is a ST message
6 schedule ST msg(τij, Nodeτij)
7 end if
8 update TT ready list
9 end while

end StaticScheduling
schedule TT task(τij, Nodeτij)
10 find first available time moment ts after ASAPτij

on Nodeτij

11 schedule τij after ts on Nodeτij, so that holistic analysis
produces minimal worst-case response times
for FPS tasks and DYN messages

12 update ASAP for all τij successors
end schedule TT task
schedule ST msg(τij, Nodeτij)
13 find first ST slot(Nodeτij) available after ASAPτij

14 schedule τij in that ST slot
15 update ASAP for all τij successors

end schedule ST msg

FIGURE 15.8
Global Scheduling Algorithm

15.4.3 Timing Analysis

Given a distributed system based on FlexRay, as described in the previous two sec-

tions, the tasks and messages have to be scheduled. For the SCS tasks and ST mes-

sages, this means building the schedule tables, while for the FPS tasks and DYN

messages we have to determine their worst-case response times.

The problem of finding a schedulable system has to consider two aspects:

1. When performing the schedulability analysis for the FPS tasks and DYN mes-

sages, one has to take into consideration the interference from the SCS activi-

ties.

2. Among the possible correct schedules for SCS activities, it is important to

build one which favors as much as possible the schedulability of FPS activities.

Figure 15.8 presents the global scheduling and analysis algorithm, in which the

main loop consists of a list-scheduling based algorithm [62] that iteratively builds

the static schedule table with start times for SCS tasks and ST messages.

A ready list (TT ready list) contains all SCS tasks and ST messages which are

ready to be scheduled (they have no predecessors or all their predecessors have al-

ready been scheduled). From the ready list, tasks and messages are extracted one by

one (Figure 15.8, line 2) to be scheduled on the processor they are mapped to (line

4), or into a static bus-slot associated to that processor on which the sender of the

Development Tools 397

message is executed (line 6), respectively. The priority function which is used to se-

lect among ready tasks and messages is a critical path metric, modified by us for the

particular goal of scheduling tasks mapped on distributed systems [86]. Let us con-

sider a particular task τi j selected from the ready list to be scheduled. We consider

that ASAPτi j is the earliest time moment which satisfies the condition that all pre-

ceding activities (tasks or messages) of τi j are finished (line 10). With only the SCS

tasks in the system, the straightforward solution would be to schedule τi j at the first

time moment after ASAPτi j when Nodeτi j is free. Similarly, an ST message will be

scheduled in the first available ST slot associated with the node that runs the sender

task for that message.

As presented by us in [265], when scheduling SCS tasks, one has to take into

account the interference they produce on FPS tasks. The function schedule TT task
in Figure 15.8 places a SCS task in the static schedule in such a way that the in-

crease of worst-case response times for FPS tasks is minimized. Such an increase is

determined by comparing the worst-case response times of FPS tasks obtained with

our holistic schedulability analysis before and after inserting the new SCS task in the

schedule [265].

The next subsection presents our solution for computing the worst-case response

times of DYN messages, while in Section 15.4.3.2 we will integrate this solution into

a holistic schedulability analysis that determines the timing properties of both FPS

tasks and DYN messages (which is called in line 11, of schedule TT task presented

in Figure 15.8).

15.4.3.1 Schedulability Analysis of DYN Messages

The worst-case response time Rm of a DYN message m is given by the following

equation:

Rm(t) = σm +wm(t)+Cm, (15.1)

where Cm is the message communication time (see Section 15.3.1), σm is the longest

delay suffered during one bus cycle if the message is generated by its sender task

after its slot has passed, and wm is the worst-case delay caused by the transmission

of ST frames and higher priority DYN messages during a given time interval t. For

example, in Figure 15.9, we consider that a message m is supposed to be transmitted

in the third DYN slot of the bus cycle. The figure presents the case when message

m appears during the first bus cycle after the third DYN slot has passed; therefore,

the message has to wait σm until the next bus cycle starts. In the second bus cycle,

the message has to wait for the ST segment and for the first two DYN slots to finish,

delay denoted with wm (that also contains the transmission of a message m′ that uses

the second DYN slot).

The communication controller decides what message is to be sent on the bus in

a certain communication slot at the beginning of that slot. As a consequence, in the

worst case, a DYN message m is generated by its sender task immediately after the

slot with the FrameIDm has started, forcing message m to wait until the next bus

cycle starts in order to really start competing for the bus. In conclusion, in the worst

398 Time-Triggered Communication

FIGURE 15.9
Response Time of a DYN Message

case, the delay σm has the value:

σm = Tbus − (STbus +(FrameIDm −1)×gdMinislot), (15.2)

where STbus is the length of the ST segment.

What is now left to be determined is the value wm corresponding to the maximum

amount of delay on the bus that can be produced by interference from ST frames and

DYN messages. We start from the observations that the transmission of a ready DYN

message m during the DYN slot FrameIDm can be delayed because of the following

causes:

• Local messages with higher priority, that use the same frame identifier as

m. We will denote this set of higher priority local messages with hp(m).

For example, in Figure 15.7a, messages mg and m f share FrameID 4, thus

hp(mg) = {m f }.

• Any messages in the system that can use DYN slots with lower frame identi-

fiers than the one used by m. We will denote this set of messages having lower
frame identifiers with lf (m). In Figure 15.7a, lf (mg) = {md ,me}.

• Unused DYN slots with frame identifiers lower than the one used for sending

m (though such slots are unused, each of them still delays the transmission of

m for an interval of time equal with the length gdMinislot of one minislot);

we will denote the set of such minislots with ms(m). Thus, in the example in

Figure 15.7b, ms(mg) = {1,2,3}, and ms(m f) = {3}.

Determining the interference of DYN messages in FlexRay is complicated by

several factors. Let us consider the example in Figure 15.10, where we have two

nodes, N1 (with FrameIDs 1 and 3) and N2 (with FrameID 2), and three messages

m1 to m3. N1 sends m1 and m3, and N2 sends message m2. Messages m1 and m2 have

FrameIDs 1 and 2, respectively. We consider two situations: Figure 15.10a, where m3

has a separate FrameID 3, and Figure 15.10b, where m3 shares the same FrameID 1

with m1. The values of pLatestTx for each node are depicted in the figure.7

7We use pLatestTxm to denote pLatestTxN of the node N sending message m.

D
evelopm

entTools
3

9
9

FIGURE 15.10
Transmission Scenarios for DYN Messages

400 Time-Triggered Communication

In Figure 15.10a, message m2, that has a lower FrameID than m3, cannot be

sent immediately after message m1, because the value of the minislot counter has

exceeded the value pLatestTxm2
when the value of the DYN slot counter becomes

equal to 2 (hence, m2 does not fit in this DYN cycle). As a consequence, the trans-

mission of m2 will be delayed for the next bus cycle. However, since in the moment

when the DYN slot counter becomes 3 the minislot counter does not exceed the value

pLatestTxm3
, message m3 will fit in the first bus cycle. Thus, a message (m3 in our

case) can be sent before another message with a lower FrameID(m2). Such situations

must be accounted for when building the worst-case scenario.

In Figure 15.10b, message m3 shares the same FrameID 1 with m1 but we con-

sider that it has a lower priority, thus hp(m3) = {m1}. In this case, m3 is sent in the

first DYN slot of the second bus cycle (the first slot of the first cycle is occupied

with m1) and thus will delay the transmission of m2. In this scenario, we notice that

assigning a lower frame identifier to a message does not necessarily reduce the worst-

case response time of that message (compare to the situation in Figure 15.10a, where

m3 has FrameID = 3).

We next focus on determining the delay wm(t) in (15.1). The delay produced by

all the elements in hp(m), lf (m) and ms(m) can extend to one or more bus cycles:

wm(t) = BusCyclesm(t)×Tbus +w′
m(t), (15.3)

where BusCyclesm(t) is the number of bus periods for which the transmission of m
is not possible because transmission of messages from hp(m) and lf (m) and because

of minislots in ms(m). The delay w′
m(t) denotes now the time that passes, in the

last bus cycle, until m is sent, and is measured from the beginning of the bus cycle

in which message m is sent until the actual transmission of m starts. For example,

in Figure 15.10b, BusCyclesm2 = 1 and w′
m2

(t) = STbus +Cm3
. Note that both these

terms are functions of time, computed over an analyzed interval t. This means that

when computing them we have to take into consideration all the elements in hp(m),
lp(m) and ms(m) that can appear during such a given time interval t. Thus, we will

consider the multiset hp(m, t) containing all the occurrences over time interval t of

elements in hp(m). The number of such occurrences for a message l ∈ hp(m) is

equal to: �(Jl + t)/Tl�, where Tl is the period of the message l and Jl is its worst-

case jitter (such a jitter is computed as the difference between the worst-case and

best-case response times of its sender task s: Jl = Rs −Rb
s [245]). Similarly, lf (m, t)

and ms(m, t) consider all the occurrences over t of elements in lf (m) and ms(m),
respectively.

The optimal (i.e., exact) solutions for determining the values for BusCyclesm(t)
and w′

m(t) are beyond the scope of this section, and are presented in [267]. These, can

be intractable for larger problem sizes. Hence, in [267] we have proposed heuristics

that quickly compute upper bounds (i.e., pessimistic) values for these terms. Once

for any given time interval t we know how to obtain the values BusCycles(t) and

w′
m(t), determining the worst-case response time for a message m becomes an iter-

ative process that computes Rk
m(Rk−1

m), starting from R0
m = Cm and finishing when

Rk
m = Rk−1

m .

Development Tools 401

15.4.3.2 Holistic Schedulability Analysis of FPS Tasks and DYN Messages

As mentioned in Section 15.4.1, the worst-case response times of FPS tasks are in-

fluenced on one hand by higher priority FPS tasks, and on the other hand by SCS

tasks. The worst-case response time Ri j of a FPS task τi j is determined as presented

in [245], and in [265] we have shown how to take into consideration the interference

on Ri j produced by an existing static schedule. What is important to mention is that

Ri j depends on jitters of the higher priority tasks and predecessors of τi j. This means

that for all such activities we have to compute the jitter. In the rest of this section, we

will only concentrate on the situation when the jitter of a task depends on the arrival

time of a message.

According to the analysis of multiprocessor and distributed systems presented

in [245], the jitter for a task τr that starts execution only after it receives a message

m depends on the values of the best-case and worst-case transmission times of that

message:

Jτr = Rm −Rb
m. (15.4)

The calculation of the worst-case transmission time Rm of a DYN message m
was presented in Section 15.4.3.1. For computing Rb

m we have to identify the best-

case scenario of transmitting message m. Such a situation appears when the message

becomes ready immediately before the DYN slot with FrameIDm starts, and it is sent

during that bus cycle without experiencing any delay from higher priority messages.

Thus, the equation for the best-case transmission time of a message is:

Rb
m = Cm, (15.5)

where Cm is the time needed to send the message m.

We notice from (15.4) that the jitters for activities in the system depend on the

values of the worst-case response times, which in turn depend on the values of the

jitters [266]. Such a recursive system is solved using a fixed point iteration algorithm

in which the initial values for jitters are 0.

According to [245], the worst-case response time calculation of FPS tasks is of

exponential complexity and the approach proposed in [245] and also used in [265] is

a heuristic with a certain degree of pessimism. The pessimism of the response times

calculated by our holistic analysis will, of course, also depend on the quality of the

solution for the delay induced by the DYN messages transmitted over FlexRay. The

calculation of this delay is our main concern in this section. Therefore, when we

speak about optimal and heuristic solutions in this section we refer to the approach

used for calculating the BusCyclesm and w′
m (used in the worst-case response times

calculation for DYN messages) and not the holistic response time analysis which is

based on the heuristics in [245, 265].

For the extension of the analysis to take into account the dual-channel FlexRay

bus, we direct the reader to [267].

402 Time-Triggered Communication

FIGURE 15.11
Optimization of the ST Segment

15.4.4 Bus Access Optimization

The design of a FlexRay bus configuration for a given system consists of a collection

of solutions for the following subproblems: (1) determine the length of an ST slot,

(2) the number of ST slots, and (3) their assignment to nodes; (4) determine the

length of the DYN segment, (5) assign DYN slots to nodes and (6) FrameIDs to

DYN messages.

The choice of a particular bus configuration is extremely important when de-

signing a specific system, since its characteristics heavily influence the global timing

properties of the application.

For example, notice in Figure 15.11 how the structure of the ST segment in-

fluences the response time of message m3 (for this example, we ignored the DYN

segment). The figure considers a system with two nodes, N1 that sends message m1

and N2 that sends messages m2 and m3. The message sizes are depicted in the figure.

In the first scenario, the ST segment consists of two slots, slot1 used by N1 and slot2

used by N2. In this situation, message m3 can be scheduled only during the second

bus cycle, with a response time of 16. If the ST segment consists of three slots (Fig-

ure 15.11b), with N2 being allocated slot2 and slot3, then N2 is able to send both its

messages during the first bus cycle. The configuration in Figure 15.11c consists of

only two slots, like in Figure 15.11a. However, in this case the slots are longer, such

that several messages can be transmitted during the same frame, producing a faster

response time for m3 (one should notice, however, that by extending the size of the

ST slots we delay the reception of message m1 and m2).

Similar optimizations can be performed with regard to the DYN segment. Let us

consider the example in Figure 15.12, where we have two nodes N1 and N2. Node N1

is transmitting messages m1 and m3, while N2 sends m2. Figure 15.12 depicts three

configuration scenarios, a–c. Table A depicts the frame identifiers for the scenario

in Figure 15.12a, while Table B corresponds to Figure 15.12b–c. The length of the

D
evelopm

entTools
4

0
3

FIGURE 15.12
Optimization of the DYN Segment

404 Time-Triggered Communication

1 gdNumberOfStaticSlots = max(2, nodesST)
2 gdStaticSlot = max(Cm), m is an ST message
3 STbus = gdNumberOfStaticSlots *gdStaticSlot
4 assign one ST slot to each node (round robin)
5 for n = 1 to 64 do
6 gdCycle = Tss/n
7 if gdCycle < 16000 μs then
8 DYNbus = gdCycle − STbus
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 Compute cost function Cost
12 if Cost < BestCost then save current solution
13 end if
14 end for

FIGURE 15.13
Basic Bus Configuration

ST slot has been set to 8. In Figure 15.12a, the length of the DYN segment is not

able to accommodate both m1 and m2, thus m2 will be sent during the second bus

cycle, after the transmission of m3 ends. Figure 15.12b and Figure 15.12c depict the

same system but with a different allocation of DYN slots to messages (Table B). In

Figure 15.12b we notice that m3, which now does not share the same frame identifier

with m1, can be sent during the first bus cycle, thus m2 will be transmitted earlier

during the second cycle. Moreover, if we enlarge the size of the DYN segment as in

Figure 15.12c, then the worst-case response time of m2 will considerably decrease

since it will be sent during the first bus cycle (notice that in this case m3, having a

greater frame identifier than that of m2, will be sent only during the second cycle).

In order to illustrate the importance of choosing the right bus configuration, we

present three approaches for optimizing the bus access such that the schedulability of

the system is improved. The first approach builds a relatively straightforward, basic,

bus configuration. The other two approaches perform optimization over the basic

configuration.

15.4.4.1 The Basic Bus Configuration

In this section, we construct a Basic Bus Configuration (BBC) which is based on

analyzing the minimal bandwidth requirements imposed by the application.

The BBC algorithm is presented in Figure 15.13 and it starts by setting the num-

ber of ST slots in a bus cycle. The length Tbus of the bus cycle is captured by the

gdCycle protocol parameter. Since each node in the system that generates ST mes-

sages needs at least one ST slot, the minimum number of ST slots is nodesST , the

number of nodes that send ST messages (line 1). The protocol specification also im-

poses a minimum limit on the number of ST slots; therefore, even if there are no

nodes in the system that are using the ST segment, there should be at least two ST

Development Tools 405

slots during a bus cycle. Next, the size of an ST slot is set so that it can accommodate

the largest ST message in the system (line 2). In line 4, the configuration of the ST

segment is completed by assigning in a round robin fashion one ST slot to each node

that requires one (i.e., in a system with four nodes, where each node is sending in the

static segment, the ST segment of the bus cycle will contain four slots; node 1 will

use slot 1, node 2 will use ST slot 2, etc.).

When it comes to determining the size of the DYN segment, one has to take into

consideration the fact that the period of the bus cycle (gdCycle) has to be an integer

divisor8 of the period of the global static schedule (Tss). In addition, the FlexRay

protocol specifies that each node implementing a cyclic schedule maintains in the

communication controller a counter vCycleCounter that has values in the interval

0...63. This means that during a period of the static schedule there can be at most

64 bus cycles, which leads us to the conclusion that the value of gdCycle can be

determined by iterating over all possible values for vCycleCounter (lines 5–14) and

choosing the most favorable solution in terms of system schedulability (line 11).

Line 7 introduces a restriction imposed by the FlexRay specification, which limits

the maximum bus cycle length to 16 ms. Once the length of the bus cycle is set

(line 5), knowing the length STbus of the ST segment (line 3), we can determine the

length DYNbus of the DYN segment (line 8).

At this point, in order to finish the design of the bus configuration, a FrameID has

to be assigned to each of the DYN messages (and implicitly DYN slots are assigned

to the nodes that generate the message). This assignment (line 9) is performed under

the following guidelines:

• Each DYN message receives an unique FrameID; this is recommended in order

to avoid large delays introduced by hp(m). For example, in Figure 15.12, we

notice that message m3 has to wait for an entire gdCycle when it shares a frame

identifier with the higher priority message m1(Figure 15.12a), which is not the

case when it has its own FrameID (Figure 15.12b).

• DYN messages with a higher criticality receive smaller FrameIDs. This is re-

quired in order to reduce, for a given message, the delays produced by lf (m)
and ms(m). We capture the criticality of a message m as:

CPm = Dm −LPm, (15.6)

where Dm is the deadline of the message and LPm is the longest path in the task

graph from the root to the node representing the communication of message m.

A small value of CPm (higher criticality) indicates that the message should be

assigned a smaller FrameID.

Once we have defined the structure of the bus cycle, we can analyze the entire

system (line 9) by performing the global static scheduling and analysis described

in Section 15.4.3. The resulting system is then evaluated using a cost function that

captures the schedulability degree of the system (line 10):

8We consider that the TSS parameter is slightly adjusted, if necessary.

406 Time-Triggered Communication

1 for gdNumberOfStaticSlots = gdNumberOfStaticSlotsmin to
gdNumberOfStaticSlotsmax do

2 for gdStaticSlot = gdStaticSlotmin to gdStaticSlotmax step 20 *
gdBit do

3 Assign ST slots to nodes
4 for n = 1 to 64 do
5 gdCycle = Tss/n
6 if gdCycle < 16000 μs then
7 DYNbus = gdCycle − STbus
8 do
9 Assign FrameIDs to DYN messages
10 GlobalSchedulingAlgorithm()
11 For all DYN messages, compute CPi
12 Compute cost function Cost
13 if Cost < BestCost then save current solution
14 while(BestCost unchanged for max iterations);
15 end if
16 end for
17 end for
18 end for

FIGURE 15.14
Greedy Heuristic

Cost =

{

f1 = ∑τi j
max(Ri j −Di j,0), if f1 > 0,

f2 = ∑τi j
(Ri j −Di j), if f1 = 0

(15.7)

where Ri j and Di j are the worst-case response times and respectively the deadlines

for all the activities τi j in the system. This function is positive if at least one task

or message in the system misses its deadline, and negative if the whole system is

schedulable. Its value is used in line 11 when deciding whether the current configu-

ration is the best one encountered so far.

15.4.4.2 Greedy Heuristic

The Basic Bus Configuration (BBC) generated as in the previous section can result

in an unschedulable system (the cost function in (15.7) is positive). In this case, addi-

tional points in the solution space have to be explored. In Figure 15.14, we present a

greedy heuristic that further explores the design space in order to find a schedulable

solution.

While for the BBC the number and size of ST slots has been set to the mini-

mum (gdNumberOfStaticSlotsmin = max(2,nodes), gdStaticSlotmin = max(Cm)), the

heuristic explores different alternative values between these minimal values and the

maxima imposed by the FlexRay protocol specification. Thus, during a bus cycle

there can be at most gdNumberOfStaticSlotsmax = 1023 ST slots, while the size of a

ST slot can take at most gdStaticSlotmax = 661 macroticks. In addition, the payload

for a FlexRay frame can increase only in 2-byte increments, which according to the

FlexRay specification translates into 20 gdBit, where gdBit is the time needed for

transmitting one bit over the bus (line 2).

Development Tools 407

The assignment of ST slots (line 3) to nodes is performed, like for the BBC, in

a round robin fashion, with the difference that each node can have not only one but

a quota of ST slots determined by the ratio of ST messages that it transmits (i.e., a

node that sends more ST messages will be allocated more ST slots).

The sizes of the bus cycle and of the DYN segment are assigned in lines 4–16 in

a similar way to the BBC algorithm.

However, while for the BBC the allocation of FrameIDs to DYN messages is

based on the estimated criticality (15.6), here we explore several FrameID assign-

ment alternatives inside the loop in lines 8–14. We start from an initial assignment

as in the BBC after which a global scheduling is performed (line 10). Using the re-

sulted response times, in the next iteration we assign smaller FrameIDs with priority

to those DYN messages m that have a smaller value for Dm −Rm, where Dm is the

deadline and Rm is the worst-case response time computed by the global scheduling.

15.4.4.3 Simulated Annealing-Based Approach

We have implemented a more exhaustive design space exploration than the one in

Section 15.4.4.2, using a Simulated Annealing (SA) [46] approach. While relatively

time consuming, this heuristic can be applied if both the BBC and the configuration

produced by the greedy approach are unschedulable. Starting from the solution pro-

duced by the greedy optimization, the SA based heuristic explores the design space

performing the following set of moves:

• gdNumberOfStaticSlots is incremented or decremented, inside the allowed

limits (when an ST slot is added, it is allocated randomly to a node)

• gdStaticSlot is increased or decreased with 20×gdBit, inside the allowed lim-

its

• The assignment of ST slots to nodes is changed by re-assigning a randomly

selected ST slot from a node N1 to another node N2. We also use in this context

a similar transformation that switches the allocation of two ST slots, FrameID1

and FrameID2, used by two nodes N1 and N2, respectively

• The assignment of DYN slots to messages is modified by switching the slots

used by two DYN messages

In Section 15.4.4.4 we used extensive, time consuming runs with the Simulated

Annealing approach, in order to produce a reference point for the evaluation of our

greedy heuristic.

15.4.4.4 Evaluation of Bus Optimization Heuristics

In order to evaluate our optimization algorithms, we generated seven sets of 25 ap-

plications representing systems of 2 to 7 nodes, respectively. We considered 10 tasks

mapped on each node, leading to applications with a number of 20 to 70 tasks. De-

pending on the mapping of tasks, each such system had up to 60 additional nodes in

the application task graph due to the communication tasks. The tasks were grouped

408 Time-Triggered Communication

FIGURE 15.15
Evaluation of Bus Optimization Algorithms

in task graphs of five tasks each. Half of the tasks in each system were time triggered

and half were event triggered. The execution times were generated in such a way

that the utilization on each node was between 30% and 60% (similarly, the message

transmission times were generated so that the bus utilization was between 10% and

70%). All experiments were run on an AMD Athlon 2400+ PC.

Figure 15.15 shows the results obtained after running our three algorithms pro-

posed in Section 15.4.4 (BBC—Basic Bus Configuration, GH—Greedy Heuris-

tic, and SA—Simulated Annealing). In Figure 15.15a, we show the percentage of

schedulable applications, while in Figure 15.15b, we present the computation times

required by each algorithm. One can notice that the BBC approach runs in almost

zero time, but it fails to find any schedulable configurations for systems with more

than four processors. On the other hand, the other two approaches continue to find

schedulable solutions even for larger systems. Moreover, the percentage of schedula-

ble solutions found by the greedy algorithm is comparable with the one obtained with

the simulated annealing. Furthermore, the computation time required by the greedy

heuristic is several orders of magnitude smaller than the one needed for the extensive

runs of simulated annealing.9

15.5 Incremental Design
We have briefly introduced the issue of incremental design in Section 15.2. Incre-

mental design has similarities with design for flexibility and scalability. The issue of

9Due to the extensive runs with SA, we can assume that the actual percentage of schedulable applica-

tions is close to that found by SA.

Development Tools 409

scalability in time-triggered systems has been investigated in [358], where the au-

thors are interested in generating schedules which (i) allow tasks to increase their

WCET without the need for rescheduling and (ii) have idle times distributed peri-

odically to allow future expansion. Haubelt et al. [127] consider the requirement of

flexibility as a parameter during design space exploration. Their goal is the gener-

ation of an architecture which, at an acceptable cost, is able to implement different

applications or variants of a certain application.

In this section, we present an approach for mapping and scheduling of distributed

embedded systems for hard real-time applications, aiming at a minimization of the

system modification cost. We consider an incremental design process that starts from

an already existing system running a set of applications. We are interested in imple-

menting new functionality such that the timing requirements are fulfilled, and the

following two requirements are also satisfied: The already running applications are

disturbed as little as possible, and there is a good chance that, later, new functionality

can easily be added to the resulted system. Thus, we propose a heuristic which finds

the set of already running applications which have to be remapped and rescheduled

at the same time with mapping and scheduling the new application, such that the

disturbance on the running system (expressed as the total cost implied by the modifi-

cations) is minimized. Once this set of applications has been determined, we outline a

mapping and scheduling algorithm aimed at fulfilling the requirements stated above.

The approaches have been evaluated based on extensive experiments using a large

number of generated benchmarks.

1. First, we consider mapping and scheduling for hard real-time embedded sys-

tems in the context of a realistic communication model based on a time di-

vision multiple access (TDMA) protocol as recommended for applications in

areas like, for example, automotive electronics [180]. We accurately take into

consideration overheads due to communication and consider, during the map-

ping and scheduling process, the particular requirements of the communication

protocol.

2. Next, we have considered the design of distributed embedded systems in the

context of an incremental design process as outlined above. This implies that

we perform mapping and scheduling of new functionality on a given dis-

tributed embedded system, so that certain design constraints are satisfied and,

in addition: (a) The already running applications are disturbed as little as pos-

sible. (b) There is a good chance that, later, new functionality can easily be

mapped on the resulted system.

We propose a new heuristic, together with the corresponding design criteria,

which finds the set of old applications which have to be remapped and rescheduled

at the same time with mapping and scheduling the new application, such that the

disturbance on the running system (expressed as the total cost implied by the modi-

fications) is minimized. Once this set of applications has been determined, mapping

and scheduling are performed according to the requirements stated above.

Supporting such a design process is of critical importance for current and future

410 Time-Triggered Communication

1 2

RT-Kernel

MBI

CPU

TTP Controller

3

RT-Kernel

MBI

CPU

TTP Controller

S1 S0 S1

m1
m1

m2
m2

m2 m2

N0 N1

Round 2

m2

FIGURE 15.16
Message Passing Mechanism

industrial practice, as the time interval between successive generations of a product

is continuously decreasing, while the complexity due to increased sophistication of

new functionality is growing rapidly. The goal of reducing the overall cost of succes-

sive product generations has been one of the main motors behind the, currently very

popular, concept of platform-based design [163, 216]. Although, in this section, we

are not explicitly dealing with platform-based systems, most of the results are also

valid in the context of this design paradigm.

15.5.1 Preliminaries

In this section, the concepts of incremental design are investigated in the context of

TTP-based systems. However, the techniques presented here are also applicable to

other time-triggered protocols.

15.5.1.1 System Architecture

Thus, we consider architectures consisting of nodes connected by a broadcast com-

munication channel. Every node consists of a TTP controller, processor, memory

and an I/O interface to sensors and actuators. For the details of TTP, please refer to

Chapter 5.

We assume that each node in the architecture has a real-time kernel as its main

component. Each kernel has a schedule table that contains all the information needed

to take decisions on activation of tasks and each communication controller has a

schedule table to decide the transmission of messages.

Development Tools 411

The message passing mechanism is illustrated in Figure 15.16, where we have

three tasks, τ1 to τ3. τ1 and τ2 are mapped to node N0 that transmits in slot S0, and

τ3 is mapped to node N1 that transmits in slot S1. Message m1 is transmitted between

τ1 and τ2 that are on the same node, while message m2 is transmitted from τ1 to τ3

between the two nodes. We consider that each task has its own memory locations for

the messages it sends or receives and that the addresses of the memory locations are

known to the kernel through the schedule table.

τ1 is activated according to the schedule table, and when it finishes it calls the

send kernel function in order to send m1, and then m2. Based on the schedule table,

the kernel copies m1 from the corresponding memory location in τ1 to the memory

location in τ2. When τ2 will be activated, it finds the message in the right location.

According to our scheduling policy, whenever a receiving task needs a message, the

message is already placed in the corresponding memory location. Thus, there is no

overhead on the receiving side, for messages exchanged on the same node.

Message m2 has to be sent from node N0 to node N1. At a certain time, known

from the schedule table, the kernel transfers m2 to the TTP controller by packaging

it into a frame in the MBI. Later on, the TTP controller knows from its MEDL when

it has to take the frame from the MBI, in order to broadcast it on the bus. In our

example, the timing information in the schedule table of the kernel and the MEDL

is determined in such a way that the broadcasting of the frame is done in the slot S0

of Round 2. The TTP controller of node N1 knows from its MEDL that it has to read

a frame from slot S0 of Round 2 and to transfer it into the MBI. The kernel in node

N1 will read the message m2 from the MBI. When τ3 will be activated based on the

local schedule table of node N1, it will already have m2 in its right memory location.

In [260] we presented a detailed discussion concerning the overheads due to the

kernel and to every system call. We also presented formulas to derive the worst-case

execution delay of a task, taking into account the overhead of the timer interrupt, the

worst-case overhead of the task activation and message passing functions.

15.5.1.2 Application Mapping and Scheduling

Considering a system architecture like the one presented earlier, the mapping of a

task graph G(V,E) is given by a function M : V → PE, where PE = {N1,N2, ..,Nnpe}
is the set of nodes (processing elements). For a task τi ∈V , M(τi) is the node to which

τi is assigned for execution. Each task τi can potentially be mapped on several nodes.

Let Nτi ⊆ PE be the set of nodes to which τi can potentially be mapped. For each

Ni ∈ Nτi , we know the worst-case execution time tNi
τi of task τi, when executed on Ni.

Messages transmitted between tasks mapped on different nodes are communicated

through the bus, in a slot corresponding to the sending node. The maximum number

of bits transferred in such a message is also known.

In order to implement an application, represented as a set of task graphs, the de-

signer has to map the tasks to the system nodes and to derive a static cyclic schedule

such that all deadlines are satisfied. We first illustrate some of the problems related

to mapping and scheduling, in the context of a system based on a TDMA communi-

412 Time-Triggered Communication

a) Tasks 2 and 4 are mapped on the fast node

b) Tasks 2 and 4 are mapped on the slow node

N2
(slow) 1

2

3

4

N1 N2 N3
4ms

12ms

8ms

–

12ms
4ms

8ms
–

––

TDMA round:

–

–

N1
N3

(fast)

Slot lengths: S1 = S2 = S3 = 4 ms

m1,2 m1,4

Node1
Node3
Bus

2

3

4

m2,3 m4,3
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

1

m1,2 m1,4

2

3

4

m2,3 m4,3
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

1

T = D = 50ms

Node1
Node2
Bus

1

2 4

3 S1 S2 S3

Task execution times

0ms

0ms4ms 52ms

4ms 48ms

FIGURE 15.17
Mapping and Scheduling Example

Development Tools 413

cation protocol, before going on to explore further aspects specific to an incremental

design approach.

Let us consider the example in Figure 15.17 where we want to map an application

consisting of four tasks τ1 to τ4, with a period and deadline of 50 ms. The architec-

ture is composed of three nodes that communicate according to a TDMA protocol,

such that Ni transmits in slot Si. For this example, we suppose that there is no other

previous application running on the system. According to the specification, tasks τ1

and τ3 are constrained to node N1, while τ2 and τ4 can be mapped on nodes N2 or N3,

but not N1. The worst-case execution times of tasks on each potential node and the

sequence and size of TDMA slots are presented in Figure 15.17. In order to keep the

example simple, we suppose that the message sizes are such that each message fits

into one TDMA slot.

We consider two alternative mappings. If we map τ2 and τ4 on the faster proces-

sor N3, the resulting schedule length (Figure 15.17a) will be 52 ms which does not

meet the deadline. However, if we map τ2 and τ4 on the slower processor N2, the

schedule length (Figure 15.17b) is 48 ms, which meets the deadline. Note, that the

total traffic on the bus is the same for both mappings and the initial processor load is

0 on both N2 and N3. This result has its explanation in the impact of the communica-

tion protocol. τ3 cannot start before receiving messages m2,3 and m4,3. However, slot

S2 corresponding to node N2 precedes in the TDMA round slot S3 on which node N3

communicates. Thus, the messages which τ3 needs are available sooner in the case

τ2 and τ4 are, counter-intuitively, mapped on the slower node.

But finding a valid schedule is not enough if we are to support an incremental

design process as discussed in the introduction. In this case, starting from a valid

design, we have to improve the mapping and scheduling so that not only the design

constraints are satisfied, but also there is a good chance that, later, new functionality

can easily be mapped on the resulted system.

To illustrate the role of mapping and scheduling in the context of an incremen-

tal design process, let us consider the example in Figure 15.18. For simplicity, we

consider an architecture consisting of a single processor. The system is currently

running application Ψ (Figure 15.18a). At a particular moment, application A1 has

to be implemented on top of Ψ. Three possible implementation alternatives for A1

are depicted in Figure 15.18b1, 15.18c1 and 15.18d1. All three are meeting the im-

posed time constraint for A1. At a later moment, application A2 has to be imple-

mented on the system running Ψ and A1. If A1 has been implemented as shown in

Figure 15.18b1, there is no possibility to map application A2 on the given system (in

particular, there is no time slack available for task τ7). If A1 has been implemented as

in Figure 15.18c1 or 15.18d1, A2 can be correctly mapped and scheduled on top of

Ψ and A1. There are two aspects which should be highlighted based on this example:

1. If application A1 is implemented like in Figure 15.18c1 or 15.18d1, it is pos-

sible to implement A2 on top of the existing system, without performing any

modifications on the implementation of previous applications. This could be

the case if, during implementation of A1, the designers have taken into consid-

eration the fact that, in future, an application having the characteristics of A2

will possibly be added to the system.

414 Time-Triggered Communication

2. If A1 has been implemented like in Figure 15.18b1, A2 can be added to the

system only after performing certain modifications on the implementation of

A1 and/or Ψ. In this case, of course, it is important to perform as few as possi-

ble modifications on previous applications, in order to reduce the development

costs.

15.5.2 Problem Formulation

As shown in Section 15.5.1, we capture the functionality of a system as a set of

applications. An application A consists of a set of task graphs Gi ∈ A. For each task

τi in a task graph we know the set Nτi of potential nodes on which it could be mapped

and its worst-case execution time on each of these nodes. We also know the maximum

number of bits to be transmitted by each message. The underlying architecture is as

presented in Section 15.5.1.1. We consider a non-preemptive static cyclic scheduling

policy for both tasks and message passing.

Our goal is to map and schedule an application Acurrent on a system that already

implements a set Ψ of applications, considering the following requirements:

• Requirement a: All constraints on Acurrent are satisfied and minimal modifica-

tions are performed to the implementation of applications in Ψ.

• Requirement b: New applications A f uture can be mapped on top of the resulting

system.

We illustrate such an incremental design process in Figure 15.19. The product is

implemented as a three processor system and its version N−1 consists of the set Ψ of

two applications (the tasks belonging to these applications are represented as white

and black disks, respectively). At the current moment, application Acurrent is to be

added to the system, resulting in version N of the product. However, a new version,

N +1, is very likely to follow and this fact is to be considered during implementation

of Acurrent .
10

If it is not possible to map and schedule Acurrent without modifying the imple-

mentation of the already running applications, we have to change the scheduling and

mapping of some applications in Ψ. However, even with remapping and reschedul-

ing all applications in Ψ, it is still possible that certain constraints are not satisfied. In

this case, the hardware architecture has to be changed by, for example, adding a new

processor, and the mapping and scheduling procedure for Acurrent has to be restarted.

In this section, we will not further elaborate on the aspect of adding new resources to

the architecture, but will concentrate on the mapping and scheduling aspects. Thus,

we consider that a possible mapping and scheduling of Acurrent which satisfies the

imposed constraints can be found (with minimizing the modification of the already

10The design process outlined here also applies when Acurrent is a new version of an application Aold ∈
Ψ. In this case, all the tasks and communications belonging to Aold are eliminated from the running

system Ψ, before starting the mapping and scheduling of Acurrent .

Development Tools 415

1 2

1 2

1 2

1 2

1 2

1 2

1 2

6

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

6

6

1

2
3

4

5

6

pplication
t

1
t

2
10ms

T D 90ms

pplication A
t

3
t

4
t

5
10ms

TA 90 ms; DA 80ms

pplication A
t

6
10ms; t 30ms

TA DA 90ms

a) Initial system, running application

b1) pplication A on top of : 1st alternative

b2) pplication A on top of the 1st alternative:
cannot be mapped.

c1) pplication A on top of : 2nd alternative

c2) pplication A on top of the 2nd alternative:
successful implementation.

d1) pplication A on top of : 3rd alternative

d2) pplication A on top of the 3rd alternative:
successful implementation.

90ms

80ms

90ms

FIGURE 15.18
Application A2 Implemented on Top of Ψ and A1

416 Time-Triggered Communication

Existing
applications:

Application to

Possible future

V
er

si
on

 N

V
er

si
on

 N
1

V
er

si
on

 N
+1

be added to
the system:

Acurrent

application to
be added:

Afuture

Im
plem

ent A
current so that:

1. constraints on A
current are satisfied;

2. m
odifications of

 are m
inim

ized;
3. good chance to im

plem
ent A

future ;

FIGURE 15.19
Incremental Design Process

running applications), and this solution has to be further improved in order to facili-

tate the implementation of future applications.

In order to achieve our goal, we need certain information to be available concern-

ing the set of applications Ψ as well as the possible future applications A f uture. What

exactly we have to know about these applications will be discussed in Section 15.5.3.

In Section 15.5.4 we then introduce the quality metrics which will allow us to give a

more rigorous formulation of the problem we are going to solve.

The tasks in application Acurrent can interact with the previously mapped appli-

cations Ψ by reading messages generated on the bus by tasks in Ψ. In this case, the

reading task has to be synchronized with the arrival of the message on the bus, which

is easy to model as an additional time constraint on the particular receiving task. This

constraint is then considered (as any other deadline) during scheduling of Acurrent .

15.5.3 Characterizing Existing and Future Applications

15.5.3.1 Characterizing the Already Running Applications

To perform the mapping and scheduling of Acurrent , the minimum information

needed, concerning the already running applications Ψ, consists of the local sched-

ule tables for each processor node. Thus, we know the activation time for each task

previously mapped on the respective node and its worst-case execution time. As for

messages, their length as well as their place in the particular TDMA frame are known.

Development Tools 417

If the initial attempt to schedule and map Acurrent does not succeed, we have to

modify the schedule and, possibly, the mapping of applications belonging to Ψ, in

the hope of finding a valid solution for Acurrent . The goal is to find that minimal mod-

ification to the existing system which leads to a correct implementation of Acurrent .

In our context, such a minimal modification means remapping and/or rescheduling a

subset Ω of the old applications, Ω ⊆ Ψ, so that the total cost of re-implementing Ω
is minimized.

Remapping and/or rescheduling a certain application Ai ∈ Ψ can trigger the need

to also perform modifications of one or several other applications because of, for

example, the dependencies between tasks belonging to these applications. In order

to capture such dependencies between the applications in Ψ, as well as their mod-

ification costs, we have introduced a representation called the application graph.

We represent a set of applications as a directed acyclic graph G(V,E), where each

node Ai ∈V represents an application. An edge ei j ∈ E from Ai to A j indicates that

any modification to Ai would trigger the need to also remap and/or reschedule A j,

because of certain interactions between the applications.11 Each application in the

graph has an associated attribute specifying if that particular application is allowed

to be modified or not (in which case, it is called frozen). To those nodes Ai ∈ V
representing modifiable applications, the designer has associated a cost RAi of re-

implementing Ai. Given a subset of applications Ω ⊆ Ψ, the total cost of modifying

the applications in A is:

R(Ω) = ∑
Ai∈Ω

RAi . (15.8)

Modifications of an already running application can only be performed if the task

graphs corresponding to that application, as well as the related deadlines (which have

to be satisfied also after remapping and rescheduling), are available. However, this

is not always the case, and in such situations that particular application has to be

considered frozen.

In Figure 15.20, we present the graph corresponding to a set of 10 applications.

Applications A6, A8, A9 and A10, depicted in black, are frozen: No modifications

are possible to them. The rest of the applications have the modification cost RAi

depicted on their left. A7 can be remapped/rescheduled with a cost of 20. If A4 is to

be re-implemented, this also requires the modification of A7, with a total cost of 90.

In the case of A5, although not frozen, no remapping/rescheduling is possible as it

would trigger the need to modify A6, which is frozen.

To each application Ai ∈ V the designer has associated a cost RAi of re-

implementing Ai. Such a cost can typically be expressed in man-hours needed to

perform retesting of Ai and other tasks connected to the remapping and rescheduling

of the application. If an application is remapped or rescheduled, it has to be validated

again. Such a validation phase is very time consuming. In the automotive industry,

for example, the time-to-market in the case of the powertrain unit is 24 months. Out

11If a set of applications has a circular dependence, such that the modification of any one implies the

remapping of all the others in that set, the set will be represented as a single node in the graph.

418 Time-Triggered Communication

A1 A2

A3

A4 A5

A6

A7
A8 A9 A10

FIGURE 15.20
Characterizing the Set of Already Running Applications

of these, five months, representing more than 20%, are dedicated to validation. In the

case of the telematic unit, the time to market is less than one year, while the vali-

dation time is two months [291]. However, if an application is not modified during

implementation of new functionality, only a small part of the validation tasks have

to be re-performed (e.g., integration testing), thus reducing significantly the time-to-

market, at no additional hardware or development cost.

How to concretely perform the estimation of the modification cost related to an

application is beyond the topic of this section. Several approaches to cost estimation

for different phases of the software life-cycle have been elaborated and are available

in the literature [75, 271]. One of the most influential software cost models is the

Constructive Cost Model (COCOMO) [37]. Such estimations can be used by the

designer as the cost metrics assigned to the nodes of an application graph.

In general, it can be the case that several alternative costs are associated to a

certain application, depending on the particular modification performed. Thus, for

example, we can have a certain cost if tasks are only rescheduled, and another one if

they are also remapped on an alternative node. For different modification alternatives

considered during design space exploration, the corresponding modification cost has

to be selected. In order to keep the discussion reasonably simple, we present the

case with one single modification cost associated to an application. However, the

generalization for several alternative modification costs is straightforward.

15.5.3.2 Characterizing Future Applications

What do we suppose to know about the family A f uture of applications which do not

exist yet? Given a certain limited application area (e.g., automotive electronics), it

is not unreasonable to assume that, based on the designers’ previous experience, the

nature of expected future functions to be implemented, profiling of previous appli-

cations, available incomplete designs for future versions of the product, etc., it is

possible to characterize the family of applications which possibly could be added

to the current implementation. This is an assumption which is basic for the concept

of incremental design. Thus, we consider that, with respect to the future applica-

tions, we know the set St = {tmin, ...ti, ...tmax} of possible worst-case execution times

for tasks, and the set Sb = {bmin, ...bi, ...bmax} of possible message sizes. We also as-

sume that over these sets we know the distributions of probability fSt (t) for t ∈ St and

Development Tools 419

fSb(b) for b ∈ Sb. For example, we might have predicted possible worst-case execu-

tion times of different tasks in future applications St = {50,100,200,300,500 ms}.

If there is a higher probability of having tasks of 100 ms, and a very low probability

of having tasks of 300 ms and 500 ms, then our distribution function fSt (t) could

look like this: fSt (50) = 0.20, fSt (100) = 0.50, fSt (200) = 0.20, fSt (300) = 0.05,

and fSt (500) = 0.05.

Another piece of information is related to the period of task graphs which could

be part of future applications. In particular, the smallest expected period Tmin is as-

sumed to be given, together with the expected necessary processor time tneed , and bus

bandwidth bneed , inside such a period Tmin. As will be shown later, this information

is treated in a flexible way during the design process and is used in order to provide

a fair distribution of available resources.

The execution times in St , as well as tneed , are considered relative to the slow-

est node in the system. All the other nodes are characterized by a speedup factor

relative to this slowest node. A normalization with these factors is performed when

computing the metrics Cτ
1 and Cτ

2 introduced in the following section.

15.5.4 Quality Metrics and Objective Function

A designer will be able to map and schedule an application A f uture on top of a system

implementing Ψ and Acurrent only if there are sufficient resources available. In our

case, the resources are processor time and the bandwidth on the bus. In the context

of a non-preemptive static scheduling policy, having free resources translates into

having free time slots on the processors and having space left for messages in the bus

slots. We call these free slots of available time on the processor or on the bus, slack.

It is to be noted that the total quantity of computation and communication power

available on our system after we have mapped and scheduled Acurrent on top of Ψ
is the same regardless of the mapping and scheduling policies used. What depends

on the mapping and scheduling strategy is the distribution of slacks along the time

line and the size of the individual slacks. It is exactly this size and distribution of the

slacks that characterizes the quality of a certain design alternative from the point of

view of flexibility for future upgrades. In this section, we introduce two criteria in

order to reflect the degree to which one design alternative meets the requirement (b)

presented in Section 15.5.2. For each criterion, we provide metrics which quantify

the degree to which the criterion is met. The first criterion reflects how well the

resulted slack sizes fit to a future application, and the second criterion expresses how

well the slack is distributed in time.

15.5.4.1 Slack Sizes (the first criterion)

The slack sizes resulted after implementation of Acurrent on top of Ψ should be such

that they best accommodate a given family of applications A f uture, characterized

by the sets St , Sb and the probability distributions fSt and fSb , as outlined in Sec-

tion 15.5.3.2.

Let us go back to the example in Figure 15.18 where A1 is what we now call

420 Time-Triggered Communication

Acurrent , while A2, to be later implemented on top of Ψ and A1, is A f uture. This

A f uture consists of the two tasks τ6 and τ7. It can be observed that the best config-

uration from the point of view of accommodating A f uture, taking into consideration

only slack sizes, is to have a contiguous slack after implementation of Acurrent (Fig-

ure 15.18d1). However, in reality, it is almost impossible to map and schedule the

current application such that a contiguous slack is obtained. Not only is it impossi-

ble, but it is also undesirable from the point of view of the second design criterion,

to be discussed next. However, as we can see from Figure 15.18b1, if we schedule

Acurrent such that it fragments the slack too much, it is impossible to fit A f uture be-

cause there is no slack that can accommodate task τ7. A situation such as the one

depicted in Figure 15.18c1 is desirable, where the resulted slack sizes are adapted to

the characteristics of the A f uture application.

In order to measure the degree to which the slack sizes in a given design alterna-

tive fit the future applications, we provide two metrics, Cτ
1 and Cm

1 . Cτ
1 captures how

much of the largest future application which theoretically could be mapped on the

system can be mapped on top of the current design alternative. Cm
1 is similar relative

to the slacks in the bus slots.

How does the largest future application which theoretically could be mapped on

the system look like? The total processor time and bus bandwidth available for this

largest future application is the total slack available on the processors and bus, respec-

tively, after implementing Acurrent . Process and message sizes of this hypothetical

largest application are determined knowing the total size of the available slack, and

the characteristics of the future applications as expressed by the sets St and Sb, and

the probability distributions fSt and fSb . Let us consider, for example, that the total

slack size on the processors is 2800 ms and the set of possible worst-case execution

times is St = {50,100,200,300,500 ms}. The probability distribution function fSt is

defined as follows: fSt (50) = 0.20, fSt (100) = 0.50, fSt (200) = 0.20, fSt (300) = 0.05

and fSt (500) = 0.05. Under these circumstances, the largest hypothetical future ap-

plication will consist of 20 tasks: 10 tasks (half of the total, ft(100) = 0.50) with a

worst-case execution time of 100 ms, 4 tasks with 50 ms, 4 with 200 ms, one with

300 and one with 500 ms.

After we have determined the number of tasks of this largest hypothetical A f uture
and their worst-case execution times, we apply a bin-packing algorithm [215] using

the best-fit policy in which we consider tasks as the objects to be packed, and the

available slacks as containers. The total execution time of tasks which are left un-

packed, relative to the total execution time of the whole task set, gives the Cτ
1 metric.

The same is the case with the metric Cm
1 , but applied to message sizes and available

slacks in the bus slots.

Let us consider the example in Figure 15.18 and suppose a hypothetical A f uture
consisting of two tasks like those of application A2. For the design alternatives in

Figure 15.18c1 and 15.18d1, Cτ
1 = 0% (both alternatives are perfect from the point

of view of slack sizes). For the alternative in Figure 15.18b1, however, Cτ
1 = 30/40 =

75% the worst-case execution time of τ7 (which is left unpacked) relative to the total

execution time of the two tasks.

Development Tools 421

15.5.4.2 Distribution of Slacks (the second criterion)

In the previous section, we defined a metric which captures how well the sizes of the

slacks fit a possible future application. A similar metric is needed to characterize the

distribution of slacks over time.

Let τi be a task with period Tτi that belongs to a future application, and M(τi)
the node on which τi will be mapped. The worst-case execution time of τi is tM(τi)

τi .

In order to schedule τi, we need a slack of size tM(τi)
τi that is available periodically,

within a period Tτi , on processor M(τi). If we consider a group of tasks with period

T , which are part of A f uture, in order to implement them, a certain amount of slack is

needed which is available periodically, with a period T , on the nodes implementing

the respective tasks.

During implementation of Acurrent , we aim for a slack distribution such that

the future application with the smallest expected period Tmin and with the neces-

sary processor time tneed , and bus bandwidth bneed , can be accommodated (see Sec-

tion 15.5.3.2).

Thus, for each node, we compute the minimum periodic slack, inside a Tmin pe-

riod. By summing these minima, we obtain the slack which is available periodically

to A f uture. This is the Cτ
2 metric. The Cm

2 metric characterizes the minimum periodi-

cally available bandwidth on the bus and it is computed in a similar way.

In Figure 15.21 we consider an example with Tmin = 120 ms, tneed = 90 ms and

bneed = 65 ms. The length of the schedule table of the system implementing Ψ and

Acurrent is 360 ms (in Section 15.5.5 we will elaborate on the length of the global

schedule table). Thus, we have to investigate three periods of length Tmin each. The

system consists of three nodes. Let us consider the situation in Figure 15.21a. In the

first period, Period 0, there are 40 ms of slack available on Node1, in the second

period 80 ms, and in the third period no slack is available on Node1. Thus, the total

slack a future application of period Tmin can use on Node1 is min(40,80,0) = 0 ms.

Neither can Node2 provide slack for this application, as in Period 1 there is no slack

available. However, on Node3 there are at least 40 ms of slack available in each

period. Thus, with the configuration in Figure 15.21a we have Cτ
2 = 20 ms, which

is not sufficient to accommodate tneed = 90 ms. The available periodic slack on the

bus is also insufficient: Cm
2 = 60 ms < bneed . However, in the situation presented in

Figure 15.21b, we have Cτ
2 = 120 ms > tneed , and Cm

2 = 90 ms > bneed .

15.5.4.3 Objective Function and Exact Problem Formulation

In order to capture how well a certain design alternative meets the requirement (b)

stated in Section 15.5.2, the metrics discussed before are combined in an objective

function, as follows:

C = wτ
1(C

τ
1)2 +wm

1 (Cm
1)2 +wτ

2 max(0, tneed −Cτ
2)+wm

2 max(0,bneed −Cm
2) (15.9)

where the metric values introduced in the previous section are weighted by the con-

stants wτ
1, wτ

2, wm
1 and wm

2 . Our mapping and scheduling strategy will try to minimize

422 Time-Triggered Communication

this function. The first two terms measure how well the resulted slack sizes fit to a

future application (the first criterion), while the second two terms reflect the distribu-

tion of slacks (the second criterion). In order to obtain a balanced solution that favors

a good fitting both on the processors and on the bus, we have used the squares of the

metrics.

We call a valid solution that mapping and scheduling which satisfies all the design

constraints (in our case the deadlines) and meets the second criterion (Cτ
2 ≥ tneed and

Cm
2 ≥ bneed).12

At this point, we can give an exact formulation of our problem. Given an existing

set of applications Ψ which are already mapped and scheduled, and an application

Acurrent to be implemented on top of Ψ, we are interested in finding the subset Ω⊆Ψ
of old applications to be remapped and rescheduled such that we produce a valid so-

lution for Acurrent ∪Ω and the total cost of modification R(Ω) is minimized. Once

such a set Ω of applications is found, we are interested in optimizing the implemen-

tation of Acurrent ∪Ω such that the objective function C is minimized, considering a

family of future applications characterized by the sets St and Sb, the functions fSt and

fSb as well as the parameters Tmin, tneed , and bneed .

A mapping and scheduling strategy based on this problem formulation is pre-

sented in the following section.

15.5.5 Mapping and Scheduling Strategy

As shown in the algorithm in Figure 15.22, our mapping and scheduling strategy

(MS) consists of two steps. In the first step we try to obtain a valid solution for

the mapping and scheduling of Acurrent ∪Ω so that the modification cost R(Ω) is

minimized. Starting from such a solution, the second step iteratively improves the

design in order to minimize the objective function C. In the context in which the

second criterion is satisfied after the first step, improving the cost function during the

second step aims at minimizing the value of wτ
1(C

τ
1)2 +wm

1 (Cm
1)2.

If the first step has not succeeded in finding a solution such that the imposed time

constraints are satisfied, this means that there are not sufficient resources available

to implement the application Acurrent . Thus, modifications of the system architec-

ture have to be performed before restarting the mapping and scheduling procedure.

If, however, the timing constraints are met but the second design criterion is not

satisfied, a larger Tmin (smallest expected period of a future application, see Sec-

tion 15.5.3.2) or smaller values for tneed and/or bneed are suggested to the designer.

This, of course, reduces the frequency of possible future applications and the amount

of processor and bus resources available to them.

In the following section, we briefly discuss the basic mapping and scheduling

algorithm we have used in order to generate an initial solution. The heuristic used to

iteratively improve the design with regard to the first and the second design criteria

is presented in Section 15.5.5.2. In Section 15.5.5.3, we describe three alternative

12This definition of a valid solution can be relaxed by imposing only the satisfaction of deadlines. In

this case, the algorithm in Figure 15.22 will look after a solution which satisfies the deadlines and R(Ω)
is minimized; the additional second criterion is, in this case, only considered optionally.

Development Tools 423

min(40, 80, 0) 0ms

min(40, 0, 80) 0ms

min(80, 80, 40) 40ms

C2 40 0 0 40ms

min(40, 40, 40) 40ms

min(40, 40, 40) 40ms

min(80, 80, 40) 40ms

C2 40 40 40 120ms

Time slots occupied by and Acurrent Slack

a)

b)

360 ms

Tmin

Cm
2 min(60,120, 90) 60ms

Cm
2 min(90, 90, 90) 90ms

Node1

Node2

Period 0 Period 1 Period 2

1

Node3

Bus
S1 S2 S3

Round 0 Round 1 Round 2 Round 3

Node1

Node2

Node3

Bus

Round 0 Round 1 Round 2 Round 3

S1 S2 S3 S1 S2 S3 S1 S2 S3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

FIGURE 15.21
Example for the Second Design Criterion

heuristics which can be used during the first step in order to find the optimal subset

of applications to be modified.

15.5.5.1 The Initial Mapping and Scheduling

As shown in Figure 15.23, the first step of MS consists of an iteration that tries differ-

ent subsets Ω ⊆ Ψ with the intention to find that subset Ω = Ωmin of old applications

to be remapped and rescheduled which produces a valid solution for Acurrent ∪Ω such

that R(Ω) is minimized. Given a subset Ω, the InitialMappingScheduling
function (IMS) constructs a mapping and a schedule for the applications Acurrent ∪Ω
on top of Ψ\Ω, that meets the deadlines, without worrying about the two criteria

introduced in Section 15.5.4.

The IMS is a classical mapping and scheduling algorithm for which we have

used the Heterogeneous Critical Path (HCP) algorithm [35] as a starting point. HCP

is based on a list scheduling approach [62]. We have modified the HCP algorithm in

three main regards:

1. We consider that mapping and scheduling does not start with an empty system

but a system on which a certain number of tasks are already mapped.

2. Messages are scheduled into bus-slots according to the TDMA protocol. The

TDMA-based message scheduling technique has been presented by us in [86].

424 Time-Triggered Communication

MappingSchedulingStrategy
Step 1: try to find a valid solution that minimizes R()

Find a mapping and scheduling of Acurrent on top of \ so that:
1.constraints are satisfied;
2.modification cost R() is minimized;
3.the second criterion is satisfied: C2 tneed and C2

m bneed
if Step1 has not succeeded then

if constraints are not satisfied then
change architecture

else
suggest new Tmin, tneed or bneed

end if
go to Step 1

end if
Step 2: improve the solution by minimizing objective function C

Perform iteratively transformations which improve the first criterion
(the metrics C1 and C1

m) without invalidating the second criterion.
end MappingSchedulingStrategy

FIGURE 15.22
Mapping and Scheduling Strategy (MS)

3. As a priority function for list scheduling we use, instead of the CP (critical

path) priority function employed in [35], the MPCP (modified partial critical

path) function introduced by us in [86]. MPCP takes into consideration the

particularities of the communication protocol for calculation of communica-

tion delays.

For the example in Figure 15.17, our initial mapping and scheduling algorithm

will be able to produce the optimal solution with a schedule length of 48 ms.

However, before performing the effective mapping and scheduling with IMS,

two aspects have to be addressed. First, the task graphs Gi ∈ Acurrent ∪Ω have to be

merged into a single graph Gcurrent by unrolling task graphs and inserting dummy

nodes as discussed in [261].

15.5.5.2 Iterative Design Transformations

Once IMS has produced a mapping and scheduling which satisfies the timing

constraints, the next goal of Step1 is to improve the design in order to satisfy

the second design criterion (Cτ
2 ≥ tneed and Cm

2 ≥ bneed). During the second step,

the design is then further transformed with the goal of minimizing the value of

wτ
1(C

τ
1)2 + wm

1 (Cm
1)2, according to the requirements of the first criterion, without in-

validating the second criterion achieved in the first step. In both steps, we iteratively

improve the design using a transformational approach. These successive transforma-

tions are performed inside the (innermost) repeat loops of the first and second

step, respectively (Figure 15.23). A new design is obtained from the current one by

performing a transformation called move. We consider the following two categories

of moves:

Development Tools 425

1. Moving a task to a different slack found on the same node or on a different

node

2. Moving a message to a different slack on the bus

In order to eliminate those moves that will lead to an infeasible design (that

violates deadlines), we do as follows. For each task τi, we calculate the ASAP(τi)
and ALAP(τi) times considering the resources of the given hardware architecture.

ASAP(τi) is the earliest time τi can start its execution, while ALAP(τi) is the latest

time τi can start its execution without causing the application to miss its deadline.

When moving τi we will consider slacks on the target processor only inside the inter-

val [ASAP(τi),ALAP(τi)]. The same reasoning holds for messages, with the addition

that a message can only be moved to slacks belonging to a slot that corresponds to

the sender node (see Section 15.5.1.1). Any violation of the data dependency con-

straints caused by a move is rectified by shifting tasks or messages concerned in an

appropriate way. If such a shift produces a deadline violation, the move is rejected.

At each step, our heuristic tries to find those moves that have the highest poten-

tial to improve the design. For each iteration, a set of potential moves is selected

by the PotentialMoveX functions. SelectMoveX then evaluates these moves

with regard to the respective metrics and selects the best one to be performed. We

now briefly discuss the four PotentialMoveX functions with the corresponding

moves.

PotentialMoveCP
2 and PotentialMoveCm

2 . Consider Figure 15.21a. In Period 2

on Node1 there is no available slack. However, if we move task τ1 with 40 ms to the

left into Period 1, as depicted in Figure 15.21b, we create a slack in Period2 and the

periodic slack on node N1 will be min(40,40,40) = 40 ms, instead of 0 ms.

Potential moves aimed at improving the metric Cτ
2 will be the shifting of tasks

inside their [ASAP,ALAP] interval in order to improve the periodic slack. The move

can be performed on the same node or on less loaded nodes. The same is true for

moving messages in order to improve the metric Cm
2 . For the improvement of the

periodic bandwidth on the bus, we also consider movement of tasks, trying to place

the sender and receiver of a message on the same processor and, thus, reducing the

bus load.

PotentialMoveCP
1 and PotentialMoveCm

1 . The moves suggested by these two

functions aim at improving the C1 metric through reducing the slack fragmentation.

The heuristic is to evaluate only those moves that iteratively eliminate the smallest

slack in the schedule. Let us consider the example in Figure 15.24, where we have

three applications mapped on a single processor: Ψ, consisting of τ1 and τ2, Acurrent ,

having tasks τ3, τ4 and τ5, and A f uture, with τ6, τ7 and τ8. Figure 15.24 presents three

possible schedules; tasks are depicted with rectangles, the width of a rectangle repre-

sents the worst-case execution time of that task. The PotentialMoveC1 functions

start by identifying the smallest slack in the schedule table. In Figure 15.24a, the

smallest slack is the slack between τ1 and τ3. Once the smallest slack has been iden-

tified, potential moves are investigated which either remove or enlarge the slack. For

example, the slack between τ1 and τ3 can be removed by attaching τ3 to τ1, and it can

be enlarged by moving τ3 to the right in the schedule table. Moves that remove the

426 Time-Triggered Communication

Step 1: try to find a valid solution that minimizes R()

repeat
succeeded = InitialMappingScheduling(\ Acurrent)

 compute S P P intervals for all tas s
S P(Acurrent); P(Acurrent)

if ucceeded then if time constraints are satisfied
 design transformations in order to satisfy
 the second design criterion

repeat
-- find set of moves with the highest potential to

 ma imize C2 or C2
m

m e et Potential ove 2 (Acurrent)
Potential ove 2

m(Acurrent)
 select and perform move which improves most C

m e Select ove 2(m e et); er rm(m e)
ucceeded C2 tneed and C2

m bneed
until ucceeded or ma imum number of iterations reached

end if
if ucceeded and R() smallest so far then

id ; uti n id uti ncurrent
end if

e tSubset() try another subset
until termination condition

Step 2: improve the solution by minimizing objective function C
uti ncurrent uti n id min id

 design transformations in order to satisfy the first design criterion
repeat

 find set of moves with highest potential to minimize C1 or C1
m

m e et Potential ove 1 (Acurrent min)
Potential ove 2

m(Acurrent min)
 select move which improve 1(C1)2 1

m(C1
m)2,

 and does not invalidate the second criterion
m e Select ove 1(m e et); Perform(m e)

until 1(C1)2 1
m(C1

m)2 has not changed or
ma imum number of iterations reached

FIGURE 15.23
Step 1 and Step 2 of the Mapping and Scheduling Strategy in Figure 15.22

Development Tools 427

slack are considered only if they do not lead to an invalidation of the second design

criterion, measured by the C2 metric improved in the previous step (see Figure 15.23,

Step 1). Also, the slack can be enlarged only if it does not create, as a result, other

unusable slack. A slack is unusable if it cannot hold the smallest object of the future

application, in our case τ6. In Figure 15.24a, the slack can be removed by moving

τ3 such that it starts from time 20, immediately after τ1, and it can be enlarged by

moving τ3 so that it starts from 30, 40, or 50 (considering an increment which here

was set by us to 10, the size of τ6, the smallest object in A f uture). For each move,

the improvement on the C1 metric is calculated, and that move is selected by the

SelectMoveC1 function to be performed, which leads to the largest improvement on

C1 (which means the smallest value). For all the previously considered moves of τ3,

we are not able to map τ8 which represents 50% of the A f uture, therefore C1 = 50%.

Consequently, we can perform any of the mentioned moves, and our algorithm se-

lects the first one investigated, the move to start τ3 from 20, thus removing the slack.

As a result of this move, the new schedule table is the one in Figure 15.24b. In the

next call of the PotentialMoveC1 function, the slack between τ5 and τ2 is identified as

the smallest slack. Out of the potential moves that eliminate this slack, listed in Fig-

ure 15.24 for case b, several lead to C1 = 0%, the largest improvement. SelectMoveC1

selects moving τ5 to start from 90, and thus we are able to map task τ8 of the future

application, leading to a successful implementation in Figure 15.24c.

The previous example has only illustrated movements of tasks. Similarly, in

PotentialMoveCm
1 , we also consider moves of messages in order to improve Cm

1 .

However, the movement of messages is restricted by the TDMA bus access scheme,

such that a message can only be moved into a slot corresponding to the node on

which it is generated.

15.5.5.3 Minimizing the Total Modification Cost

The first step of our mapping and scheduling strategy, described in Figure 15.23,

iterates on successive subsets Ω searching for a valid solution which also mini-

mizes the total modification cost R(Ω). As a first attempt, the algorithm searches

for a valid implementation of Acurrent without disturbing the existing applications

(Ω = ∅). If no valid solution is found, successive subsets Ω produced by the function

NextSubsetset are considered, until a termination condition is met. The perfor-

mance of the algorithm, in terms of runtime and quality of the solutions produced, is

strongly influenced by the strategy employed for the function NextSubset and the

termination condition. They determine how the design space is explored while test-

ing different subsets Ω of applications. In the following, we present three alternative

strategies. The first two can be considered as situated at opposite extremes: The first

one is potentially very slow but produces the optimal result while the second is very

fast and possibly low quality. The third alternative is a heuristic able to produce good

quality results in relatively short time, as demonstrated by the experimental results

presented in Section 15.5.6.

Exhaustive Search (ES). In order to find Ωmin, the simplest solution is to try

successively all the possible subsets Ω ⊆ Ψ. These subsets are generated in ascend-

428 Time-Triggered Communication

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160160170 180

1

1

1

2

2

2

3 4 5

3

3

4

4

5

6

7 8Afuture:

Smallest slack

Smallest slack

a)

b)

c)

8 cannot be mapped; move 3 to start from 20

8 cannot be mapped; move 5 to start from 90

Successful implementation

6

7

6 7

7 6 85

a)
Smallest slack: between 1 and 3
Potential moves: 3 starting at 20,
having C1 =50% (denoted with 20/
50%), 30/50%, 40/50%, 50/50%.
Selected move: 3 to 20,
with C1= 50%.

b)
Smallest slack: between 5 and 2
Potential moves: 4 to 40/37.5%, 50/
37.5%, 60/37.5%, 80/37.5%, 90/
37.5%, 100/37.5%; 5 to 90/0%, 100/
0%, 110/50%, 130/50%, 140/50%,
150/0%, 160/0%.
Selected move: 5 to 90 with C1= 0%.

FIGURE 15.24
Successive Steps with Potential Moves for Improving C1

ing order of the total modification cost, starting from ∅. The termination condition

is fulfilled when the first valid solution is found or no new subsets are to be gen-

erated. Since the subsets are generated in ascending order, according to their cost,

the subset Ω that first produces a valid solution is also the subset with the minimum

modification cost.

The generation of subsets is performed according to the graph G that char-

acterizes the existing applications (see Section 15.5.3.1). Finding the next subset

Ω, starting from the current one, is achieved by a branch and bound algorithm

that, in the worst case, grows exponentially in time with the number of applica-

tions. For the example in Figure 15.20, the call to NextSubset(∅) will generate

Ω = {A7} which has the smallest non-zero modification cost R({A7}) = 20. The

next generated subsets, in order, together with their corresponding total modifica-

tion cost are: R({A3}) = 50, R({A3,A7}) = 70, R({A4,A7}) = 90 (the inclusion

of A4 triggers the inclusion of A7), R({A2,A3}) = 120, R({A2,A3,A7}) = 140,

R({A3,A4,A7}) = 140, R({A1}) = 150, and so on. The total number of possible

subsets according to the graph G in Figure 15.20 is 16.

This approach, while finding the optimal subset Ω, requires a large amount of

computation time and can be used only with a small number of applications.

Greedy Heuristic (GH). If the number of applications is larger, a possible solu-

tion could be based on a simple greedy heuristic which, starting from Ω = ∅, progres-

sively enlarges the subset until a valid solution is produced. The algorithm looks at

all the non-frozen applications and picks that one which, together with its dependen-

Development Tools 429

cies, has the smallest modification cost. If the new subset does not produce a valid

solution, it is enlarged by including, in the same fashion, the next application with

its dependencies. This greedy expansion of the subset is continued until the set is

large enough to lead to a valid solution or no application is left. For the example in

Figure 15.20, the call to NextSubset(∅) will produce R({A7}) = 20, and will be

successively enlarged to R({A7,A3}) = 70, R({A7,A3,A2}) = 140 (A4 could have

been picked as well in this step because it has the same modification cost of 70 as

A2 and its dependence A7 is already in the subset), R({A7,A3,A2A4}) = 210, and

so on.

While this approach very quickly finds a valid solution, if one exists, it is possible

that the resulted total modification cost is much higher than the optimal one.

Subset Selection Heuristic (SH). An intelligent selection heuristic should be

able to identify the reasons due to which a valid solution has not been produced

and to find the set of candidate applications which, if modified, could eliminate the

problem. The failure to produce a valid solution can have two possible causes: An

initial mapping which meets the deadlines has not been found, or the second criterion

is not satisfied.

Let us investigate the first reason. If an application Ai is to meet its dead-

line Di, all its tasks τ j ∈ Ai have to be scheduled inside their [ASAP,ALAP] inter-

vals. InitialMappingScheduling (IMS) fails to schedule a task inside its

[ASAP,ALAP] interval if there is not enough slack available on any processor, due

to other tasks scheduled in the same interval. In this situation, we say that there is

a conflict with tasks belonging to other applications. We are interested to find out

which applications are responsible for conflicts encountered during the mapping and

scheduling of Acurrent , and not only that, but also which ones are flexible enough to

be moved away in order to avoid these conflicts.

If IMS is not able to find a solution that satisfies the deadlines, it will determine a

metric ΔAi that characterizes both the degree of conflict and the flexibility of each ap-

plication Ai ∈ Ψ in relation to Acurrent . A set of applications Ω will be characterized,

in relation to Acurrent , by the following metric:

Δ(Ω) = ∑
Ai∈Ω

ΔAi . (15.10)

This metric Δ(Ω) will be used by our subset selection heuristic in the case IMS

has failed to produce a solution which satisfies the deadlines. An application with a

larger ΔAi is more likely to lead to a valid schedule if included in Ω.

In Figure 15.25, we illustrate how this metric is calculated. Applications A, B
and C are implemented on a system consisting of the three processors Node1, Node2

and Node3. The current application to be implemented is D. At a certain moment,

IMS comes to the point to map and schedule task D1 ∈ D. However, it is not able

to place it inside its [ASAP,ALAP] interval, denoted in Figure 15.25 as I. The reason

is that there is not enough slack available inside I on any of the processors, because

tasks A1,A2,A3 ∈ A, B1 ∈ B and C1 ∈ C are scheduled inside that interval. We are

interested to determine which of the applications A, B and C are more likely to lend

free slack for D1, if remapped and rescheduled. Therefore, we calculate the slack

430 Time-Triggered Communication

1

D1 max(max(I B1 min(1
L , 1

R), I

C
D1 max(I min(C1

L , C1
R) D1 , 0)B

D1 max(I 1 min(B1
L , B1

R) D1 , 0);

I L P(D1) S P(D1)
L P(C1)S P(C1)

C1
L

min(2
L , 2

R) min(3
L , 3

R)) D1 , 0)

Node1

Node2

Node3

B1

C1

2 3

D1

C1
R

S P(D1) L P(D1)

C1 C1

D1 mapped on Node1 D1 mapped on Node3

FIGURE 15.25
Metric for the Subset Selection Heuristic

resulted after we move away tasks belonging to these applications from the interval

I. For example, the resulted slack available after modifying application C (moving

C1 either to the left or to the right inside its own [ASAP,ALAP] interval) is of size

|I| −min(|CL
1 |, |CR

1 |). With CL
1 (CR

1) we denote that slice of task C1 which remains

inside the interval I after C1 has been moved to the extreme left (right) inside its own

[ASAP,ALAP] interval. |CL
1 | represents the length of slice CL

1 . Thus, when considering

task D1, ΔC will be incremented with δ D1
C = max(|I|−min(|CL

1 |, |CR
1 |)−|D1|,0). This

value shows the maximum theoretical slack usable for D1, that can be produced by

modifying application C. By relating this slack to the length of D1, the value δ D1
C

also captures the amount of flexibility provided by that modification.

The increments δ D1
B and δ D1

A to be added to the values of ΔB and ΔA, respectively,

are also presented in Figure 15.25. IMS then continues the evaluation of the metrics

Δ with the other tasks belonging to the current application D (with the assumption

that task D1 has been scheduled at the beginning of interval I). Thus, as a result of

the failed attempt to map and schedule application D, the metrics ΔA, ΔB and ΔC will

be produced.

If the initial mapping was successful, the first step of MS could fail during the

attempt to satisfy the second criterion (Figure 15.23). In this case, the metric ΔAi

is computed in a different way. What ΔAi will capture in this case is the potential

of an application Ai to improve the metric C2 if remapped together with Acurrent .

Therefore, we consider a total number of moves from all the non-frozen applications.

These moves are determined using the PotentialMoveC2 functions presented in

Section 15.5.5.2. Each such move will lead to a different mapping and schedule, and

thus to a different C2 value. Let us consider δmove as the improvement on C2 produced

by the currently considered move. If there is no improvement, δmove = 0. Thus, for

each move that has as subject τ j or m j ∈ Ai, we increment the metric ΔAi with the

δmove improvement on C2.

As shown in the algorithm in Figure 15.23, MS starts by trying an implementa-

Development Tools 431

tion of Acurrent with Ω = ∅. If this attempt fails for one of the two reasons mentioned

above, the corresponding metrics ΔAi are computed for all Ai ∈ Ψ. Our heuristic

SH will then start by finding the solution ΩGH produced with the greedy heuris-

tic GH (this will succeed if there exists any solution). The total modification cost

corresponding to this solution is RGH = R(ΩGH) and the value of the metric Δ is

ΔGH = Δ(ΩGH). SH now continues by trying to find a solution with a more favor-

able Ω than ΩGH (a smaller total cost R). Therefore, the thresholds Rmax = RGH and

Δmin = ΔGH/n (for our experiments we considered n = 2) are set. Sets of applica-

tions not fulfilling these thresholds will not be investigated by MS. For generating

new subsets Ω, the function NextSubset now follows a similar approach like in

the exhaustive search approach ES, but in a reverse direction, toward smaller sub-

sets (starting with the set containing all non-frozen applications), and it will consider

only subsets with a smaller total cost then Rmax and a larger Δ than Δmin (a small Δ
means a reduced potential to eliminate the cause of the initial failure). Each time a

valid solution is found, the current values of Rmax and Δmin are updated in order to

further restrict the search space. The heuristic stops when no subset can be found

with Δ > Δmin or a certain imposed limit has been reached (e.g., on the total number

of attempts to find new subsets).

15.5.6 Experimental Results

In the following three sections, we show a series of experiments that demonstrate

the effectiveness of the proposed approach and algorithms. The first set of results is

related to the efficiency of our mapping and scheduling algorithm and the iterative

design transformations proposed in Section 15.5.5.1 and 15.5.5.2. The second set of

experiments evaluates our heuristics for minimization of the total modification cost

presented in Section 15.5.5.3. As a general strategy, we have evaluated our algorithms

performing experiments on a large number of test cases generated for experimental

purposes. Finally, we have validated the proposed approach using a real-life example.

All experiments were run on a SUN Ultra 10 workstation.

15.5.6.1 Evaluation of the IMS Algorithm and the Iterative Design Transfor-
mations

For evaluation of our approach, we used task graphs of 80, 160, 240, 320 and 400

tasks, representing the application Acurrent , randomly generated for experimental pur-

poses. Thirty graphs were generated for each graph dimension; thus, a total of 150

graphs were used for experimental evaluation.

We generated both graphs with random structure and graphs based on more regu-

lar structures like trees and groups of chains. We generated a random structure graph

deciding for each pair of two tasks if they should be connected or not. Two tasks

in the graph were connected with a certain probability (between 0.05 and 0.15, de-

pending on the graph dimension) on the condition that the dependency would not

introduce a loop in the graph. The width of the tree-like structures was controlled by

the maximum number of direct successors a task can have in the tree (from 2 to 6),

432 Time-Triggered Communication

TABLE 15.1
Evaluation of the initial mapping and scheduling.

Tasks
HCP HCP

avg. max. better avg. max. better

80 2.04% 31.57% 10% 0.35% 1.47% 30%
160 3.12% 48.89% 10% 1.18% 5.44% 33.33%
240 5.53% 61.27% 13.33% 1.38% 14.52% 36.66%
320 6.12% 88.57% 16.66% 2.79% 24.33% 40%
400 11.02% 120.77% 13.33% 2.78% 22.52% 36.66%

while the graphs consisting of groups of chains had 2 to 12 parallel chains of tasks.

Furthermore, the regular structures were modified by adding a number of 3 to 30

random cross-connections.

Execution times and message lengths were assigned randomly using both uni-

form and exponential distribution within the 10 to 100 ms, and 2 to 8 bytes ranges,

respectively.

We considered an architecture consisting of 10 nodes of different speeds. For

the communication channel, we considered a transmission speed of 256 kbps and a

length below 20 meters. The maximum length of the data field in a bus slot was 8

bytes. Throughout the experiments presented in this section, we have considered an

existing set of applications Ψ consisting of 400 tasks, with a schedule table of 6s on

each processor, and a slack of about 50% of the total schedule size. The mapping of

the existing applications has been done using a simple heuristic that tries to balance

the utilization of processors while minimizing communication. The scheduling of the

applications Ψ has been performed using list scheduling, and the schedules obtained

have then been stretched to their deadline by introducing slacks distributed uniformly

over the schedule table.

In this section, we have also considered that no modifications of the existing

set of applications Ψ are allowed when implementing a new application. We will

concentrate on the aspects related to the modification of existing applications in the

following section.

The first result concerns the quality of the designs produced by our initial map-

ping and scheduling algorithm IMS. As discussed in Section 15.5.5.1, IMS uses the

MPCP priority function which considers particularities of the TDMA protocol. In

our experiments, we compared the quality of designs (in terms of schedule length)

produced by IMS with those generated with the original HCP algorithm proposed

in [35]. Results are depicted in Table 15.1 where we have three columns for both

HCP and IMS. In the columns labelled “average,” we present the average percentage

deviations of the schedule length produced with HCP and IMS from the length of

the best schedule among the two. In the maximum column, we have the maximum

percentage deviation, and the column with the heading better shows the percentage

of cases in which HCP or IMS was better than the other. For example, for 240 tasks,

HCP had an average percentage deviation from the best result of 5.53%, compared

Development Tools 433

to 1.38% for IMS. Also, in the worst case, the schedule length obtained with HCP

was 61.27% larger than the one obtained with IMS. There were four cases (13.33%)

in which HCP has obtained a better result than IMS, compared to 11 cases (36.66%)

where IMS has obtained a better result. For the rest of the 15 cases, the schedule

lengths obtained were equal. We can observe that, in average, the deviation from the

best result is 3.28 times smaller with IMS than with HCP. The average execution

times for both algorithms are under half a second for graphs with 400 tasks.

For the next set of experiments, we were interested to investigate the quality of

the design transformation heuristic discussed in Section 15.5.5.2, aiming at the opti-

mization of the objective function C. In order to compare this heuristic, implemented

in our mapping and scheduling approach MS, we have developed two additional

heuristics:

1. A simulated annealing strategy (SA) [275], based on the same moves as de-

scribed in Section 15.5.5.2. SA is applied on the solution produced by IMS

and aims at finding the near-optimal mapping and schedule that minimizes the

objective function C. The main drawback of the SA strategy is that in order to

find the near-optimal solution it needs very large computation times. Such a

strategy, although useful for the final stages of the system synthesis, cannot be

used inside a design space exploration cycle.

2. A so-called ad-hoc approach (AH), which is a simple, straightforward solu-

tion to produce designs that, to a certain degree, support an incremental pro-

cess. Starting from the initial valid schedule of length S obtained by IMS for

a graph G with N tasks, AH uses a simple scheme to redistribute the tasks in-

side the [0,D] interval, where D is the deadline of task graph G. AH starts by

considering the first task in topological order, let it be τ1. It introduces after

τ1 a slack of size max(smallest task size o f A f uture,(D−S)/N), thus shifting

all descendants of τ1 to the right (toward the end of the schedule table). The

insertion of slacks is repeated for the next task, with the current, larger value

of S, as long as the resulted schedule has a length S ≤ D. Processes are moved

only as long as their individual deadlines (if any) are not violated.

Our heuristic (MS), as well as SA and AH have been used to map and schedule

each of the 150 task graphs on the target system. For each of the resulted designs, the

objective function C has been computed. Very long and expensive runs have been per-

formed with the SA algorithm for each graph and the best ever solution produced has

been considered as the near-optimum for that graph. We have compared the objec-

tive function obtained for the 150 task graphs considering each of the three heuristics.

Figure 15.26a presents the average percentage deviation of the objective function ob-

tained with the MS and AH from the value of the objective function obtained with the

near-optimal scheme (SA). We have excluded from the results in Figure 15.26a, 37

solutions obtained with AH for which the second design criterion has not been met,

and thus the objective function has been strongly penalized. The average run-times

of the algorithms are presented in Figure 15.26b. The SA approach performs best

in terms of quality at the expense of a large execution time: The execution time can

434 Time-Triggered Communication

AH

MH

SA

40 80 160 240 320
Number of tasks

0

20

40

60

80

100

120

140

Av
er

ag
e

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

[%
]

AH

MH

SA

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
in

]

0

10

20

30

40

50

SS

40 80 160 240 320
Number of tasks

a) Deviation of the objective function obtained
b) Execution timeswith MS and AH from that obtained with SA

FIGURE 15.26
Evaluation of the Design Transformation Heuristics

be up to 45 minutes for large graphs of 400 tasks. The important aspect is that MS

performs very well, and is able to obtain good quality solutions, very close to those

produced with SA, in a very short time. AH is, of course, very fast, but since it does

not address explicitly the two design criteria presented in Section 15.5.4, it has the

worst quality of solutions, as expressed by the objective function.

The most important aspect of the experiments is determining to which extent the

design transformations proposed by us, and the related heuristic, really facilitate the

implementation of future applications. To find this out, we have mapped graphs of 80,

160, 240 and 320 nodes representing the Acurrent application on top of Ψ (the same Ψ
as defined for the previous set of experiments). After mapping and scheduling each

of these graphs, we have tried to add a new application A f uture to the resulted system.

A f uture consists of a task graph of 80 tasks, randomly generated according to the fol-

lowing specifications: St = {20,50,100,150,200 ms}, ft(St) = {10,25,45,15,5%},

Sb = {2,4,6,8 bytes}, fb(Sb) = {20,50,20,10%}, Tmin = 250 ms, tneed = 100 and

bneed = 20 ms. The experiments have been performed three times: Using MS, SA

and AH for mapping Acurrent . In all three cases, we were interested to see if it is pos-

sible to find a correct implementation for A f uture on top of Acurrent using the initial

mapping and scheduling algorithm IMS (without any modification of Ψ or Acurrent).

Figure 15.27 shows the percentage of successful implementations of A f uture for each

of the three cases. In the case Acurrent has been implemented with MS and SA (this

means using the design criteria and metrics proposed in the section) we were able

to find a valid schedule for 65% and 68% of the total cases, respectively. However,

using AH to map Acurrent has led to a situation where IMS is able to find correct so-

lutions in only 21% of the cases. Another conclusion from Figure 15.27 is that when

the total slack available is large, as when Acurrent has only 80 tasks, it is easy for MS

and, to a certain extent, even for AH to find a mapping that allows adding future ap-

plications. However, as Acurrent grows to 240 tasks, only MS and SA are able to find

an implementation of Acurrent that supports an incremental design task, accommo-

dating the future application in more than 60% of the cases. If the remaining slack is

Development Tools 435

0

20

40

60

80

100

80 160 240 320

SA

MS

AH

Number of tasks in Acurrent

P
er

ce
nt

ag
e

of
su

cc
es

sf
ul

im
pl

em
en

ta
ti
on

s
of

A
fu

tu
re

%

FIGURE 15.27
Percentage of Future Applications Successfully Implemented

very small, after we map an Acurrent of 320 tasks, it becomes practically impossible

to map new applications without modifying the current system. Moreover, our map-

ping heuristic MH performs very well compared to the simulated annealing approach

SA which aims for the near-optimal value of the objective function.

15.5.6.2 Evaluation of the Modification Cost Minimization Heuristics

For this set of experiments, we first used the same 150 task graphs as in the previous

section, consisting of 80, 160, 240, 320 and 400 tasks, for the application Acurrent .

We also considered the same system architecture as presented there.

The first results concern the quality of the solution obtained with our mapping

strategy MS using the search heuristic SH compared to the case when the simple

greedy approach GH and the exhaustive search ES are used. For the existing appli-

cations, we have generated five different sets Ψ, consisting of different numbers of

applications and tasks, as follows: 6 applications (320 tasks), 8 applications (400

tasks), 10 applications (480 tasks), 12 applications (560 tasks), 14 applications (640

tasks). The task graphs in the applications as well as their mapping and scheduling

were generated as described in the introduction to Section 15.5.6.1.

After generating the applications, we have manually assigned modification costs

in the range 10 to 100, depending on their size. The dependencies between ap-

plications (in the sense introduced in Section 15.5.3.1) were such that the total

number of possible subsets Ω resulted for each set Ψ were 32, 128, 256, 1024

and 4096, respectively. We have considered that the future applications, A f uture,

are characterized by the following parameters: St = {20,50,100,150,200 ms},

ft(St) = {10,25,45,15,5%}, Sb = {2,4,6,8 bytes}, fb(Sb) = {20,50,20,10%},

Tmin = 250 ms, tneed = 100 ms and bneed = 20 ms.

MS has been used to produce a valid solution for each of the 150 task graphs

representing Acurrent , on each of the target configurations Ψ, using the ES, GH and

436 Time-Triggered Communication

b) Execution times

0

200

400

600

800

1000

1200

320 400 480 560 640

AH

SH

ES

320(6) 400(8) 480(10) 560(12) 640(14)

1200

1000

800

600

400

200

0

Av
er

ag
e

M
od

ifi
ca

tio
n

C
os

t R
(

)

Number of tasks (applications) in

a) Modification Cost obtained with
the GH, SH, and ES heuristics

0

20

40

60

80

100

120

140

320 400 480 560 640

AH

SH

ES

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
in

]

320(6) 400(8) 480(10) 560(12) 640(14)

120

100

80

60

40

20

0

140

Number of tasks (applications) in

FIGURE 15.28
Evaluation of the Modification Cost Minimization

SH approaches to subset selection. Figure 15.28a compares the three approaches

based on the total modification cost needed in order to obtain a valid solution. The

exhaustive approach ES is able to obtain valid solutions with an optimal (smallest)

modification cost, while the greedy approach GH produces on average 3.12 times

more costly modifications in order to obtain valid solutions. However, in order to find

the optimal solution, ES needs large computation times, as shown in Figure 15.28b.

For example, it can take more than two hours on average to find the smallest cost

subset to be remapped that leads to a valid solution in the case of 14 applications

(640 tasks). We can see that the proposed heuristic SH performs well, producing

close to optimal results with a good scaling for large application sets. For the results

in Figure 15.28, we have eliminated those situations in which no valid solution could

be produced by MS.

Finally, we have repeated the last set of experiments discussed in the previous

section (the experiments leading to the results in Figure 15.27). However, in this

case, we have allowed the current system (consisting of Ψ∪Acurrent) to be modified

when implementing A f uture. If the mapping and scheduling heuristic is allowed to

modify the existing system, then we are able to increase the total number of suc-

cessful attempts to implement application A f uture from 65% to 77.5%. For the case

with Acurrent consisting of 160 tasks (when the amount of available resources for

A f uture is small), the increase is from 60% to 92%. Such an increase is, of course,

expected. The important aspect, however, is that it is obtained not by randomly se-

lecting old applications to be modified, but by performing this selection such that the

total modification cost is minimized.

Development Tools 437

15.6 Integration of Time-Triggered Communication with Event-
Triggered Tasks

There has been a long debate in the real-time and embedded systems communities

concerning the advantages of TT vs. ET approaches. Several aspects have been con-

sidered in favor of one or the other approach, such as flexibility, predictability, jitter

control, processor utilization and testability. An interesting comparison of the ET

and TT approaches, from a more industrial, in particular automotive, perspective,

can be found in [205]. The conclusion there is that the right choice depends on the

particularities of the application.

Moreover, considering preemptive priority based scheduling at the task level,

with time-triggered static scheduling at the communication level, can be the right

solution under certain circumstances. TT communication protocols have been clas-

sically associated with non-preemptive static scheduling of tasks, mainly for fault-

tolerance reasons. A TT communication protocol, such as TTP, provides a global

time-base, improves fault-tolerance and predictability. At the same time, certain par-

ticularities of the application or of the underlying real-time operating system can

impose a priority based scheduling policy at the task level.

Therefore, in this section, we consider that tasks are scheduled according to

a static priority preemptive policy, while messages are scheduled using a time-

triggered protocol. In this section, we consider TTP-based systems, but the TT/ET

integration approach is valid also for other TT protocols.

Thus, we first develop a schedulability analysis for distributed tasks with preemp-

tive priority based scheduling considering a TTP-based communication infrastruc-

ture. Secondly, we propose four different approaches to message scheduling using

static and dynamic message allocation. Finally, we show how the parameters of the

communication protocol can be optimized in order to fit the communication particu-

larities of a certain application. Thus, based on our approach, it is not only possible to

determine if a certain task set implemented on a TTP-based distributed architecture

is schedulable, but it is also possible to select a particular message passing strategy

and also to optimize certain parameters of the communication protocol. By adapting

the communication infrastructure to certain particularities of the task set, we increase

the likelihood of producing an implementation which satisfies all time constraints.

15.6.1 Software Architecture

In Section 15.5.1.1, we have discussed the message passing mechanism. The orga-

nization of the message queue assembling of a frame depends on the particular ap-

proach chosen for message scheduling (see Section 15.6.3). We assume that there is

a message transfer task which is activated, at certain a priori known moments, by the

tick scheduler in order to perform the message transfer. Our assumption is that these

activation times are stored in a message handling time table (MHTT) available to the

real-time kernel in each node. Both the MEDL and the MHTT are generated off-line

438 Time-Triggered Communication

as a result of the schedulability analysis and optimization which will be discussed

later. The MEDL imposes the times when the TTP controller of a certain node has

to move frames from the MBI to the communication channel. The MHTT contains

the times when messages have to be transferred by the message transfer task from

the Out queue into the MBI, in order to be broadcasted by the TTP controller. As a

result of this synchronization, the activation times in the MHTT are directly related

to those in the MEDL and the first table results directly from the second one.

It is easy to observe that we have the most favorable situation when, at a certain

activation, the message transfer task finds in the Out queue all the “expected” mes-

sages which then can be packed into the immediate following frame to be sent by

the TTP controller. However, application tasks are not statically scheduled and avail-

ability of messages in the Out queue cannot be guaranteed at fixed times. Worst-case

situations have to be considered, as will be shown in Section 15.6.3.

Let us consider Figure 15.16. There we assumed a context in which the broad-

casting of the frame containing message m2 is done in the slot S0 of Round 2. The

TTP controller of node N1 knows from its MEDL that it has to read a frame from

slot S0 of Round 2 and to transfer it into its MBI. In order to synchronize with the

TTP controller and to read the frame from the MBI, the tick scheduler on node N1

will activate, based on its local MHTT, a so-called delivery task D. The delivery task

takes the frame from the MBI and extracts the messages from it. For the case when

a message is split into several packets, sent over several TDMA rounds, we consider

that a message has arrived at the destination node after all its constituent packets have

arrived. When m2 has arrived, the delivery task copies it to task τ3 which will be acti-

vated. Activation times for the delivery task are fixed in the MHTT just as explained

earlier for the message transfer task.

The number of activations of the message transfer and delivery tasks depends on

the number of frames transferred, and it is taken into account in our analysis, as also

is the delay implied by the propagation on the communication bus.

15.6.2 Optimization Problem

We model an application as a set of tasks. Each task τi is allocated to a certain pro-

cessor, and has a known worst-case execution time Ci, a period Ti, a deadline Di and a

uniquely assigned priority. We consider a preemptive execution environment, which

means that higher priority tasks can interrupt the execution of lower priority tasks. A

lower priority task can block a higher priority task (e.g., it is in its critical section),

and the blocking time is computed according to the priority ceiling protocol. Tasks

exchange messages, and for each message mi we know its size Smi . A message is sent

once in every nm invocations of the sending task, with a period Tm = nmTi inherited

from the sender task τi, and has a unique destination task. Each task is allocated to a

node of the distributed system and messages are transmitted according to the TTP.

We are interested to synthesize the MEDL of the TTP controllers (and, as a direct

consequence, also the MHTTs) so that the task set is schedulable on an as cheap

(slow) as possible processor set.

The next section presents the schedulability analysis for each of the four ap-

Development Tools 439

proaches considered for message scheduling, under the assumptions outlined above.

In Section 15.6.4, the response times calculated using this schedulability analysis are

combined in a cost function that measures the “degree of schedulability” of a given

design alternative. This “degree of schedulability” is then used to drive the optimiza-

tion and synthesis of the MEDL and the MHTTs.

15.6.3 Schedulability Analysis

Under the assumptions presented in the previous section, [330] integrate processor

and communication scheduling and provide a “holistic” schedulability analysis in

the context of distributed real-time systems with communication based on a simple

TDMA protocol. The validity of this analysis has been later confirmed in [244]. The

analysis belongs to the class of response time analyses, where the schedulability test

is whether the worst-case response time of each task is smaller than or equal to its

deadline. In the case of a distributed system, this response time also depends on the

communication delay due to messages. In [330] the analysis for messages is done

in a similar way as for tasks: A message is seen as an unpreemptable task that is

“running” on a bus.

The basic idea in [330] is that the release jitter of a destination task depends

on the communication delay between sending and receiving a message. The release

jitter of a task is the worst-case delay between the arrival of the task and its release

(when it is placed in the run-queue for the processor). The communication delay is

the worst-case time spent between sending a message and the message arriving at the

destination task.

Thus, for a task d(m) that receives a message m from a sender task s(m), the

release jitter is

Jd(m) = rs(m) +am + rdeliver +Ttick (15.11)

where rs(m) is the response time of the task sending the message, am (worst-case

arrival time) is the worst-case time needed for message m to arrive at the communi-

cation controller of the destination node, rdeliver is the response time of the delivery

task (see Section 15.6.1) and Ttick is the jitter due to the operation of the tick sched-

uler. The communication delay for a message m (also referred to as the “response

time” of message m) is

rm = am + rdeliver (15.12)

where am itself is the sum of the access delay Ym and the propagation delay Xm. The

access delay is the time a message queued at the sending processor spends waiting

for the use of the communication channel. In am, we also account for the execution

time of the message transfer task (see Section 15.6.1). The propagation delay is the

time taken for the message to reach the destination processor once physically sent

by the corresponding TTP controller. The analysis assumes that the period Tm of any

message m is longer than or equal to the length of a TDMA round, Tm ≥ TT DMA (see

Figure 15.29).

440 Time-Triggered Communication

The pessimism of this analysis can be reduced by using the notion of offset in or-

der to model precedence relations between tasks [328]. The basic idea is to exclude

certain scenarios which are impossible due to precedence constraints. By considering

dynamic offsets, the tightness of the analysis can be further improved [117, 118]. In

the present section, our attention is concentrated on the analysis of network commu-

nication delays and on optimization of message passing strategies. In order to keep

the discussion focused, we present our analysis starting from the results in [330].

All the conclusions of this research apply as well to the developments addressing

precedence relations proposed, for example, in [117, 118].

Although there are many similarities with the general TDMA protocol, the anal-

ysis in the case of TTP is different in several aspects and also differs to a large degree

depending on the policy chosen for message scheduling.

Before going into details for each of the message scheduling approaches pro-

posed by us, we analyze the propagation delay and the message transfer and delivery

tasks, as they do not depend on the particular message scheduling policy chosen. The

propagation delay Xm of a message m sent as part of a slot S, with the TTP protocol,

is equal to the time needed for the slot S to be transferred on the bus (this is the slot

size expressed in time units; see Figure 15.29). This time depends on the number of

bits which can be packed into the slot and on the features of the underlying bus.

The overhead produced by the communication activities must be accounted not

only as part of the access delay for a message, but also through its influence on the

response time of tasks running on the same processor. We consider this influence

during the schedulability analysis of processes on each processor. We assume that

the worst-case computation time of the transfer task (T in Figure 15.16) is known,

and that it is different for each of the four message scheduling approaches. Based on

the respective MHTT, the transfer task is activated for each frame sent. Its worst-case

period is derived from the minimum time between successive frames.

The response time of the delivery task (D in Figure 15.16), rdeliver, is part of

the communication delay (Equation 15.12). The influence due to the delivery task

must also be included when analyzing the response time of the tasks running on the

respective processor. We consider the delivery task during the schedulability analysis

in the same way as the message transfer task.

The response times of the communication and delivery tasks are calculated, as

for all other tasks, using the arbitrary deadline analysis from [330].

The four approaches we propose for scheduling of messages using TTP differ in

the way the messages are allocated to the communication channel (either statically or

dynamically) and whether they are split or not into packets for transmission. The next

subsections present the analysis for each approach as well as the degrees of liberty a

designer has, in each of the cases, for optimizing the MEDL.

15.6.3.1 Static Single Message Allocation (SM)

The first approach for scheduling messages using TTP is to statically (offline) sched-

ule each of the messages into a slot of the TDMA cycle, corresponding to the node

sending the message. This means that for each message we decide offline to allocate

Development Tools 441

S0 S1 S0 S1 S0 S1

m m

Xm

m’

m

TTDMA

Tcycle

FIGURE 15.29
Worst-Case Arrival Time for SM

space in one or more frames, space that can only be used by that particular message.

In Figure 15.29, the frames are denoted by rectangles. In this particular example,

it has been decided to allocate space for message m in slot S1 of the first and third

rounds. Since the messages are dynamically produced by the tasks, the exact moment

a certain message is generated cannot be predicted. Thus, it can happen that certain

frames will be left empty during execution. For example, if there is no message m in

the Out queue (see Figure 15.29) when the slot S1 of the first round in Figure 15.29

starts, that frame will carry no information. A message m produced immediately af-

ter slot S1 has left, could then be carried by the frame scheduled in the slot S1 of the

third round.

In the SM approach, we consider that each slot can hold a maximum of one sin-

gle message. This approach is well suited for application areas, like safety-critical

automotive electronics, where the messages are typically short and the ability to eas-

ily diagnose the system (fewer messages in a frame are easier to observe) is critical.

In the automotive electronics area, messages are typically a couple of bytes, encod-

ing signals like vehicle speed. However, for applications using larger messages, the

SM approach leads to overheads due to the inefficient utilization of slot space when

transmitting smaller size messages.

As each slot carries only one fixed, predetermined message, there is no interfer-

ence among messages. If a message m misses its allocated frame, it has to wait for

the following slot assigned to m. The worst-case access delay Ym for a message m in

this approach is the maximum time between consecutive slots of the same node car-

rying the message m. We denote this time by θm, illustrated in Figure 15.29, where

we have a system cycle of length Tcycle, consisting of three TDMA rounds.

In this case, the worst-case arrival time am of a message m becomes θm + Xm.

Therefore, the main aspect influencing schedulability of the messages is the way

they are statically allocated to slots, which determines the values of θm. θm, as well

as Xm, depend on the slot sizes which in the case of SM are determined by the size

of the largest message sent from the corresponding node plus the bits for control and

CRC, as imposed by the protocol.

As mentioned before, the analysis in [330], done for a simple TDMA protocol,

assumes that Tm ≥ TT DMA. In the case of static message allocation with TTP (the SM

and MM approaches), this translates to the condition Tm ≥ θm.

442 Time-Triggered Communication

1

2

3

m1 m2 m2 m1

m2 m1 m2 m1

m2 m1 m2 m1

Release Jitter

Running task

Message

Task activation

Deadline

1

2

3

1

2

3

a) 2 misses its deadline because of message m2 scheduled in the second and third rounds

b) All tasks meet their deadlines; m2 is scheduled in the first and third rounds and it is received by 2 on time

c) All tasks meet their deadlines; the release jitter is reduced by scheduling m1 and m2 in the same round

FIGURE 15.30
Optimizing the MEDL for SM and MM

During the synthesis of the MEDL, the designer has to allocate the messages to

slots in such a way that the task set is schedulable. Since the schedulability of the task

set can be influenced by the synthesis of the MEDL only through the θm parameters,

these are the parameters which have to be optimized.

Let us consider the simple example depicted in Figure 15.30, where we have

three tasks, τ1, τ2 and τ3 each running on a different processor. When task τ1 finishes

executing, it sends message m1 to task τ3 and message m2 to task τ2. In the TDMA

configurations presented in Figure 15.30, only the slot corresponding to the CPU

running τ1 is important for our discussion and the other slots are represented with

light gray. With the configuration in Figure 15.31a, where the message m1 is allocated

to the rounds 1 and 4 and the message m2 is allocated to rounds 2 and 3, task τ2

misses its deadline because of the release jitter due to the message m2 in Round 2.

However, if we have the TDMA configuration depicted in Figure 15.30b, where m1

is allocated to rounds 2 and 4 and m2 is allocated to rounds 1 and 3, all the tasks meet

their deadlines.

15.6.3.2 Static Multiple Message Allocation (MM)

This second approach is an extension of the first one. In this approach, we allow more

than one message to be statically assigned to a slot and all the messages transmitted

Development Tools 443

in the same slot are packaged together in a frame. As for the SM approach, there is

no interference among messages, so the worst-case access delay for a message m is

the maximum time between consecutive slots of the same node carrying the message

m, θm. It is also assumed that Tm ≥ θm.

However, this approach offers more freedom during the synthesis of the MEDL.

We have now to decide also on how many and which messages should be put in a

slot. This allows more flexibility in optimizing the θm parameter. To illustrate this,

let us consider the same example depicted in Figure 15.31. With the MM approach,

the TDMA configuration can be arranged as depicted in Figure 15.30c, where the

messages m1 and m2 are put together in the same slot in the rounds 1 and 2. Thus,

the deadline is met and the release jitter is further reduced compared to the case

presented in Figure 15.31b where task τ3 was experiencing a large release jitter.

15.6.3.3 Dynamic Message Allocation (DM)

The previous two approaches have statically allocated one or more messages to their

corresponding slots. This third approach considers that the messages are dynamically

allocated to frames, as they are produced.

Thus, when a message is produced by a sender task, it is placed in the Out queue

(Figure 15.16). Messages are ordered according to their priority. At its activation, the

message transfer task takes a certain number of messages from the head of the Out
queue and constructs the frame. The number of messages accepted is decided so that

their total size does not exceed the length of the data field of the frame. This length

is limited by the size of the slot corresponding to the respective processor. Since the

messages are sent dynamically, we have to identify them in a certain way so that they

are recognized when the frame arrives at the delivery task. We consider that each

message has several identifier bits appended at the beginning of the message.

Since we dynamically package messages into frames in the order they are sorted

in the queue, the access delay to the communication channel for a message m depends

on the number of messages queued ahead of it.

The analysis in [330] bounds the number of queued ahead packets of messages of

higher priority than message m, as in their case it is considered that a message can be

split into packets before it is transmitted on the communication channel. We use the

same analysis but we have to apply it for the number of messages instead of packets.

We have to consider that messages can be of different sizes, as opposed to packets

which are always of the same size.

Therefore, the total size of higher priority messages queued ahead of a message

m, in the worst case, is:

Im = ∑
∀ j∈hp(m)

⌈
rs(j)

Tj

⌉

S j (15.13)

where S j is the size of the message m j, rs(j) is the response time of the task sending

message m j and Tj is the period of the message m j.

Further, we calculate the worst-case time that a message m spends in the Out
queue. The number of TDMA rounds needed, in the worst case, for a message m

444 Time-Triggered Communication

placed in the queue to be removed from the queue for transmission is

⌈
Sm + Im

Ss

⌉

(15.14)

where Sm is the size of the message m and Ss is the size of the slot transmitting m
(we assume, in the case of DM, that for any message x, Sx ≤ SS). This means that the

worst-case time a message m spends in the Out queue is given by

Ym =
⌈

Sm + Im

Ss

⌉

TT DMA (15.15)

where TT DMA is the time taken for a TDMA round.

Since the size of the messages is given with the application, the parameter that

will be optimized during the synthesis of the MEDL is the slot size. To illustrate how

the slot size influences schedulability, let us consider the example in Figure 15.31

where we have the same setting as for the example in Figure 15.30. The difference

is that we consider message m1 having a higher priority than message m2 and we

schedule the messages dynamically as they are produced. With the configuration in

Figure 15.31a, message m1 will be dynamically scheduled first in the slot of the first

round, while message m2 will wait in the Out queue until the next round comes,

thus causing task τ2 to miss its deadline. However, if we enlarge the slot so that it

can accommodate both messages, message m2 does not have to wait in the queue

and it is transmitted in the same slot as m1. Therefore, τ2 will meet its deadline as

presented in Figure 15.31b. However, in general, increasing the length of slots does

not necessarily improve schedulability, as it delays the communication of messages

generated by other nodes.

15.6.3.4 Dynamic Packet Allocation (DP)

This approach is an extension of the previous one, as we allow the messages to be

split into packets before they are transmitted on the communication channel. We

consider that each slot has a size that accommodates a frame with the data field

being a multiple of the packet size. This approach is well suited for the application

areas that typically have large message sizes. By splitting messages into packets, we

can obtain a higher utilization of the bus and reduce the release jitter. However, since

each packet has to be identified as belonging to a message, and messages have to be

split at the sender and reconstructed at the destination, the overhead becomes higher

than in the previous approaches.

The worst-case time a message m spends in the Out queue is given by the analysis

in [330] which is based on similar assumptions as those for this approach:

Ym =
⌈

pm + Im

Sp

⌉

TT DMA (15.16)

Development Tools 445

m1 m2 m1 m2

m1 m2/packet 2 m1 m2/packet 2m2/packet 1 m2/packet 1

1

2

3

1

2

3

1

2

3

1

2

3

m1 m2 m1 m2

m1 m2 m1 m2

Release Jitter

Running task

Message

task activation

Deadline

a) 2 misses its deadline; there is no space in the slot of the first round to schedule the lower priority message m2

b) All tasks meet their deadlines; the slot has been enlarged to hold both messages

c) 2 misses its deadline; the slot is too small to hold both packets of message m2

b) All tasks meet their deadlines; the slot has been enlarged to hold 4 packets instead of 3

FIGURE 15.31
Optimizing the MEDL for DM and DP

446 Time-Triggered Communication

where pm is the number of packets of message m, Sp is the size of the slot (in number

of packets) corresponding to m and

Im = ∑
∀ j∈hp(m)

⌈
rs(j)

Tj

⌉

p j (15.17)

where p j is the number of packets of a message m j.

In the previous approach (DM), the optimization parameter for the synthesis of

the MEDL was the size of the slots. With this approach, we can also decide on the

packet size which becomes another optimization parameter. Consider the example in

Figure 15.31c where messages m1 and m2 have a size of 6 bytes each. The packet

size is considered to be 4 bytes and the slot corresponding to the messages has a size

of 12 bytes (3 packets) in the TDMA configuration. Since message m1 has a higher

priority than m2, it will be dynamically scheduled first in the slot of the first round

and it will need 2 packets. In the third packet, the first 4 bytes of m2 are placed. Thus,

the remaining 2 bytes of message m2 have to wait for the next round, causing task

τ2 to miss its deadline. However, if we change the packet size to 3 bytes and keep

the same size of 12 bytes for the slot, we have 4 packets in the slot corresponding

to the CPU running τ1 (Figure 15.31d). Message m1 will be dynamically scheduled

first and will need 2 packets in the slot of the first round. Hence, m2 can be sent in

the same round so that τ2 can meet its deadline.

In this particular example, with one single sender processor and the particular

message and slot sizes as given, the problem seems to be simple. This is, however,

not the case in general. For example, the packet size which fits a particular node can

be unsuitable in the context of the messages and slot size corresponding to another

node. At the same time, reducing the packets size increases the overheads due to the

transfer and delivery tasks.

The analysis presented so far is valid only in the case the arrival time am of a

message m is smaller than or equal to its period Tm. However, in the case am > Tm
the “arbitrary deadline” analysis from [196] has to be used. We have shown in [262]

how the analysis presented here can be extended to consider arbitrary deadlines.

15.6.4 Optimization Strategy

Our problem is to analyze the schedulability of a given task set and to synthesize the

MEDL of the TTP controllers (and consequently the MHTTs) so that the task set is

schedulable on an as cheap as possible architecture. The optimization is performed

on the parameters which have been identified for each of the four approaches to

message scheduling discussed before. In order to guide the optimization task, we

need a cost function that captures the “degree of schedulability” for a certain MEDL

implementation. Our cost function is similar to that in [329] in the case an application

is not schedulable (f1). However, in order to distinguish between several schedulable

applications, we have introduced the second expression, f2, which measures, for a

feasible design alternative, the total difference between the response times and the

deadlines:

Development Tools 447

cost(optimization parameters) =

⎧

⎪⎨

⎪⎩

f1 =
n
∑

i=1
max(0,Ri −Di), if f1 > 0

f2 =
n
∑

i=1
Ri −Di), if f1 = 0

(15.18)

where n is the number of tasks in the application, Ri is the response time of a task τi
and Di is the deadline of a task τi. If the task set is not schedulable, there exists at

least one Ri that is greater than the deadline Di; therefore, the term f1 of the function

will be positive. In this case, the cost function is equal to f1. However, if the task

set is schedulable, then all Ri are smaller than the corresponding deadlines Di. In

this case, f1 = 0 and we use f2 as the cost function, as it is able to differentiate

between two alternatives, both leading to a schedulable task set. For a given set of

optimization parameters leading to a schedulable task set, a smaller f2 means that we

have improved the response times of the tasks, so the application can be potentially

implemented on a cheaper hardware architecture (with slower processors and/or bus,

but without increasing the number of processors or buses).

The response time Ri is calculated according to the arbitrary deadline analy-

sis [330] based on the release jitter of the tasks (see Section 15.6.3), its worst-case

execution time, the blocking time, and the interference time due to higher priority

tasks. They form a set of mutually dependent equations which can be solved itera-

tively. As shown in [330], a solution can be found if the processor utilization is less

than 100%.

For a given application, we are interested to synthesize a MEDL such that the cost

function is minimized. We are also interested to evaluate in different contexts the four

approaches to message scheduling, thus offering the designer a decision support for

choosing the approach that best fits his application.

The MEDL synthesis problem belongs to the class of exponential complexity

problems; therefore, we are interested to develop heuristics that are able to find ac-

curate results in a reasonable time. We have developed optimization algorithms cor-

responding to each of the four approaches to message scheduling. A first set of al-

gorithms presented in Section 15.6.4.1 is based on simple and fast greedy heuristics.

In Section 15.6.4.2, we introduce a second class of heuristics which aims at finding

near-optimal solutions using the simulated annealing (SA) algorithm.

15.6.4.1 Greedy Heuristics

We have developed greedy heuristics for each of the four approaches to message

scheduling. The main idea of the heuristics is to minimize the cost function by in-

crementally trying to reduce the communication delay of messages and, by this, the

release jitter of the tasks.

The only way to reduce the release jitter in the SM and MM approaches is through

the optimization of the θm parameters. This is achieved by a proper placement of

messages into slots (see Figure 15.30).

The OptimizeSM algorithm presented in Figure 15.32 starts by deciding on

a size (sizeSi) for each of the slots. The slot sizes are set to the minimum size that

448 Time-Triggered Communication

OptimizeSM
01 -- set the slot sizes

02 for each node Ni do

03 sizeSi = max(size of messages mj sent by node Ni)

04 end for
05 -- find the min. no. of rounds that can hold al l the messages

06 for each node Ni do

07 nmi = number of messages sent from Ni

08 end for
09 MinRounds = max (nmi)

10 -- create a minimal complete MEDL

11 for each message mi

12 find round in [1..MinRounds] that has an empty slot for mi

13 place mi into its slot in round

14 end for
15 for each RoundsNo in [MinRounds...MaxRounds] do
16 -- inser t messages in such a way that the cost is minimized

17 repeat
18 for each task Pi that receives a message mi do

19 if Di - Ri is the smallest so far then m = mPi end if

20 end for
21 for each round in [1..RoundsNo] do
22 place m into its corresponding slot in round

23 calculate the CostFunction
24 if the CostFunction is smallest so far then
25 BestRound = round

26 end if
27 remove m from its slot in round
28 end for
29 place m into its slot in BestRound if one was identified

30 until the CostFunction is not improved
31 end for

end OptimizeSM

FIGURE 15.32
Greedy Heuristic for SM

Development Tools 449

can accommodate the largest message sent by the corresponding node (lines 1–4 in

Figure 15.32). In this approach, a slot can carry at most one message; thus, slot sizes

larger than this size would lead to larger response times.

Then, the algorithm has to decide on the number of rounds, thus determining the

size of the MEDL. Since the size of the MEDL is physically limited, there is a limit

to the number of rounds (e.g., 2, 4, 8, 16 depending on the particular TTP controller

implementation). However, there is a minimum number of rounds MinRounds that is

necessary for a certain application, which depends on the number of messages trans-

mitted (lines 5–9). For example, if the tasks mapped on node N0 send in total seven

messages then we have to decide on at least seven rounds in order to accommodate

all of them (in the SM approach there is at most one message per slot). Several num-

bers of rounds, RoundsNo, are tried out by the algorithm starting from MinRounds
up to MaxRounds (lines 15–31).

For a given number of rounds (that determine the size of the MEDL), the initially

empty MEDL has to be populated with messages in such a way that the cost function

is minimized. In order to apply the schedulability analysis that is the basis for the

cost function, a complete MEDL has to be provided. A complete MEDL contains

at least one instance of every message that has to be transmitted between the tasks

on different processors. A minimal complete MEDL is constructed from an empty

MEDL by placing one instance of every message mi into its corresponding empty

slot of a round (lines 10–14). In Figure 15.30a, for example, we have a MEDL com-

posed of four rounds. We get a minimal complete MEDL, for example, by assigning

m2 and m1 to the slots in rounds 3 and 4, and leaving the slots in rounds 1 and 2

empty. However, such a MEDL might not lead to a schedulable system. The “de-

gree of schedulability” can be improved by inserting instances of messages into the

available places in the MEDL, thus minimizing the θm parameters. For example, in

Figure 15.30a inserting another instance of the message m1 in the first round and m2

in the second round leads to τ2 missing its deadline, while in Figure 15.30b inserting

m1 into the second round and m2 into the first round leads to a schedulable system.

Our algorithm repeatedly adds a new instance of a message to the current MEDL

in the hope that the cost function will be improved (lines 16–30). In order to decide an

instance of which message should be added to the current MEDL, a simple heuristic

is used. We identify the task τi which has the most “critical” situation, meaning that

the difference between its deadline and response time, Di −Ri, is minimal compared

with all other tasks. The message to be added to the MEDL is the message m =
mPi received by the task τi (lines 18–20). Message m will be placed into that round

(BestRound) which corresponds to the smallest value of the cost function (lines 21–

28). The algorithm stops if the cost function cannot be further improved by adding

more messages to the MEDL.

The OptimizeMM algorithm is similar to OptimizeSM. The main difference

is that in the MM approach several messages can be placed into a slot (which also

decides its size), while in the SM approach there can be at most one message per slot.

Also, in the case of MM, we have to take additional care that the slots do not exceed

the maximum allowed size for a slot.

450 Time-Triggered Communication

OptimizeDM
01 for each node Ni do

02 MinSizeSi = max(size of messages mj sent by node Ni)

03 end for
04 -- ident i fies the size that minimizes the cost funct ion

05 for each slot Si

06 BestSizeSi = MinSizeSi

07 for each SlotSize in [MinSizeSi...MaxSize] do

08 calculate the CostFunction

09 if the CostFunction is best so far then
10 BestSizeSi = SlotSizeSi

11 end if
12 end for
13 sizeSi = BestSizeSi

14 end for
end OptimizeDM

FIGURE 15.33
Greedy Heuristic for DM

The situation is simpler for the dynamic approaches, namely DM and DP, since

we only have to decide on the slot sizes and, in the case of DP, on the packet size. For

these two approaches, the placement of messages is dynamic and has no influence

on the cost function. The OptimizeDM algorithm (see Figure 15.33) starts with the

first slot Si = S0 of the TDMA round and tries to find that size (BestSizeSi) which

corresponds to the smallest CostFunction (lines 4–14 in Figure 15.33). This slot size

has to be large enough (Si ≥ MinSizeSi) to hold the largest message to be transmitted

in this slot, and within bounds determined by the particular TTP controller imple-

mentation (e.g., from 2 bits up to MaxSize = 32 bytes). Once the size of the first slot

has been determined, the algorithm continues in the same manner with the next slots

(lines 7–12).

The OptimizeDP algorithm has also to determine the proper packet size. This

is done by trying all the possible packet sizes given the particular TTP controller. For

example, it can start from 2 bits and increment with the “smallest data unit” (typically

2 bits) up to 32 bytes. In the case of the OptimizeDP algorithm, the slot size has to

be determined as a multiple of the packet size and within certain bounds depending

on the TTP controller.

15.6.4.2 Simulated Annealing Strategy

We have also developed an optimization procedure based on a simulated annealing

(SA) strategy. The main characteristic of such a strategy is that it tries to find the

global optimum by randomly selecting a new solution from the neighbors of the cur-

rent solution. The new solution is accepted if it is an improved one. However, a worse

Development Tools 451

SimulatedAnnealing

01 construct an initial TDMA round xnow

02 temperature = initial temperature TI
03 repeat
04 for i = 1 to temperature length TL

05 generate randomly a neighboring solution x’ of xnow

06 delta = CostFunction(x’) - CostFunction(xnow)

07 if delta < 0 then xnow = x’

08 else
09 generate q = random (0, 1)

10 if q < e-delta / temperature then xnow = x’ end if
11 end if
12 end for
13 temperature = * temperature

14 until stopping criterion is met

15 return solution corresponding to the best CostFunction
end SimulatedAnnealing

FIGURE 15.34
The Simulated Annealing Strategy

solution can also be accepted with a certain probability that depends on the deterio-

ration of the cost function and on a control parameter called temperature [275].

In Figure 15.34, we give a short description of this algorithm. An essential com-

ponent of the algorithm is the generation of a new solution x starting from the current

one xnow (line 5 in Figure 15.34). The neighbors of the current solution xnow are ob-

tained depending on the chosen message scheduling approach. For SM, x is obtained

from xnow by inserting or removing a message in one of its corresponding slots. In

the case of MM, we have to take additional care that the slots do not exceed the

maximum allowed size (which depends on the controller implementation), as we can

allocate several messages to a slot. For these two static approaches, we also decide

on the number of rounds in a cycle (e.g., 2, 4, 8, 16; limited by the size of the memory

implementing the MEDL). In the case of DM, the neighboring solution is obtained

by increasing or decreasing the slot size within the bounds allowed by the partic-

ular TTP controller implementation, while in the DP approach we also increase or

decrease the packet size.

For the implementation of this algorithm, the parameters T I (initial temperature),

T L (temperature length), α (cooling ratio) and the stopping criterion have to be de-

termined. They define the so called cooling schedule and have a strong impact on the

quality of the solutions and the CPU time consumed. We were interested to obtain

values for T I, T L and α that will guarantee the finding of good quality solutions in

a short time. In order to tune the parameters, we have first performed very long and

expensive runs on selected large examples and the best ever solution, for each ex-

ample, has been considered as the near-optimum. Based on further experiments, we

452 Time-Triggered Communication

have determined the parameters of the SA algorithm, for different sizes of examples,

so that the optimization time is reduced as much as possible but the near-optimal

result is still produced. These parameters have then been used for the large-scale ex-

periments presented in the following section. For example, for the graphs with 320

nodes, T I is 300, T L is 500 and α is 0.95. The algorithm stops if for three consecutive

temperatures no new solution has been accepted.

15.6.5 Experimental Results

For evaluation of our approaches, we first used sets of tasks generated for experi-

mental purposes. We considered architectures consisting of 2, 4, 6, 8 and 10 nodes.

Forty tasks were assigned to each node, resulting in sets of 80, 160, 240, 320 and 400

tasks. Thirty tasks sets were generated for each of the five dimensions. Thus, a total

of 150 sets of tasks were used for experimental evaluation. Worst-case computation

times, periods, deadlines and message lengths were assigned randomly within cer-

tain intervals. For the communication channel, we considered a transmission speed

of 256 kbps. The maximum length of the data field in a slot was 32 bytes and the

frequency of the TTP controller was chosen to be 20 MHz. All experiments were run

on a Sun Ultra 10 workstation.

For each of the 150 generated examples and each of the four message scheduling

approaches, we have obtained the near-optimal values for the cost function (Equa-

tion 15.18) as produced by our SA based algorithm (see Section 15.6.4.2). For a

given example, these values might differ from one message passing approach to an-

other, as they depend on the optimization parameters and the schedulability analysis

which are particular for each approach. Figure 15.35 presents a comparison based

on the average percentage deviation of the cost function obtained for each of the

four approaches, from the minimal value among them. The percentage deviation is

calculated according to the formula:

deviation =
costapproach − costbest

costbest
×100. (15.19)

The DP approach is, generally, able to achieve the highest degree of schedu-

lability, which in Figure 15.35 translates in the smallest deviation. In the case the

packet size is properly selected, by scheduling messages dynamically we are able

to efficiently use the available space in the slots, and thus reduce the release jitter.

However, by using the MM approach we can obtain almost the same result if the

messages are carefully allocated to slots as does our optimization strategy.

Moreover, in the case of larger task sets, the static approaches suffer significantly

less overhead than the dynamic approaches. In the SM and MM approaches, the

messages are uniquely identified by their position in the MEDL. However, for the

dynamic approaches we have to somehow identify the dynamically transmitted mes-

sages and packets. Thus, for the DM approach we consider that each message has

several identifier bits appended at the beginning of the message, while for the DP

approach the identification bits are appended to each packet. Not only do the identi-

fier bits add to the overhead, but in the DP approach, the transfer and delivery tasks

Development Tools 453

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450

Number of Tasks

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

SM
MM
DM
DP

Ad-hoc

FIGURE 15.35
Comparison of the Four Approaches to Message Scheduling

(see Figure 15.16) have to be activated at each sending and receiving of a packet,

and thus interfere with the other tasks. Thus, for larger applications (e.g., task sets

of 400 tasks), MM outperforms DP, as DP suffers from large overhead due to its

dynamic nature. DM performs worse than DP because it does not split the messages

into packets, and this results in a mismatch between the size of the messages dynam-

ically queued and the slot size, leading to unused slot space that increases the jitter.

SM performs the worst as it does not permit much room for improvement, leading

to large amounts of unused slot space. Also, DP has produced a MEDL that resulted

in schedulable task sets for 1.33 times more cases than the MM and DM. MM, in its

turn, produced two times more schedulable results than the SM approach.

Together with the four approaches to message scheduling, a so-called ad-hoc ap-

proach is presented. The ad-hoc approach performs scheduling of messages without

trying to optimize the access to the communication channel. The ad-hoc solutions

are based on the MM approach and consider a design with the TDMA configuration

consisting of a simple, straightforward allocation of messages to slots. The lengths of

the slots were selected to accommodate the largest message sent from the respective

node. Figure 15.35 shows that the ad-hoc alternative is constantly outperformed by

any of the optimized solutions. This demonstrates that significant gains can be ob-

tained by optimization of the parameters defining the access to the communication

channel.

Next, we have compared the four approaches with respect to the number of mes-

sages exchanged between different nodes and the maximum message size allowed.

For the results depicted in Figures 15.36 and 15.37, we have assumed sets of 80

tasks allocated to four nodes. Figure 15.36 shows that, as the number of messages in-

454 Time-Triggered Communication

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

SM
MM
DM
DP

Number of Messages

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

FIGURE 15.36
Four Approaches to Message Scheduling: The Influence of the Number of Messages

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

SM
MM
DM
DP

Maximum Number of Bytes in a Message

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

FIGURE 15.37
Four Approaches to Message Scheduling: The Influence of the Message Sizes

Development Tools 455

TABLE 15.2
Percentage deviations for the greedy heuristics compared to SA.

80 tasks 160 tasks 240 tasks 320 tasks 400 tasks

SM avg. 0.12% 0.19% 0.50% 1.06% 1.63%
max. 0.81% 2.28% 8.31% 31.05% 18.00%

MM avg. 0.05% 0.04% 0.08% 0.23% 0.36%
max. 0.23% 0.55% 1.03% 8.15% 6.63%

DM avg. 0.02% 0.03% 0.05% 0.06% 0.07%
max. 0.05% 0.22% 0.81% 1.67% 1.01%

DP avg. 0.01% 0.01% 0.05% 0.04% 0.03%
max. 0.05% 0.13% 0.61% 1.42% 0.54%

creases, the difference between the approaches grows while the ranking among them

remains the same. The same holds for the case when we increase the maximum al-

lowed message size (Figure 15.37), with a notable exception: For large message sizes

MM becomes better than DP, since DP suffers from the overhead due to its dynamic

nature.

We were also interested in the quality of our greedy heuristics. Thus, we have run

all the examples presented above using the greedy heuristics and compared the results

with those produced by the SA based algorithm. Table 15.2 shows the average and

maximum percentage deviations of the cost function values produced by the greedy

heuristics from those generated with SA, for each of the graph dimensions. All four

greedy heuristics perform very well, with less than 2% loss in quality compared to the

results produced by the SA algorithms. The execution times for the greedy heuristics

were more than two orders of magnitude smaller than those with SA. Although the

greedy heuristics can potentially find solutions not found by SA, for our experiments,

the extensive runs performed with SA have led to a design space exploration that has

included all the solutions produced by the greedy heuristics.

The above comparison between the four message scheduling alternatives is

mainly based on the issue of schedulability. However, when choosing among the

different policies, several other parameters can be of importance. Thus, a static allo-

cation of messages can be beneficial from the point of view of testing and debugging

and has the advantage of simplicity. Similar considerations can lead to the decision

not to split messages. In any case, however, optimization of the bus access scheme is

highly desirable.

15.7 Configuration and Code Generation
Once the schedule has been created as described in Section 15.3, it is necessary to

transform this schedule information into a device-specific configuration, so that the

dedicated communication controller of the device knows what to do when. In TTP,

456 Time-Triggered Communication

this configuration is called Message Descriptor List (MEDL); different terms are

used in other protocols. For brevity, we call it communication configuration through-

out this section. The creation of such a communication configuration is described

below in Section 15.7.1.

While the communication configuration is the most obvious configuration item,

other parts of the system also need to be configured to be able to process it:

1. Middleware

• COM layer

• Potentially other layers, in case of a multilayer system (e.g., the

AUTOSAR Basic Software Stack [19])

2. Application

3. Operating system (OS), if applicable

The creation of middleware configurations is described in Section 15.7.2. In addi-

tion, it is also possible (and often advantageous) to even generate the complete code

of the middleware itself. This approach is discussed in Section 15.7.3. The applica-

tion also needs some knowledge of the transmitted data, its structures and timing,

and therefore requires a dedicated configuration for this specific purpose. If an oper-

ating system (OS) exists, it is also involved in the communication, and consequently

also needs a configuration for its specific tasks. For brevity, all configurations needed

in addition to the aforementioned communication and middleware configuration are

called third-party configurations throughout this section. The creation of third-party

configurations is described in Section 15.7.4.

15.7.1 Communication Configuration

The specific format and content of a communication configuration is hardware de-

pendent. Each communication controller provides some specific features, and these

features need to be configured correctly in order to bring the communication con-

troller to work and interact with the other communication controllers on the network.

But not only differences in the hardware — or, more precisely, in the communi-

cation controllers — make it necessary to adapt a communication configuration on

a per-node basis. Often, hardware buffers in the communication controller are very

limited, but user requirements exist to provide the received frame at least for a cer-

tain amount of time (validity time span). One solution might be to copy all received

frames from the hardware buffer to another location (e.g., an external RAM). But

this solution is inefficient regarding execution time and resource usage. A better way

is to only put those frames into buffers that are really needed by the specific host.

15.7.1.1 TTP — Personalized MEDLs

The cluster design defines the layout of rounds and cluster cycles, cluster modes, and

the parameters required for clock synchronization, i.e., who sends what at what time.

Development Tools 457

It does not contain node-local information about the application data storage in the

CNI of individual nodes. Each communication controller must have a personalized

MEDL, which is derived from the cluster design. It contains node-local information

and may contain special setup data required for internal purposes of specific commu-

nication controllers [340].

To optimize the CNI layout, a tool that has the node-local information, in par-

ticular the information about which messages a node receives, can customize the

“abstract” MEDL and thus save execution time and buffer space: Only those mes-

sages really needed by the node are processed, stored and provided to upper layers

and the application. Personalized MEDLs not only imply less processing work for

the CPU that accesses the communication controller, but they also allow for a less

strict timing of the tasks on that CPU. In addition, personalized MEDLs are usually

smaller than “abstract” ones.

15.7.1.2 Monitor MEDL for TTP

However, one special node-level MEDL is created whenever MEDLs are made by

the cluster design tool TTPPlan: The Monitor MEDL. This MEDL is generated au-

tomatically right after scheduling, and is loaded into the communication controller

of the Monitoring Node used for monitoring a TTP network. The Monitor MEDL

has a special CNI message area layout that is required by the host software operating

within the Monitoring Node. The node-level information of the Monitor MEDL does

not interfere with node-level designs of the cluster; however, changes to the cluster

design render the Monitor MEDL invalid.

15.7.1.3 Buffer Configuration for FlexRay

FlexRay controllers have configurable hardware buffers where data is written to and

read from. In the AUTOSAR stack, this concept is abstracted toward the upper layers

of the system: The FlexRay driver translates the hardware-specific (i.e., controller-

related) information into the more abstract data of the upper software layers. For

example, the FlexRay driver maps the information “which frame shall be received”

to the corresponding registers of the FlexRay controller. In contrast to the CNI, which

is available in TTP controllers, this buffer interface requires that the communication

configuration is personalized, i.e., optimized with node-level information.

One part of the driver is the buffer configuration, which places each frame into

its hardware buffer. Configuring the FlexRay driver thus generates the meta-level

specification of what happens in the cluster. This requires the introduction of logical

buffers, which are also known as “L-PDUs” in AUTOSAR. Such a buffer contains

one — but not necessarily always the same — frame at any point in time. In FlexRay,

there can be several configurations for a buffer, and even reconfiguration during run-

time is possible. AUTOSAR, however, supports only one configuration per buffer.

Depending on the type of controller, one such buffer corresponds to one or more

hardware buffers (mapping in the generated code).

In FlexRay and AUTOSAR, PDUs (Protocol Data Units) are the central elements

of data transmission. A PDU is a payload of information to be exchanged between

458 Time-Triggered Communication

different software layers on the node. In AUTOSAR, signals are not placed directly

in frames, but in PDUs, which are handled by the PDU Router, see below.

15.7.2 Middleware Configuration

Once the hardware is configured, it is also necessary to configure the “upper” layers

of the communication stack. While there may be other parts of middleware software

which do not belong to the communication stack, in most systems the communication

stack forms the largest and also most complex part. For example, in AUTOSAR [20],

the communication stack consists of at least four, but up to seven, layers for a com-

munication based on FlexRay:

• FlexRay Driver

• FlexRay Interface (FrIf)

• PDU Router

• COM Layer

• FlexRay NM (Network Management)

• FlexRay Transport Layer

• RTE (Run-Time Environment)

While some layers do not have many configuration parameters and thus are rather

straightforward to configure, other layers — like the FlexRay Interface (FrIf) layer

— imply the scheduling of send and receive tasks with respect to the timing and

the validity span of the messages sent and received. As a representative of a rather

complex layer, the FrIf layer is described in more detail in Section 15.7.2.2 below.

Another example are the communication layers for TTP. They directly access

the TTP controller and provide an interface to the application. Figure 15.38 shows

their architectural differences. Table 15.3 lists the main similarities and differences

between these communication layers.

In contrast to the other layers listed there, the fault-tolerant COM layer (FT-

COM) is completely generated by the TTPBuild design tool in order to optimize ex-

ecution time and resource consumption. It operates closely together with TTTech’s

operating system TTPOS. It supports packing and unpacking, reintegration (history

state handling), byte order (endianness) handling, message agreement functions and

handling of replicated redundant message instances. The FT-COM layer is described

in more detail in Section 15.7.3.

The table-driven COM layer (TD-COM), the hardware COM layer (HW-COM)

and the high-speed COM layer (HS-COM) are reusable engines that execute con-

figuration tables generated by the design tool. These configuration tables define the

messages that are sent and received by a specific node, and how to process them.

Both the HW-COM and the HS-COM layer decouple the TTP communication

from the application functions, also in the time domain. They provide convenient,

Development Tools 459

FIGURE 15.38
Examples of Different COM Layers

460 Time-Triggered Communication

TABLE 15.3
COM layer properties compared.

Layer FT-COM TD-COM HW-COM HS-COM
Performance ++ + +++ +++
Certification none DO-178B, le-

vel A certifi-

cation for en-

gine, verifica-

tion tool for

tables

DO-254 certi-

fication for IP

model

DO-254 certi-

fication for IP

model

Message sizes 1 to 32 bit,

arrays, struc-

tured types

1 to 32 bit 32 bit only 32, 64, and

128 bit

Implementation generated C

code

C code, table-

driven

VHDL code,

table-driven

VHDL code,

table-driven
Replication yes no no no
CPU Load yes yes no no
Asynchronous Accessno yes yes yes

buffer-based interfaces to the application software. Their buffer interface allows for

an easy mapping of ARINC 429 [10]. In addition, they are rather limited in their

functionality as compared to the other layers presented. As a representative, the HS-

COM layer is described in more detail in Section 15.7.2.3 below.

15.7.2.1 Configuration Format

Basically, there are two approaches to creating a middleware configuration:

• Source code, usually in C

• A binary block (memory area)

The C code actually comprises a big data structure, either a struct or simply

an array, or any combination thereof. It might be generated just as a header file that

is included in the main application code. In this case, it is automatically employed

whenever the application is built. Otherwise it must be compiled and linked to the

application in a separate step. As compilations are mostly done based on a Makefile,

an additional file to be compiled is acceptable. The header file, which declares the

data types used for the configuration structure in the C file, can be kept rather short.

An example is shown in Figure 15.41, representing a configuration for the HS-

COM. Apart from the usual content of a C header file, it contains the declaration of

the length of the configuration array and the array itself. The HS-COM configuration

consists of 32-bit values only because they exactly match the size of an internal data

access. This contributes to the high performance of the HS-COM. The comments

in the table show the table index of the respective entry for easier navigation. More

Development Tools 461

elaborate comments could be added if found beneficial, e.g., briefly describing each

configuration parameter.

The advantages of the C code approach include the better readability and the fact

that — due to prior compilation — only one file is present at runtime, which simpli-

fies configuration management. If the configuration is not analyzed by a verification

tool (see Section 15.8), good readability and means for easy navigation inside the

(sometimes quite big) data structure can reduce certification efforts dramatically.

A binary block contains the configuration data in a structured form, so that the

middleware directly and efficiently can access the individual parameters. It is inter-

preted by the middleware at runtime. Actually, the result of a compiled C code and a

binary block may not differ at all for a certain configuration.

The advantages of a binary block include that it can be loaded separately from the

application. If the development lifecycles of the application and the communication

system are very different, or decoupling these two development tasks is advantageous

for other reasons, the configuration can be generated and integrated into the system

independently. A binary block needs to be loaded by the application and handed over

to the middlware layer during the initialization phase.

15.7.2.2 FlexRay Interface Configuration

The FlexRay Interface (FrIf) layer is the part of the AUTOSAR communication stack

that provides access to the FlexRay bus and its timing via the FlexRay Driver layer.

Above the FrIf layer, there are the upper layers: PDU-Router (PduR) and FlexRay

Transport Protocol (FrTp). The FrIf layer performs its actions according to the gen-

erated configuration. It is responsible for two basic tasks:

• It collects PDUs from the upper layers, packs the PDUs into frames and for-

wards the frames to the driver layer for sending on the FlexRay bus.

• It collects frames from the driver layer, unpacks the PDUs from the frames and

forwards the PDUs to the corresponding upper layers (PduR or FrTp).

As can be seen from these characteristics, the FrIf appears PDU-based to the

upper layers, but accesses the FlexRay bus in a frame-based fashion.

FrIf Actions

Receiving a frame starts when the FrIf receives the frame from the driver. The PDUs

in the frame are unpacked, and the PDU data is passed to the corresponding upper

layer (PduR or FrTp). This is done by calling the upper layer’s respective API func-

tion, called RxIndication (receive indication). With this function, the PDU data is

passed to the upper layer. After all PDUs have been processed, the frame reception

is finished. Sending a frame starts with an upper layer (wanting to send a PDU) issu-

ing a transmit request to the FrIf by calling the FrIf Transmit API function. The FrIf

stores every transmission request. It is important to note that a transmission request

can occur at any point in the cluster cycle, unless the application is programmed to

run synchronously with the FlexRay bus.

462 Time-Triggered Communication

Later, when a frame is about to be transmitted, the FrIf checks each PDU in the

frame, to see if its transmission has been requested. This point in time is determined

during scheduling and can be influenced through the use of some of the advanced

scheduling features described later in this chapter. For each PDU, the FrIf gets the

PDU data that should be sent, packs the data into the frame and then sends the frame

on to the FlexRay bus.

At some even later point in time, the FrIf confirms to the upper layer the trans-

mission of each PDU by calling the TxConfirmation function. Again, this point in

time is determined during scheduling. Through the use of this function, the upper

layer can determine that a PDU has been sent.

For brevity, the receiving, sending and confirmation of a frame by the FrIf will in

the following be referred to as Actions.

FrIf Job Handling

The sending and receiving of frames has to take place at predefined points in time as

FlexRay is a time-triggered communication system. The timing is important for the

following reasons:

• A received frame is only available for a limited time at the driver layer. If the

FrIf misses the time window for getting the frame from the driver, the data of

the frame might already have been overwritten and the frame data is lost. Note

that the exact behavior in this situation is subject to the configuration, usage

and number of the available buffers.

• If a frame is sent too late by the FrIf, the reserved bandwidth slot of the frame

has already been transmitted by the driver, thus the current frame data cannot

be sent. Depending on the setting of the corresponding parameter, the FlexRay

controller sends either a Null frame or the current data from the frame buffer

(which might be outdated).

The handling of actions at predefined points in time is implemented in the TTX-

AUTOSAR FlexRay Stack by a hardware timer of the FlexRay module, which gen-

erates an interrupt each time a list of actions should be processed. A design tool with

FrIf scheduling capability is responsible for calculating the timing of the actions. The

output of the FrIf scheduler is called the FrIf schedule; it controls when an interrupt

should occur, and which actions should be handled in a particular interrupt invoca-

tion. By accessing the compiled schedule, the FrIf layer coordinates its actions.

The main part of the schedule is the JobList, which is a collection of Jobs. There

is only one JobList in the schedule. Each Job in turn is a collection of Actions; an

action has an action type, which can be either “rx frame,” “tx frame” or “tx confirm.”

The actions have already been described in the previous section.

A job stands for an invocation of the FlexRay interrupt on the target hardware.

On the invocation of a particular interrupt, all the actions of the associated job are

processed by the FrIf layer. The job activation time describes when the job’s asso-

ciated interrupt has to occur. The processing of jobs is done in the FrIf JobListExec

Development Tools 463

FIGURE 15.39
Sending and Receiving on FrIf Level

API function. This function has to be called in the interrupt service routine of the

FlexRay interrupt. Figure 15.39 shows an example of a job and its actions.

Interrupt Overhead

The activation time of the job is marked by a star in Figure 15.39. The delay between

the activation time and the actual processing of the first action (rx frame in this case)

is the interrupt overhead.

The interrupt overhead results from the fact that it takes some time for the CPU

to get from the interrupt event into the FrIf JobListExec function for the processing

of the first action. Usually this time is very short. However, this is not always the

case. Assume that an application needs to disable interrupts for a certain length of

time, let’s say 10μs. If a FrIf interrupt occurs during this phase, the FrIf JobListExec
function is in the worst case processed after 10μs at the earliest, thus the inter-
rupt overhead needs to be configured accordingly.

Frame and Application Times

In order to put the FrIf actions into the FrIf jobs and to calculate the point in time for

the interrupts, the time needed by each action must be known:

• The frame receive time is the time it takes the FrIf to receive a frame from the

driver. It is defined as the time difference from the calling of the frame receive
function until this function returns.

• The n pdu receive time is the time the FrIf needs to call the RxIndication func-

tion of the upper layer. The RxIndication function then passes the data to the

upper layer.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11155-16&iName=master.img-9504.jpg&w=334&h=165

464 Time-Triggered Communication

• The frame send time is the time the FrIf needs to send one frame to the driver

layer.

• The n pdu send time is the time the FrIf needs to call the TriggerTransmit
function of the upper layer. With the TriggerTransmit function, the upper layer

passes the PDU data to be transmitted to the FrIf.

• The n pdu confirm time is the time the FrIf needs to call the TxConfirmation
function of the upper layer.

• The frame confirm time is not shown in the figure; it can be used to account for

a constant overhead, which occurs during the processing of the TxConfirmation
calls for all PDUs in the frame.

Using these definitions, a scheduler can calculate exactly how long the processing

of a job will take (by summing up the action times for all actions). In the example

from Figure 15.39, the execution time of the job can be computed with the following

formula:

Duration = interrupt overhead
+ f rame receive time
+ (2∗n pdu receive time)
+ f rame send time
+ (3∗n pdu send time)
+ f rame con f irm time
+ (2∗n pdu con f irm time)

(15.20)

Please note that this is the worst-case execution time (WCET) of the job. It may

happen that the actual execution time for some invocations of this job on the hardware

target is shorter; for example, if a received frame contains some PDUs which were

not updated by the sending ECU. Then the FrIf does not need to call the RxIndication
function for these PDUs, which results in a shorter runtime for this particular job

invocation.

Figure 15.40 shows parts of a configuration for the FrIf layer. The major parts

of the FrIf configuration are the definition of the PDUs as shown in the upper part

of the figure, and the definition of the actions as shown in the lower part. The list

of actions in this example contains 33 entries. Each entry specifies the type of the

action, a reference to the frame, and a reference to the PDU. Further parts of the FrIf

configuration (not shown) are the frame definitions, the definitions of the FrIf Jobs

and JobLists, the action timing and the definitions of all used constants.

FrIf Schedulers

A FrIf scheduler may provide the user with advanced configuration options, such as

“black-list” and “white-list” scheduling.

Black-list scheduling allows the user to specify reserved intervals where no FrIf

jobs may be scheduled. The intervals to be excluded from FrIf activity can be rep-

resented as a comma-separated list of ranges in microseconds. For example, setting

Development Tools 465

PDU Definitions

const ttx_frame_to_pdu_t _ttx_frame_to_frif_pdu_v_frame_0002_s [1] =
{ { PDU_ID_FRIF_fl_pdu_measure /* pdu_idx */

, 0 /* pdu_offset */
, 8 /* pdu_len */
, 1 /* use_update */
, 17 /* updbit_bytepos */
, 7 /* updbit_bitpos */
, 0 /* is_tp_pdu */
, PDU_ID_ROUTER_fl_pdu_measure /* destination_pdu_id */
} /* [0] */

};

FrIf Action Definitions

const ttx_frame_action_t _ttx_frame_action [33] =
{ { TTX_RX_AND_INDICATE /* action */

, 1 /* frame_idx */
, 18 /* mb_tutorial_web_018_a_r */ /* fr_pdu_id */
} /* [0] */

, { TTX_TX_FRAME /* action */
, 0 /* frame_idx */
, 1 /* mb_tutorial_web_001_a_t */ /* fr_pdu_id */
} /* [1] */

...

FIGURE 15.40
FrIf Configuration as C code — An Example

466 Time-Triggered Communication

the reserved intervals to 0:100,5000:5100,10000:10100,15000:15100
means that FrIf jobs may not be scheduled during the first 100μs of the first four

communication cycles, assuming a cluster cycle of 20ms.

White-list scheduling provides the possibility to manually configure time inter-

vals where actions for individual PDUs may be scheduled. The PDU-specific actions

to be scheduled within a given time interval can be represented as a series of semi-

colon separated values according to the following format: “PDU/action/from:to.”

For example, setting the whitelist spec to pdu 1/S/0:100;pdu 2/R/101:201
means that the send action for the PDU “pdu 1” can only be scheduled in the interval

0− 100μs and the receive action of the PDU “pdu 2” can only be scheduled in the

interval 101−201μs.

Each interval of a white-list can be as large as the valid interval range or as small

as the interval of the FrIf job in which the PDU action is to be scheduled, but not

smaller. If the white-list spans more than one FrIf job, the user is in fact letting the

scheduler choose which FrIf job to use for the processing of the action defined in

the white-list. Furthermore, should the phase of the FrIf jobs vary between commu-

nication cycles, an analysis of this variation must be performed in order to ensure a

large enough interval of the white-list to encompass suitable FrIf jobs in all commu-

nication cycles. More details on the configuration of the AUTOSAR communication

stack for FlexRay, and especially of the FrIf, can be found in [341].

15.7.2.3 HS-COM Configuration

The HS-COM layer itself is a VHDL module that is part of an FPGA and provides

the following features:

• Communication support for the AS8202NF TTP controller attached to an

FPGA.

• Runtime and memory efficient packing and unpacking of messages to and from

the TTP frames.

• Asynchronous access to the TTP data (buffering).

• Support for 128-bit event messages (i.e., queued best-effort transmission).

For optimization reasons, the HS-COM layer supports messages with a size of

32, 64 and 128 bits. It is further limited to the handling of message boxes whose size

is an integer multiple of either 64 or 128 bits. A message box is a container that may

hold one or several messages, but all messages in a message box must have the same

size. The HS-COM can be executed in a highly efficient way as all these message

types are aligned with the internal layout of the data registers.

Depending on the messages defined, the HS-COM acts differently:

• 64-byte messages will be assumed to be simple state messages, and the HS-

COM will access the message box in 64-bit chunks.

• Received message boxes containing 32-bit messages will be accessed in 32-

bit chunks and an additional 32-bit frame status (i.e., information whether the

Development Tools 467

Header file

#ifndef _HS_COM_h_
#define _HS_COM_h_ 1
#include "ptypes.h"
extern const ubyte4 hscom_config_len;
extern const ubyte4 hscom_config [];

C file containing the configuration

#include "ptypes.h"
const ubyte4 hscom_config_len = 32;
const ubyte4 hscom_config [32] =
{ 0x1 /* [0] */
, 0xc /* [1] */
, 0x0 /* [2] */
, 0x0 /* [3] */

...
, 0x80000805L /* [29] */
, 0x21 /* [30] */
, 0x816 /* [31] */
};

FIGURE 15.41
Communication Configuration as C code — An Example (HS-COM)

frame was received correctly) will be added to each message. With this feature,

the content and the validity of a message can be retrieved in one action.

• Messages of type ‘128-bit’ are always treated as event messages and are ac-

cessed in 128-bit chunks. The queue depth for event messages is 32 FIFO

entries each for sending and receiving, with 128 bits (i.e., one message) per

entry.

The HS-COM layer performs a so-called destructive read when sending data on

the bus, i.e., it sets the value of a read message to 0xFFFF...FFFF. If the data

in the send memory is not updated within a cluster cycle after reading, this value

will be transmitted and tells the receiver that something went wrong, either with the

transmission or with the send memory’s update. This mechanism prevents “old” data

from being transmitted and mistaken for new.

Figure 15.41 shows an example configuration for the HS-COM layer. The HS-

COM configuration consists of 32-bit values only for performance reasons. It com-

prises entries for the Register Area, the Pointer Area and the Command Area. In the

shown example, the Register Area indicates the “SyncMode” to be 0x1, and 12 lines

to be used for the Pointer Area. The “host activity timeout” is set to 0. The last three

shown lines represent commands (from the Command Area). Each command con-

tains a parity bit in bit-position 31. Therefore, the first command starts with 0x8000,

468 Time-Triggered Communication

and the two others start with 0. Bits 0 to 3 of each command specify the type of the

command. For example, 0x80000805L means to read one 128-bit event message

starting from index 0. More details on the configuration of the HS-COM layer can be

found in [342].

15.7.3 Code Generation

Middleware could be written by hand, and configured as discussed in Section 15.7.2.

However, it is also possible to create the entire middleware layer with a design tool.

Such automated creation can be exactly tailored to the communication needs of the

schedule and the application, resulting in a highly optimized code. In the follow-

ing, the fault-tolerant communication (FT-COM) layer for TTP is described in more

detail as an example.

The FT-COM layer constitutes an interface between the communication services

of the hardware, the operating system and the application software. According to

Time-Triggered Architecture (TTA), each node executes an appropriate part of the

distributed application, handling not only the data communication, but also the fault

tolerance mechanisms designed for the system. As the FT-COM layer can be gen-

erated automatically by a design tool, the application code gets decoupled from the

specific communication layer and fault tolerance mechanisms. This fact allows the

application programmer to write source code that is highly reusable, easy to maintain,

and transparent to many changes in the communication and fault tolerance design of

the system. The FT-COM layer is generated as C source code for the node CPU,

compiled and linked with the application code and executed on the same hardware

as the application itself.

15.7.3.1 Feature Configuration

The FT-COM layer has several features that need configuration. A selection of these

features is presented here, and relevant aspects regarding configuration and automatic

code generation are discussed.

Subsystem Replication

A subsystem can be regarded as a set of tasks that take some input and produce some

output. Each task is part of exactly one subsystem, but each subsystem may contain

as many tasks as necessary. Several subsystems may be executed — independently

of each other — on one host. A subsystem may also be executed simultaneously on

more than one host (replicated subsystem). The first step toward fault tolerance can

thus be achieved by replicating functionality, i.e., by replicating a subsystem.

The FT-COM needs to know how often a subsystem is replicated, and on which

hosts these replicated subsystems run. It is expected that the FT-COM layer delivers

a consistent view of the entire cluster regarding the value of a message, and provides

diagnostic data to assess the “quality” of the provided data.

The Replica-Deterministic Agreement (RDA) Function

Development Tools 469

The receiver of a message m that is sent by a subsystem F , which is replicated with

a replication degree of n, will in fact receive several message instances or raw values
mi of that message — one from each Fi that is active. But what is really wanted is

the “correct” or “agreed” value. Therefore, the receiver needs to take the incoming

instances mi, run a function on them, and generate a single value m that will then be

used for the application:

m = rda(m1,m2, . . .mr) (15.21)

The upper limit for r is the replication degree n, which applies when all replicas

of F are active, the lower limit is zero. rda, the agreement function, must therefore

be able to consistently handle an input vector of any length from zero to n. It must

also be deterministic [258]. Several RDA functions exist and are selectable for the

FT-COM, depending on the type of the subsystem (fail-safe or fail-consistent) [343].

Instead of encoding an algorithm that works for any n, it might yield a better perfor-

mance to insert different implementations of the same algorithm into the FT-COM

code, depending on n.

Application code that accesses the message m should never need to access the

individual instances mi, and can therefore be “ignorant” of the replication degree of

the sender of m. A change of this replication degree only requires an update of the

FT-COM layer, but not of the application itself.

Reintegration with H-State

Each (application) task generally takes some input, performs some function on it and

produces a result as output; both input and output are messages. Furthermore, the

task can contain static internal data that influences the computation and hence the

output. The set of this internal data is called h-state.

For fast reintegration and enhanced robustness of the whole system, it might be

necessary for a replicated instance of a subsystem to know this h-state of its partner

instances. The network designer has to define a global message (“h-state message”)

that contains this information. Now the output can be considered solely a function

of the input, no “hidden” data is involved anymore. For performance reasons, these

h-state messages should only be received and processed when no valid h-state is

currently present. The generated FT-COM layer needs to monitor the h-state, and to

provide it when necessary.

Receiver Status

From the RDA mechanism, the number of correctly received message copies can

immediately be derived by setting up a counter that is initialized with zero at the be-

ginning of the message transmission interval, and increased by one for each message

copy that is received correctly, finally giving r. This counter is called the receiver
status of a message m. The receiver status is useful for several RDA functions. For

example, the application software can use the receiver status to derive confidence

information on how “good” m is. Another example is averaging: All valid mi are

summed up, and the result is divided by the receiver status. It would be incorrect to

470 Time-Triggered Communication

divide the sum by n, because in case of a failure of one or more replicas of F , the

sum would contain less than n components.

In a programming language that treats the number zero as the Boolean equiv-

alent of “false” and any number other (or at least greater) than zero as “true,” the

receiver status can also be queried like a Boolean flag that yields “true” if the mes-

sage is present, meaning that it was received correctly at least once and the RDA has

yielded a result, and “false” if the message was not received correctly in this message

transmission interval.

Sender Status

If an ECU hosts several subsystems, and one (fail-safe) subsystem fails, the others

still should be able to send their data. Turning off the entire ECU is thus not an option.

But as the communication controller works, it sends all messages, and potentially

incorrect values for messages produced by the failed subsystem.

One classic strategy to handle this problem is to define an “invalid” value. This is

unfavorable because it introduces a hidden information channel; if some application

program fails to check for this special value in the right way, the system becomes

inconsistent. Also, the “invalid” value might fall into the range of valid values after

a software extension or upgrade. Any RDA function calculated in the FT-COM layer

must take this into account.

The sender status of a message is part of the message itself, and therefore part

of the input vector to the RDA function. The RDA will then consider a message that

was correctly received, but has a sender status of “invalid,” to be non-present. Clearly,

the FT-COM code performs better if the sender status is only considered for those

messages actually having one, and no such code or if-statement exists for messages

that have no sender status.

The receiver status of a message is generated at the receiver and is always avail-

able. Therefore, it can always be used for checking the availability of a message. But

it does not carry the same amount of information that the sender status delivers: This

information is generated by the sender, exists only if the system design requires it

and allows the sender to explicitly invalidate the message contents while still send-

ing the message; this can be necessary for a more complex node design where more

than one subsystem is executed on the node.

The sender status implies additional effort for the sender, i.e., the FT-COM code

generated for the sender. It must be updated, and additional bandwidth (even if only

a single bit) is needed on the communication bus. Furthermore, the receiver must

explicitly check this sender status, in addition to the receiver status that is always

processed.

Message Timing

The message timing should not be done by the application software because, besides

becoming unnecessarily complex, this could raise timing problems due to program-

ming errors or faults during execution. Based on the separation of concerns, message

timing should be handled by the FT-COM layer, which takes full responsibility and

Development Tools 471

can be reused across different applications. The FT-COM code generator needs to

respect all these timing constraints and “schedule” its tasks so that all messages are

processed in time.

Message Buffer Handling

A replicated subsystem F that sends a message m may also want to receive this

message. This sounds trivial, but requires some effort when replication is used, be-

cause in this case it is not correct to simply access the message in the local RAM.

Say N is a node where one of the replicas of F is executed, and assume that

another subsystem G, which also runs on N, uses m as input. Receiving a message

from a replicated subsystem requires an RDA (this is valid even for the subsystem

that sends this message). Therefore, m exists twice on N: One instance is the value

which is sent by F , to be entered in the RDA at all receivers (including N), the other

one is the result of the RDA at N. Usually these will be equal, but if, for example, m
is a sensor reading with an agreement function that computes the average, the local

sensor may produce a slightly different result than the other redundant sensors in the

system, and the value m that is actually used by the receivers (including G) is an

average of all mi that were transmitted in the previous round.

It follows that several message buffers can be required for a message, depending

on whether the message is replicated or not:

• A transmit buffer for the message instance that is sent to all the receivers; this

buffer is required for any message

• Receive buffers for each of the mi

• A result buffer for the result of the RDA; this buffer is only required for repli-

cated messages

Each of these buffers has the size (i.e., RAM requirements) of the message itself.

A generated FT-COM may only provide all these buffers for messages where it is

really needed, and save RAM if a message is not consumed by F or if the RDA

function allows to directly use the sent value (e.g., “one-valid”).

Packing of Bit Messages

Due to the CPU architecture of a node, the C variables containing the message values

often use more memory than their data representation requires. The most common

representatives of such a message type are Boolean messages, which have a data

content of one bit, but are usually stored in a byte or even an int, depending on the

CPU architecture and compiler.

However, since transmission bandwidth is rather expensive, the available net data

rate should be optimally utilized. For this purpose, a Boolean message should be

packed into a single bit, because it wastes a lot of space if it requires 16 or more bits

for transmission. Similarly, a message which can take only one of 20 different values

should not require 8 bits of transmission capacity, because the data content fits into

472 Time-Triggered Communication

5 bits. Likewise, sensor data from an A/D unit that has a significant range of 10 bits

does not need to be transmitted in a 16 bit word — but the packing algorithm needs

to know which of the 16 bits are the 10 relevant ones.

At the receiver, the message needs to be expanded into a variable that is again

easy to handle, like an int. The algorithm needs to be the exact inverse of the pack-

ing one, but must take into account several architectural properties that may differ

between sender and receiver — the most prominent of all being the byte order.

On the other hand, the effort to efficiently (in terms of computation and code

size) pack bit messages must be minimized, and there are much more efficient ways

to achieve this than to simply consider the transmission buffer (frame) a long bit field

and store all messages sequentially in this bit field. This is even true for standard

messages of a size of 1, 2 or 4 bytes, and proper alignment can result in considerable

performance gains.

However, manually programming such packing and unpacking routines for each

bit message, and changing them consistently if something changes in the system

specification (like a 10-bit A/D result being upgraded to 12 bits), is highly error-

prone. Therefore, a layer that provides packing at the sender and unpacking at the

receiver needs to be configured or created automatically, and must be supported by

proper tools.

An automatically generated FT-COM layer may be optimized so that it only

contains code that is really necessary for this particular platform, and that as many

branches as possible are eliminated from the final code.

15.7.3.2 Implementation

The FT-COM layer must handle three major operations, specifically:

• Updating of the lifesign of the communication controller

• Packing of the messages into the proper frame buffers

• Unpacking and agreement calculation of all messages used by the application

All these operations are performed by special tasks (FT-tasks). One fundamental

configuration option is the location of the frame buffers. If there exists a fast access

to the CNI of the TTP controller, all packing and unpacking operations can be per-

formed directly there. If not, it is more efficient to create local copies of the frames

and to perform all operations locally. By setting this configuration option, the entire

code can be created as it is best suited for the actual hardware.

Depending on the kind of the FT-task, it has to run either before or after an

application task. The scheduler then has to ensure that the deadlines of the application

tasks are met in any case. For all operations, the design tool needs to determine

an interval within which the specific operation must be performed. To reduce task

switching overhead, the design tool also should try to merge as many overlapping

intervals as possible and to generate one FT-task for each of the resulting intervals;

this leads to a minimal number of tasks.

Development Tools 473

The following sections describe how the schedule interval is determined for spe-

cific tasks.

Life-sign Update

The life-sign of the communication controller must be updated (by the host) at least

once every round. In the pre-send-phase (the phase before the actual sending slot,

dpsp), the controller checks if an update has been performed. Let Ts(n) be the start

of the controller’s own sending slot of round n. The interval for the update of the

life-sign in round n then is:

[Ts(n−1) . . .Ts(n) −dpsp] (15.22)

If the controller notices that the life-sign has not been updated, it goes into a

passive state because there does not seem to be an application. Appropriate code for

updating the life-sign has to be created and inserted into an FT-task that is scheduled

for execution within this time interval.

Sender Tasks

The packing of messages into the proper frames in the CNI is done by sender tasks.

The scheduling interval of these sender tasks must meet the following requirements:

• The latest possible finish time Tf for the packing of messages is the start of the

pre-send-phase of the slot (i.e., start time of the slot minus the pre-send-phase).

• The earliest task activation time Ta is the time when the message is stable.

This time is determined by the activation time of the application task plus its

deadline. If at this point in time the message is not stable (i.e., the application

task violates its deadline), the sender task must not start.

If the task has a period that is different from the period of the message trans-

mission on the network (defined in the cluster schedule), the activation instance

leading to the shortest interval shall be considered, so that the latest value pro-

duced by the application is being sent over the network.

The interval Ta . . .Tf is computed for all messages sent by the application. All

overlapping intervals should then be merged and a single FT-task should be gener-

ated, considering the runtime necessary for processing the messages and for updating

the frames. To further reduce the number of required tasks, the sender tasks can also

be merged with the lifesign tasks, if their intervals overlap and there is still enough

runtime left for the lifesign updating.

Receiver Tasks

The receiver tasks must perform two operations; first the unpacking of the message

instances (these instances will be used for the agreement), and then the computing of

the specified agreement function. There are two different approaches to this:

474 Time-Triggered Communication

• Store and Process: Unpack all message instances, store them in temporary

buffers and perform the agreement function using the temporary buffers.

The advantage of this approach is that it works with any kind of agreement

(including majority voting) and also allows access to the individual raw values

of the message.

The disadvantage is increased memory demand: Every single message instance

has to be stored.

• Incremental: Unpack only one message instance, perform the agreement on

this instance, unpack the next message instance, . . . After all message instances

have been agreed, the finalization of the agreement (e.g., divide the result by

the number of values added to achieve the average) can be performed.

The advantage is the lower memory consumption and often faster execution.

The disadvantage is that it cannot be applied to all kinds of agreements, only

to those which can be done sequentially. It must also be noted that in this case

the raw values are not available to a diagnosis function at the receiver (usually

not required).

The design tool can select the appropriate computation strategy for the selected

agreement function, and then only insert this code into the receiver task. Dead or

temporarily unused code can thus be avoided.

When it comes to optimization, it is not sufficient to just look at messages and

message instances, but also their temporal distribution needs to be considered. Each

time a periodically sent message is transmitted, this is called a message generation,

not to be confused with a message instance. Consider a sender application that sends

a specific message every 10ms; further assume that this message is transmitted on two

channels every 2ms. This means that each message value generated by the sender is

actually received 10 times at the receiver: Five different generations are received (one

every 2ms), and each generation contains two instances of the message.

In order to minimize the amount of global memory required by the FT-COM

layer, it is necessary to perform the complete agreement for one message generation

in a single FT-task. However, it is not always possible to pack all the steps of the

complete agreement into a single task, since the individual (replicated) instances of a

message generation may be spread throughout a whole round, and thus may have dif-

ferent and potentially non-overlapping validity spans. For the incremental approach,

only some intermediate results need to be allocated globally if the agreement cannot

be performed in a single task. Consequently, a good default is to use the incremental

approach wherever possible.

For the receiver task generation, the validity interval of a message instance may

be used as a possible scheduling interval. All overlapping intervals should then be

merged and a single FT-task generated, considering the runtime necessary for the

unpacking of the messages and for computing the agreement function.

To further optimize the memory footprint, the required RAM, and the execution

time of the FT-COM layer, the design tool that creates the FT-COM code may filter

Development Tools 475

out all message generations that are not used by application tasks. This can be done

by comparing the activation times of the application tasks receiving the message with

the validity intervals of the message generations. Only this reduced set of message

generations will be retrieved from the network and provided to the application.

Code Generation

The TTP design tool TTPBuild, which is available from TTTech, is able to automat-

ically create FT-COM layer C code. TTPBuild creates three files for each node (the

names of these files are defaults and can be changed to any desired filename by the

user):

• The message definition file ttpc msg.h contains macro and variable dec-

larations for the message buffers of incoming and outgoing messages on the

specific node. This file, when included into application code, provides access

to the message buffers, which are the only interface between the application

program and the FT-COM layer. Function calls are not provided as they are

not necessary for communication purposes.

Some function-like C macros are offered to increase the readability of the gen-

erated code; for example,

tt Message Status (temperature)

is provided as a macro (looking like a function) to access the sender status of

a message named temperature. In fact, the macro simply expands to the

name of a variable, which is the message buffer containing the sender status

of temperature, but the macro call improves the clarity of the statement.

It will continue to work even if the implementation of the sender status should

change in the future.

• The FT-COM layer C code is written to ttpc ftl.c and comprises individ-

ual tasks called by the operating system (OS).

The generated code is documented (the comments are also generated automat-

ically, of course) to provide some insight into the workings of the FT-COM

layer, but should never be changed manually. All changes will be lost when

the code is generated again.

• ttpos conf.c contains the configuration tables of the operating system,

which tell the OS about the activation times and deadlines of all tasks on the

node (application and FT-COM tasks alike). Although these tables are not part

of the FT-COM layer, they are crucial for its proper operation, and are therefore

also automatically generated by TTPBuild.

The contents of this file, although correct C code, are not intended to be

human-readable, because they represent binary configuration data rather than

program code (see option (a) in Section 15.7.2). As different operating sys-

tems require different formats, this file needs to be generated differently for

each operating system that is supported by the design tool.

476 Time-Triggered Communication

Additionally, a personalized MEDL can be generated to be loaded into the con-

trollers of the host. This enables the definition of host-specific user interrupts and an

optimized CNI layout.

15.7.4 Configuration of Third-Party Software

The operating system (OS), if one is present, and the application itself need to be

configured, too. Design tools specifically designed to create communication config-

uration also need to interact with the development environment and configuration

interfaces already available for the particular OS, the application or any other third-

party software, e.g., a diagnostic module.

Typically, third-party software that interacts with the middleware, and in specific

with the part that handles the communication, the communication stack, needs to

know about a couple of things:

• Layout and position of the messages: The application must know by some

means where the messages it reads and writes are located and how big they are.

The most practical way is to have a memory-mapped interface. In this case, a C

header file is required which contains #define statements. The application

can refer to a certain message by name, and, based on the definitions in the

header file, this name is mapped to a location in the memory. Of course, it

is mandatory that the communication stack also has the same knowledge, but

this is part of the communication configuration. Another possibility is to have

a function call interface. Here, too, it is advantageous to have a mapping of

message names (e.g., as defined in the design tool where all messages are

specified) to certain IDs.

• Interrupts: The design of the communication stack may require the config-

uration of an interrupt for internal use in the communication stack. It might

be helpful if any time a frame has been received by the hardware, a distinct

interrupt is raised to indicate the arrival of the frame. Usually, this is a very

high-priority interrupt. In the Interrupt Service Routine (ISR), the respective

functions from the communication stack are called to handle this frame. These

function calls must be registered beforehand, and the OS needs to know which

interrupt to look at and to propagate. In addition, it may be possible to specify

the interrupt priority level, the required stack size of the ISR and the vector to

the service request register of the CPU.

• Task properties and activation times: If the communication stack is not

interrupt-driven, it might need the activation of certain functions or tasks at

certain times. Especially in a fully time-triggered environment, where the ap-

plication and the OS are also synchronized to the communication network,

this approach is favorable. As the OS dispatches tasks, it needs to know which

communication task to start when, and with which assigned resources. In a

real-time and time-triggered environment, the OS also needs to know the dead-

line of this communication task. Usually, one task is created for every message

Development Tools 477

that has to be received or sent. For performance reasons, such tasks may be put

together, forming task chains. For task chains, the OS needs to know similar

properties as for tasks, in order to correctly interact with the communication

stack.

• Timer configuration: If a timer is needed by the middleware, it has to be

configured. All relevant details of this timer configuration also need to be part

of the data that is shared between the middleware and the OS.

Development tools may generate parts of an OS configuration in the standardized

OSEK Implementation Language (OIL) [242] format. As OIL comes in many vendor-

specific flavors, it is very important to precisely determine the OIL version as well

as the vendor-specific variant the generated file should have. The data can then be

transferred to the OS by an OS configuration tool. In contrast to a complete OS

configuration, a development tool for the communication stack may only provide the

basic information necessary to run the various layers of the communication stack.

Development tools may also provide the relevant information as discussed above

in other formats, e.g., in an XML-style fashion. Many operating systems come along

with their own — and sometimes very specific — definition of the structure and

possible content of OS configuration files. In such cases, either the development tool

for the communication stack can be extended to write these files, or an additional

conversion step needs to be introduced. A special-purpose tool or a self-written script

may do the conversion job, too.

If the integration of the development tool and the OS is very good, the tool creates

C files that fit the application. One C file may contain the message declaration and

the type definition for every message that is sent or received by the application tasks.

Another file may contain the configuration tables for the OS and comprise basic

information on the respective node and task schedule. Ideally, the configuration tables

for the OS are read, extended and then written back so that a configuration of a

different origin is preserved. These configuration files are compiled and linked to the

respective application to ensure the proper dependencies.

15.8 Verification
Society and law often request evidence that a particular system is fit for use and

will not fail (or only in very rare cases), especially where the safety of humans is

concerned. Certification by an accepted authority provides this kind of evidence;

hence, most systems need to get certified for a particular use. For example, without

permission granted by the Federal Aviation Administration (FAA), a commercial

aircraft is not allowed to be operated in the US. Similar legal directives apply in

other countries.

There exists a variety of certification standards, most prominently DO-

178B [269] for software in aerospace, ISO 26262 [153] for automotive and

478 Time-Triggered Communication

IEC 61508 [147] for industrial applications. For example, the FAA applies DO-178B

for guidance to determine if the software will perform safely and reliably in an air-

borne environment [97].

Verification is one means listed in said standards to provide evidence for safe and

reliable operation. To get a whole system certified, verification of certain artifacts that

are part of the final system is hence necessary. As the schedule and the configuration

items as described in Sections 15.3 and 15.7 are part of the final system, this need

for verification applies to them. Details of the verification process and the area where

verification is applicable are described in the respective standard.

To actually conduct verification, the use of tools is allowed and well established.

Such tools are called verification tools. They need to be developed according to cer-

tain processes, also described in the standards mentioned above, and need to be qual-
ified to be considered fit for their purpose. Tool qualification of verification tools is

thus a crucial process on the way to getting a system certified.

In this section, we will discuss the impact of the different stages of verification

on the software development process and the software itself, with the focus on the

benefit of verification tools and their qualification.

The requirements for the verification of configuration items, imposed by cer-

tification standards, are discussed in Section 15.8.1. Various means to reduce cost

during the verification process and related activities are presented in Section 15.8.2.

A very prominent way is to use verification tools instead of manual verification per-

formed in reviews. The verification of configuration items as well as the approach to

use verification tools to assist the certification is presented in Section 15.8.3. Such

verification tools must have a certain quality that can be reached by performing a

tool qualification process. Details of this process and the implications posed on the

development of the verification tools and the structure of the configuration items are

also discussed there.

15.8.1 Process Requirements

In the aerospace industry, highly integrated safety-critical systems have been de-

veloped for decades. The FAA and other authorities have thus developed stringent

certification requirements to meet the needs of the industry. Safety has always been

the main focus of the system development. The regulations driving the safety of an

aircraft are reflected in the Federal Aviation Regulations (FAR) 25 Paragraph 1309

(for the US) or — internationally spoken — in the Joint Aviation Regulations (JAR).

For the methods of compliance with the FAR and JAR 25 requirements for a new sys-

tem design, five methodologies are generally adopted, some of which are described

in more detail in ARP 4754 [302] and ARP 4761 [303]:

1. Analysis including engineering analysis, stress analysis, system modeling and

similarity modeling.

2. Failure analysis including FMEA (Failure Mode and Effects Analysis), FTA

(Fault Tree Analysis) and safety analysis (including Functional Hazard Assess-

Development Tools 479

ment (FHA), (Preliminary) System Safety Assessment ((P)SSA) and Common

Cause Analysis (CCA)).

3. Laboratory tests including component tests, qualification tests, system tests

and tests on an integrated systems test rig.

4. Ground tests — On-aircraft ground tests.

5. Flight tests — On-aircraft flight tests.

Nowadays, the aerospace environment is strongly influenced by software certifi-

cation authorities. The rapid increase in the use of software in airborne systems in the

early 1980s resulted in a need for industry-accepted guidance for satisfying airwor-

thiness requirements. DO-178, and subsequent revisions, have been written to satisfy

this need and provide guidance for system software development. These certification

requirements are illustrated with an overview of the DO-178B development process

below.

The emergence of safety-critical x-by-wire systems in the automotive industry

now leads to similar certification bodies and standards. Safety-related recommenda-

tions are already published, such as the MISRA guidelines [230] and recently the

ISO 26262 standard. The latter has been derived from the Functional Safety standard

IEC 61508 to better suit the needs in automotive electric and electronic systems.

However, a mandatory certification authority for the hardware and software of au-

tomotive control units is not yet established. We believe that much benefit can be

gained from the aerospace industry’s certification experiences and recent activities to

reduce certification costs of safety-critical systems [128].

Common to all safety standards is the ALARP principle [129]. ALARP stands

for “as low as reasonably practicable” and means that the residual risk shall be as low

as reasonably practicable. For a risk to be ALARP, it must be possible to demonstrate

that the cost involved in reducing the risk further would be grossly disproportionate

to the benefit gained. Adherence to state-of-the-art standards is widely accepted to

be reasonably practicable.

15.8.1.1 DO-178B

DO-178 [269] was first published by the RTCA in 1980. It is intended to be used

as a guideline for the software development and verification of airborne software

systems. Since its first publication, the standard has been revised twice (DO-178A in

1985, DO-178B in 1992) and a third revision is ongoing (DO-178C).

DO-178B classifies software according to five assurance levels, rated by the crit-

icality of the software functionality. Level A, the highest criticality level, is required

for software whose anomalous behavior causes a catastrophic failure condition. Level

E, the lowest level, is required for software whose anomalous behavior has no effect

on the system’s operational capacity. For each of the classification levels, DO-178B

prescribes guidelines for the planning, development, verification, configuration man-

agement, software quality assurance, certification and maintenance of the system

software.

480 Time-Triggered Communication

DO-178B is a process oriented document; however, it does not prescribe the use

of a particular lifecycle or structured methodology. This decision is left to the prac-

titioner; however, the guidelines do require both the lifecycle model (with transition

criteria) and the development methodology to be formally identified in the software

plans and agreed with the certification authority, e.g., the FAA via a Designated En-

gineering Representative (DER).

DO-178B implies a requirements-driven development process. System require-

ments are decomposed into top level software requirements, which are in turn de-

composed further into lower level requirements. This decomposition continues until

module-level code can be directly implemented from the lowest level of requirements

definition. In addition to design requirements driven by software requirements, de-

rived design requirements are created to facilitate completeness of the software de-

sign. It follows that each element of the code base is traceable to a system-driven

requirement or derived design requirement. Source code not directly traceable to re-

quirements is strongly discouraged by the DO-178B guidelines. Such code is termed

“dead code” and must be removed before certification. Deactivated code, that is, code

utilized by the control unit but not exercised in application environment (e.g., man-

ufacturing related code), is permitted, but only when the method of deactivation is

proven and verified.

The verification activities recommended by DO-178B are also requirements-

driven. The level of verification effort prescribed is once again proportional to the

assigned software criticality level. Level A defines the most stringent verification

process. Level E requires no verification of code or configuration items at all.

Level A development requires a full independent review of all of the verifica-

tion artifacts, which consist of test cases and procedures. It also mandates that full

structural coverage, including modified condition decision coverage (MC/DC), is

achieved for all of the software. The generation of suitable test cases and expected

results to yield such coverage drives much of the cost of level A development. Even

outside the aerospace industry, testing and verification can account for as much as

40% to 70% of the total development effort [29, 111].

DO-178B also requires the adherence to strict configuration management prac-

tices. These practices require the practitioner to configure the entire software life

cycle environment such that it can be reconstructed upon request. It also requires

that software artifacts can be reproduced in their entirety from the configured data.

15.8.1.2 IEC 61508

IEC 61508 [147] is an international standard of rules applied in industry. It is titled

“Functional safety of electrical/electronic/programmable electronic safety-related

systems.” The goal of functional safety is to use suitable methods to reduce the prob-

ability of dangerous errors to an acceptable level.

The safety categorization of a system is determined by the quantitatively defined

probability of errors (see Figure 15.42). There, the categorization as seen by the other

standards mentioned here is also shown, giving a comparison of the various levels.

The residual error rate of the data communication should not rise above the ac-

Development Tools 481

E

D

C

A

B

1

2

3

4

A
B
C
D

IEC 61508

DO-254
DO-178B

ISO 26262

ISO 26262 is the adaptation of
IEC 61508 for the automotive
industry

Industry /
Off-Highway

Automotive

Aerospace

10-7

10-5

10-9

10-6

10-8

No safety
related

systems

Fa
ilu

re
ra

te
 (

p
er

h
o
u
r)

FIGURE 15.42
Comparison of Assurance Levels in Different Certification Standards

ceptable limit of 1% of the total errors of the system. For example, the following is

valid for safety-relevant network signals in a SIL3 system according to IEC 61508:

the probability of undetected corruption of such signals, which can lead to danger-

ous system errors, must be less than 10−9 per hour of operation (1% of the system

error rate of 10−7/h). When a transmission error is detected, a corresponding system

response must be triggered. In the case of a fail-safe system with only one commu-

nication bus, this means switching to a safe state; a fail-operational system must be

able to transmit the data using an alternative transmission path.

IEC 61508 is less focused on requirements and, consequently, on verification of

code and configuration items to satisfy these requirements. It is more concerned with

functional safety: It is sufficient to show that the error rate is as low as requested, and

that the system goes to a safe state in case of an error. Verification and thus the usage

of verification tools is less commonly used, but may increase in the future.

15.8.1.3 ISO 26262

ISO 26262 [153] is an emerging norm for safety-relevant electrical and electronic

systems in automobiles. It defines a process framework and process model together

with required activities and work products, as well as applicable methods. The im-

plementation of the norm is meant to guarantee the functional safety of an elec-

trical/electronic system in a motor vehicle. The norm is derived from IEC 61508

specifically with regard to the domain of automobiles; compliance with this norm

will tentatively start being mandatory in mid 2011 for all safety-relevant functions in

motor vehicles.

In distributed control and regulating systems, data signals are transmitted over

a network. The transmission route of such signals encompasses a sending device,

one or more data buses (possibly including gateways), and one or more devices that

482 Time-Triggered Communication

receive and process the signals. Each of these components can, in case of errors,

cause corruption, delay, loss, or repetition of the transmission or make it incorrect in

some other way. To safeguard against errors in communication in vehicles, measures

must be taken in order to detect errors during transmission. These errors must under

no circumstances lead to a critical vehicle state.

ISO 26262 also contains lists of communication error classes that need to be

dealt with, and measures that are known to be effective for recognizing these errors.

In case a distributed system with safety requirements is being developed, in which

safety-relevant data signals are transmitted over a network, it must be proven that all

of these communication errors are detected reliably enough through effective mech-

anisms, so that the probability of an undetected communication error is below the

required threshold. The calculation is done based on bit error rates of the network,

the reliability of hardware (e.g., CRC units and RAM cells) and the applied methods

(e.g., CRC polynomials and code word lengths).

15.8.2 Verification Best Practices

Verification is widely known as a time-consuming and costly activity. With the help

of verification tools, costs can be reduced dramatically. But it is also necessary to

obey a couple of best practices, so that the tools can be utilized best, and in as many

steps as possible. In this section, we briefly present some best practices.

15.8.2.1 Reuse of Processes

Quality Assurance (QA) in aerospace is especially critical due to the relatively small

production quantities and potentially large impact of failures on safety of operation.

Accordingly, well-defined processes and many best-practice approaches exist. The

development process for safety-relevant software development in the automotive sec-

tor can be derived from the time-tested development process for safety-relevant soft-

ware development in aerospace. Since cost-effectiveness is a driving force behind

innovation in the automobile industry, the efficient reuse of existing components is

seen as one of the most effective factors in cost reduction. The savings of develop-

ment and quality-assurance costs, as well as the robustness that results from time-

tested and available components, contribute significantly to the realization of savings

potential.

Due to the similar intentions of the above-mentioned standards, the development

processes that are used for aerospace, automotive or industrial software development

can be quite similar, too. It makes perfect sense to design a series of individual pro-

cesses for all areas of business in an identical way.

• The processes for formal reviews and for change request management can be

carried out with the help of tools that are uniform across the entire company in

all areas of software development, and are carried out according to the same

rules.

• The use of a common build framework for all lifecycle documents of software

Development Tools 483

development makes it possible to simplify configuration management and to

get an overview in the formal domain.

• A proven automatic certified test framework can be used to carry out several

unit- and system-level tests in a particularly economical and exactly checkable

manner.

15.8.2.2 Extending Checklists

QA stretches through the development, production, and operation and maintenance

phases of an aircraft. During the development phase, a “verification and validation

plan” has to be created in order to comply with any standard mentioned above. The

plan contains checklists in addition to detailed descriptions of the checking pro-

cedures, test environments, test tools, documentation and result validation. These

checklists are applied in the creation process of the corresponding lifecycle docu-

ments, as well as during their formal reviews.

The basis for project-specific checklists are the checklists from the standard soft-

ware development process which usually exists in any company that develops safety-

critical software. They are extended with the checklist points from the respective

standard.

15.8.2.3 Use of COTS Products

When developing safety-related systems, testing indisputably causes the biggest

overhead compared to development of conventional, non safety-related systems.

However, the biggest savings potential also lies within this testing phase. A big pro-

portion of testing time and cost can be saved when using commercial-off-the-shelf

(COTS) components that are already safety-certified. Such components can either be

complete units, or just sensors, or software modules like software drivers or proto-

col stacks. If these components or modules have already been tested by the supplier

to the necessary degree required for the respective safety level, only the application

layer and the interfaces to the COTS components need to be tested. The number of

test cases for the application can be therefore significantly reduced.

Important prerequisites for the usage of COTS software modules are:

• A certificate indicating the safety integrity level of the component and the com-

ponent failure rates that are needed for calculating the overall system failure

rate.

• The availability of a safety manual that provides clear guidance on how to use

the component in a safety-critical system.

The effort for the remaining required tests can be reduced by making use of

appropriate tools for requirements management, configuration management, test ex-

ecution, checking of coding standards, etc. However, all these tools also have to be

qualified for use in safety-critical development.

484 Time-Triggered Communication

15.8.2.4 Modular Certification

Modular certification according to DO-297 [270] is a rather new approach based on

the need for certification of integrated modular avionics (IMA) and the correspond-

ing system architectures [23]. The standard uses an architectural approach which

enables the certification of small, reusable modules and applications. The needed

functionality is established by connecting the single parts of the distributed applica-

tion with a communication system. The standard breaks down the whole system into

the following levels to map to the modular approach:

• Module Acceptance: A module is a component or a collection of components

which may be software, hardware or a combination of both, which provides

resources to the application and/or the system platform.

• Application Acceptance: An application is based on modules and performs a

function.

• System-level Acceptance: The system level consists of one or several plat-

forms which provide a computing environment, managing resources for at least

one application. Furthermore, it establishes support services and platform-

related capabilities like health monitoring and fault management.

• Aircraft-level Acceptance: The aircraft level considers the integration of the

system into the aircraft and its systems.

Using such an architectural approach forces the reuse of legacy systems and pro-

vides the possibility of using modular platforms [175]. Therefore, the certification

activities have to consider the certification of modules and especially their integra-

tion into the platform. An interesting approach considered for the future is to use

formal methods to verify the integration.

The certification of single modules in this approach is fairly similar to the certi-

fication effort needed for reusable software components, i.e., for developing COTS

products. Therefore, the reduction of certification effort applies here, too. In addition,

the communication system which connects the modules needs to be fully approved.

15.8.2.5 Requirements Management

The requirements and design phases at the beginning are the most important parts

of the software lifecycle process. The requirements define the expected output, and

therefore need to be clear and easy to understand. The design is derived from the re-

quirements and describes how they should be implemented. Every fault or obscurity

in this phase has much impact later on. Requirements are the building blocks of the

system. Therefore, the quality of the system depends on the quality of every single

requirement.

Usually, the outcome of the design phase is stated in requirements, too. They

are called low-level requirements, as opposed to high-level (software) requirements

or system requirements, which are processed in the requirements phase. It is highly

cost-efficient to apply the same processes for review and traceability checking on all

Development Tools 485

requirements, rather than developing new processes for the design. Following this

idea, the design thus consists of detailed low-level requirements, which mostly have

to be traceable to the high-level requirements, and design components that describe

complex algorithms and data structures to support the understanding.

Another major point is the traceability from the requirements to the design and

further on to the test cases, down to the source code. This ensures that nothing is

missing and everything has a reason for its existence. To ensure a constant quality

level for the requirements and guarantee the traceability throughout the process, some

basic points have to be recognized.

Tool Support

A database-centric requirements management tool provides a lot of advantages to

the development and certification process. Firstly, several process steps are already

included in the tool, hence the formal handling is simplified. Secondly, the waterfall-

based top-down lifecycle process may be split up, which allows moving forward

from requirements to implementation and verification without the need for consid-

eration of other parts of the system. Furthermore, such a tool checks that all rele-

vant traceability information is available. Additionally, some of these tools provide

the possibility of creating evidence media which contain all necessary lifecycle and

traceability information in an easy-to-review form. According to this efficient way to

deal with the process, the effort for these steps may be reduced by about 20% with

respect to the process necessary without tooling support.

Standardized Requirements Definitions

There should be standards for requirements definition, which provide guidelines for

the development in order to facilitate their understanding. Furthermore, each require-

ment has to be self-contained because this supports the verification of each require-

ment.

Design Components

If a requirement describes a complex functionality, the developer should add def-

initions, figures and additional information which support the understanding. This

encourages the demand for self-contained low-level requirements and helps to com-

prehend the whole system.

Testability

Each requirement has to be checked for testability. This has to be done by the require-

ments developer and especially by the reviewer. The easiest way to handle this is to

write functional test cases in parallel to the requirements to find testability problems

at an early stage of the requirements process. If this is not possible, the developer

should at least give some advice or hints, regarding what to test, to the verification

staff for efficient verification.

486 Time-Triggered Communication

15.8.2.6 Test Vectors

In addition to the above, requirements-based test vectors (test cases and the input to

automatic test procedures) can be automatically generated for each software product

via a tool that is independent of the one used to generate the product code. These

test vectors can cover nominal, MC/DC and robustness testing at the software mod-

ule level. As with the code, these test vectors may have the requirements under test

automatically inserted into them for better readability and traceability. All test vec-

tors can then be parsed to create a complete test-vectors-to-requirements traceability

matrix that is automatically inserted into the requirements management tool.

With different tools being used to generate test vectors and code, independence

can be maintained, and therefore the test vector tool can be qualified as a verification

tool as defined in DO-178B. With this qualification, peer reviews of the module (i.e.,

low-level diagram) tests are not required, resulting in a very large reduction of costs.

15.8.2.7 Test Suite

Another major concern regarding the verification process is the use of a test suite.

The advantage of such a test suite is the possibility to automatically verify test cases

and structural coverage. If the tool qualification package, which has to be provided to

the authority, is already available for the chosen test suite tool, the verification effort

may be optimized by about 10% compared to a process implementation without test

suite tooling.

15.8.3 Verification Tooling Approach

The (automatic) generation of code and configuration items can be viewed as a step in

the build process, similar to compilation. In a typical time-triggered communication

system, these items can be grouped into three main blocks:

1. Communication configuration (i.e., MEDL) verification

2. Node-specific COM-layer verification

3. Application (control code) verification

This view eases the discussion about which processes shall be applied, and which

measures and quality assurance metrics are applicable to source code generators

and configuration generators. This view also implies, especially when applying DO-

178B, that such generators are classified as development tools: It has to be shown

that the output of said generators is correct with respect to the stated requirements,

and that there is no code or configuration that is not covered by requirements. Tool

verification is seen as less strict in the other mentioned standards; however, the con-

siderations necessary for DO-178B form a valuable basis [63].

15.8.3.1 Output Correctness

To show evidence for output correctness, basically two different approaches are pos-

sible, and both are accepted and described in the standards. The first approach is to

Development Tools 487

develop and test the generating tool in such a manner that for every possible input,

the output is correct and adheres to the requirements stated in the input. Although

such a development and certification of a code or configuration generator is costly,

it removes the requirement to perform verification — often conducted by means of

peer reviews — of the code or configuration itself. The tool is considered trustworthy.

Thus, the one-time cost of certification is far less than the continual cost of perform-

ing verification of code and configuration.

The second approach is to develop the generating tool without respecting any

processes. The tool might be non-deterministic, based on unreliable libraries or other

components or even produce false output in some cases. It actually may “guess” the

output. Obviously, the tool itself and thus its output cannot be considered trustworthy.

But such freedom to choose any strategy to get to a possible solution allows for much

more advanced algorithms and a higher chance to find a solution for a particular

problem. In a subsequent, additional step — the verification — it has to be shown that

for the particular given input, the output is correct with respect to the requirements

stated in that input. It should be noted that if the output of the tool is verified, the

tool can be used without qualification according to the standards. Such is the case for

nearly all code generators and schedulers.

15.8.3.2 Manual vs. Automated Verification

Verification of the output can be done manually or automated. For manual verifi-

cation, usually peer reviews are conducted, and checklists and a detailed process

description for the reviewers exist. Manual verification can be cost-effective if done

only once or only a few times. But the result of manual verification may depend on

the assigned reviewers and their experience and expertise, and the result may not be

exactly reproducible.

Automated verification pays off if the configuration data is expected to change

several times during development. This is definitely the case when iterative develop-

ment processes are used. It may also pay off if potential changes during the mainte-

nance phase are considered, too. Verification can be done much faster if a verification

tool exists. But also with other development processes, automated verification may

be advantageous: The expertise of all involved persons gets cumulated in the veri-

fication tool, and is utilized in all subsequent versions of the tool. In addition, the

result provided by the verification tool is exactly reproducible.

The largest portion of today’s software costs is driven by the generation of the test

cases and verification data. This is especially true for the development of verification

tools. Verification data is required for each possible aspect of a configuration item.

Verification data extend the test cases with input vectors and output vectors. The

generation of verification data may also be automated, and the same requirements

regarding tool qualification apply as for verification tools.

DO-178B classifies tools used during the development phase into two categories:

• Development tools: Tools whose output forms part of the airborne software

and thus can introduce errors in the source code base (e.g., code generators).

• Verification tools: Tools that cannot introduce errors but may fail to detect

488 Time-Triggered Communication

them. For example, a static analyzer that automates a software verification

process activity should be qualified if the function that it performs is not ver-

ified by another activity. Type checkers, analysis tools and test tools are other

examples.

The use of verification tools is an interesting aspect of DO-178B. It provides

the possibility of getting complex algorithms, like schedulers, easily certified. The

verification tools have to verify the results of these algorithms, to prove their safe

and deterministic behavior. Furthermore, a tool qualification package is needed for

the verification tool, which provides confidence regarding the tool. The verification

tool and its tool qualification package are mostly less expensive, if the verification

for correctness has to be done several times, than to certify the development tool

— containing the constructive algorithm — itself. Moreover, it is possible to hide

intellectual property in the development tools, as their interior need not be assessed.

Only the verification tool is assessed.

15.8.3.3 Qualification of Verification Tools

Tool qualification of verification tools is easier and thus more cost-effective than

certification of development tools due to several aspects. Basically, it must only be

shown that the tool does not accept any invalid, incomplete, incorrect or malicious

code or configuration. However, the tool may (although not favorable) mark correct

configurations as incorrect. In such a case, manual verification is necessary. Usually,

such an incident results in an updated version of the verification tool, which is able

to also handle this case correctly, as the intention of tool-based verification is to have

no need for manual revision.

Any configuration that contains at least one element not having a matching re-

quirement, or whose matching requirement implies another value, must be consid-

ered incorrect. Quite often, several requirements have an impact on the value of a

certain output element. The verification tool does not need to tell the correct value

of an output element — it is sufficient if it marks the element (or set of elements) as

incorrect. The fact that the verification tool need not be constructive contributes to

the cost-effectiveness of verification tools.

Another big advantage in the qualification of verification tools is the possibility to

view the tool as black box. Internals need not be assessed. Consequently, there may

be unused or even dead code inside the verification tool. It is not necessary to provide

a detailed design and low-level requirements. Low-level test cases are not necessary,

either. Only high-level requirements and the corresponding test cases are necessary.

The total number of test cases and test vectors is thus significantly smaller than for

the certification of a development tool. It is also possible to qualify a third-party tool,

of which no internals are known. And it is further possible to qualify a tool just for a

particular use case.

With the automation of requirements testing (i.e., the verification of the output

generated by development tools, with respect to the requirements stated in the input

to these tools), and MC/DC testing at the module level, the majority of (manual)

testing emphasis can be directed at the system level, toward hardware-software inte-

Development Tools 489

gration and robustness testing. This results in a higher quality product, with reduced

testing costs. At the system level there is limited automation because the testing re-

quires system-level knowledge not captured in the software requirements. As such,

these tests still need to be created and mostly also executed by hand. Consequently,

an ideal process removes much of the manual work required to create safety-critical

software, leaving the system and software design engineers to work at the system

integration and test level, resulting in an overall product quality improvement.

The verification of MEDLs using TTPVerify will be discussed next, followed by a

discussion of the verification of the configuration of a certain COM layer, the TTPTD-

COM Layer.

15.8.3.4 TTPVerify
TTPVerify is a comprehensive tool for the verification of TTP cluster designs, based

on MEDLs. A TTP cluster contains a number of hosts exchanging messages in a

statically defined temporal pattern. Any TTP controller in the cluster has stored this

temporal pattern in its MEDL. This MEDL defines the whole transmission behavior

on the bus and the local CNI interface behavior to the host controller. TTPVerify

reads the MEDL files and verifies their integrity as well as their conformance to the

TTP protocol. It is verified that the MEDLs belong to the same cluster and do not

contradict each other. Some aspects of fault tolerance of the whole cluster are also

checked.

The output of TTPVerify is a file that is divided into chapters for better readability.

To allow a condensed view of the verification results, the user can customize the

report to his needs. But the user cannot influence the verification algorithms to avoid

conditions where the tool may fail due to bad user input. The command file structure

and the output file structure are especially designed to support automatization (e.g.,

for extracting specific data), since the purpose of TTPVerify is to support and improve

the verification process for TTP-based systems.
TTPVerify automates the verification of the TTP schedule and the MEDLs where

this schedule table is stored inside the TTP communication controllers. The cor-

rectness of this schedule is analyzed by TTPVerify and the resulting report has to

be checked by additional tools or manually. Therefore, it is necessary to allow for

easy extraction of information by tools as well as to provide a human readable rep-

resentation of this data. TTPVerify is designed to specifically support safety-critical

application software. Based on the Time-Triggered Architecture (TTA) and the TTP

communication system, TTPVerify supports distributed fault-tolerant hard real-time

application software.
TTPVerify not only verifies the correctness of MEDLs, it also provides informa-

tion about a MEDL or the cluster schedule. TTPVerify provides a summary for any

verified controller, including scalar data (e.g., macrotick length, membership posi-

tion) as well as different tables summarizing specific properties of a MEDL. This

includes properties of all round-slots in any cluster mode which is provided for any

controller type. Additional tables will be provided for specific controller-dependent

properties. Different controller types will provide different types of properties that

490 Time-Triggered Communication

are reported. This controller data is not only informative for the user. It can also be

used to manually verify issues that are beyond the scope of TTPVerify (e.g., order of

slots). Furthermore, if TTPVerify detects a problem in a MEDL, the controller sum-

maries may also be of help in finding the root cause behind the reported fault. These

controller summaries are written in the report in the respective chapter of the MEDL.
TTPVerify also provides a complete dump of the MEDL content in a human-

readable form. This is necessary for verification activities that go beyond the scope

of TTPVerify, and allows a significant gain of productivity for these purposes.

15.8.3.5 TTPTD-COM-Verify

The TTP Table-Driven Communication Layer (TTPTD-COM Layer) is a static table-

driven communication layer between the application and the TTP controller. It is

designed for multiple TTP networks that are attached to one single CPU, and includes

optimization for redundant messages. The TTPTD-COM Layer is a static embedded

library written in C, which is certified according to DO-178B.

As the name suggests, it is driven by configuration tables. These tables are usually

generated by TTPBuild in C source code format, then compiled and linked into the

embedded application, and will then reside in the ROM of the embedded target. Since

this data influences the correct behavior of the embedded TTPTD-COM code, the used

configuration data needs to be verified. This is the main application of TTPTD-COM-

Verify.

What TTPTD-COM-Verify is:

• A tool to verify the correctness of the provided configuration data, which is

used by the embedded source code of the TTPTD-COM Layer.

• A tool that checks the configuration data in binary form (as an S19 file, a

Motorola-specific ASCII text encoding for binary data). This guarantees an

end-to-end verification and no further need to verify a compilation or another

transformation step.

• A tool that verifies the configuration data for integrity and consistency.

• A tool that verifies the configuration data for internal and global consistency

against all participating hosts’ configurations.

• A tool that verifies the correctness of scheduled user-interrupts.

What TTPTD-COM-Verify is not:

• A verification tool which verifies the correctness of the embedded code.

• A verification tool which verifies the correctness of the code of the configura-

tion generation tool.

• A WCET measurement tool for the given configuration data.

• A blackbox test of the embedded TTPTD-COM code.

Development Tools 491

• A verification tool to check the C source code in any form (coding guidelines,

correctness, etc.).

TTPTD-COM-Verify reads a tool configuration file (in XML format), which on

one hand contains switches for the tool behavior, and on the other hand the input

file names of all other involved files. The latter include the requirement specifica-

tion as an Interface Control Document (ICD), as well as the configuration tables and

MEDLs to be verified. The configuration tables and MEDLs are read as S19 im-

ages together with unified map-files. In addition, TTPTD-COM-Verify uses the MHL

partition header files. Optionally, the worst-case execution times (WCETs) can be

supplied to TTPTD-COM-Verify to check the timing requirements.

Data Flow

Figure 15.43 shows the interaction between the development tools and the verifi-

cation tools. On the left side, the standard TTP toolchain with TTPPlan, TTPBuild

and TTPLoad is shown, which finally results in several MEDLs and TTPTD-COM

Layer configurations, one for every host. These source files are compiled by a C-

compiler chosen by the customer. They might be linked with the user application

and the TTPTD-COM embedded library. Finally, the linker has to provide an S19 file

which serves as the verification input for TTPTD-COM-Verify.

Additionally, the compiler provides a map-file mapping symbols to ad-

dresses inside the S19 image. Since every compiler has its own map-

file format, TTPTD-COM-Verify will only accept a unified XML-based

map-file. In this map-file the MHB allocations — which are given in the

tt tdc application data mhb alloc *.h files — are included as well.

This map-file handling is shown in Figure 15.43 between the C-compiler and the

map.xml file(s). It includes the process of converting a compiler-specific map-file

and the MHB message allocations into a unified XML-format map-file map.xml.

Several requirements ensure that this conversion is done correctly. For checking

those requirements, an additional small verifying tool is provided.

The following arrows show activities which have to be done by the user:

• The arrows from the customer database requirement specification files (com-

mand file for TTPVerify, tool configuration file for TTPTD-COM-Verify and the

ICD) show the responsibility of the user to define application requirements

inside those files independently of input data to the tool chain.

• The dashed line between TTPVerify and TTPTD-COM-Verify illustrates the re-

sponsibility of the user to check if all MEDL requirements that are needed for
TTPTD-COM-Verify passed the tests correctly. Before TTPTD-COM-Verify is

allowed to be operated, the MEDLs need to be checked for internal and global

consistency by TTPVerify. To this end, TTPVerify uses a special command file

as input for a cross-check with application requirements. This command file is

usually provided directly by the user.

Besides the MEDLs, TTPTD-COM-Verify needs some further input. Similar to

492 Time-Triggered Communication

content to
be verified

.s19

TTP-Plan

Toolchain

customer database

verified by customer

.ddb

.cdb

TTP-Verify

TTP-Build

TTP-Load

app.c

not qualified
development tools

C-compiler

.cmd

qu
al
ifi
ed

ve
ri

fic
at

io
n

to
ol

s

cfg.xml

wcet.xml

map.xml

TD-COM
Verify

ICD

.h

.c

medl.c

* mhb alloc 0.h

tt tdc application data 0.h

report

map-file
handling

report

report

map.xml

*.map

* mhb alloc 0.h
map-file
Verify

map-file
Converter

FIGURE 15.43
Interaction of the Development Tools with the Verification Tools

Development Tools 493

TTPVerify’s command file, the application requirements needed for TTPTD-COM-

Verify must be provided as ICD. While TTPVerify supports verification for different

cluster modes, the TTPTD-COM Layer does not support cluster mode switches and

has only one active cluster mode during the whole runtime. This active cluster mode

needs to be provided to TTPTD-COM-Verify through the ICD. The worst-case execu-

tion times (WCETs) of the frame copy tasks can be supplied to TTPTD-COM-Verify

in wcet.xml files. Every host needs a separate file. If these files are not present,
TTPTD-COM-Verify will just skip the timing requirements analysis.

Hence, a correct verification process would look like this:

1. Run TTPTD-COM-Verify without WCET files to guarantee correctness of the

binary table data.

2. If the tables are correct, use those tables to measure the WCETs of every frame

copy task, and enter these times into the WCET files.

3. Rerun TTPTD-COM-Verify with the newly created WCET files to check the

scheduling timing requirements of the TTPTD-COM Layer.

Certification Aspects

The host applications contain a number of high-level requirements for opera-

tion and interface to the TTPTD-COM Layer. The TTPTD-COM Layer has specific

requirements for the proper delivery and retrieval of messages to/from the CNI.

These requirements are composed of requirements derived from the TTPTD-COM

embedded code and the configuration tables. However, this procedure is very time

consuming and expensive for large systems, and might slow down the development

cycle dramatically. Therefore, a tool-based approach is considered. In such a tool-

based approach, the interface requirements and the high-level requirements are pro-

vided as input to TTPBuild, which produces the code containing the C data structures

used by the TTPTD-COM Layer. TTPBuild and the C compiler suite are considered

development tools according to the guidelines of DO-178B section 12.2, whereas
TTPTD-COM-Verify is considered a verification tool. TTPTD-COM-Verify must ex-

amine the S19 images containing data from the configuration tables. Additionally,
TTPTD-COM-Verify has to validate them for correctness according to the application

high-level requirements, the controller requirements and the TTPTD-COM high-level

and low-level requirements. By qualifying TTPTD-COM-Verify in accordance with

DO-178B, TTPBuild and the C compiler suite do not need to be qualified.

Bibliography

[1] A. Ademaj. Slightly-off-specification failures in the time-triggered architec-

ture. In Proc. of the 7th IEEE International High-Level Design Validation and
Test Workshop, page 7, Washington, DC, USA, IEEE Computer Society, 2002.

[2] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Evaluation of fault handling

of the time-triggered architecture with bus and star topology. In Proc. of the
International Conference on Dependable Systems and Networks (DSN), pages

123–132, 22–25 2003.

[3] T. Amnell, G. Behrmann, J. Bengtsson, P.R. D’Argenio, A. David, A. Fehnker,

T. Hune, B. Jeannet, K.G. Larsen, M.O. Möller, P. Pettersson, C. Weise, and

W. Yi. UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard, B. Rozoy,

and M. Ryan, editors, Modelling and Verification of Parallel Processes, num-

ber 2067 in Lecture Notes in Computer Science Tutorial, pages 100–125.

Springer–Verlag, 2001.

[4] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms.

Research Report 1103, Institut National de Recherche en Informatique et

Systèmes Aléatoires (IRISA), Rennes, France, July 1997.

[5] E. Anceaume and I. Puaut. Performance evaluation of clock synchronization

algorithms. Research Report 3526, Institut National de Recherche en Infor-

matique et Systèmes Aléatoires (IRISA), Rennes, France, October 1998.

[6] C. Scheidler, P. Puschner, S. Boutin, E. Fuchs, G. Gruensteidl, and Y. Pa-

padopoulos. Systems engineering of time-triggered architectures—the Setta

Approach. In Proceedings of the 16th IFAC Workshop on Distributed Com-
puter Control Systems, 2000.

[7] ARINC. ARINC Specification 629: Multi-Transmitter Data Bus – Part 1:
Technical Description. Aeronautical Radio, Inc., Annapolis, MD, USA,

November 1991.

[8] ARINC. Backplane Data Bus. ARINC Specification 659. Aeronautical Radio,

Inc., 2551 Riva Road, Annapolis, MD 21401, December 1993.

[9] ARINC. Multi-transmitter data bus: Part 1 technical description. arinc speci-

fication 629p1-5. Technical report, Aeronautical Radio Inc., Annapolis, MD,

USA, March 31st 1999.

495

496 Time-Triggered Communication

[10] ARINC. Arinc specification 429. digital information transfer system (DITS)

parts 1,2,3. Standard ARINC 429, Aeronautical Radio Inc., 2001.

[11] ARTEMIS. The ARTEMIS strategic research agenda. http://www.
artemisia-association.org/sra, 2006. [Online; accessed 25-

August-2010].

[12] K. Arvind. Probabilistic clock synchronization in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 5(5):474–487, May 1994.

[13] Association for Standardisation of Automation and Measuring Systems

(ASAM). ASAM MCD-2 NET, Data Model for ECU Network Systems (Field-
Bus Data Exchange Format), Version 3.1.0, 2009.

[14] Atmel Corporation. AVR 308: Software LIN Slave, May 2002. Application

note available at http://www.atmel.com.

[15] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano Com-

munication Technologies AB, Volkswagen AG, and Volvo Car Corporation.

LIN specification and LIN press announcement. SAE World Congress Detroit,

http://www.lin-subbus.org, 1999.

[16] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano Commu-

nication Technologies AB, Volkswagen AG, and Volvo Car Corporation. LIN

specification v2.0, 2003.

[17] N.C. Audsley, I.J. Bate, and A. Grigg. The role of timing analysis in the cer-

tification of IMA systems. IEEE Certification of Ground/Air Systems Seminar
(Ref. No. 1998/255), Dept. of Comput. Sci., York Univ., London, UK, Febru-

ary 1998.

[18] Autosar. AUTOSAR – Technical Overview V3.0, 2006.

[19] Autosar. General Requirements on Basic Software Modules, Release 3.1, Doc-
ument Version 2.2.2, 2008.

[20] Autosar. List of Basic Software Modules, Release 3.1, Document Version 1.3.0,

2009.

[21] A. Avizienis, J.C. Laprie, and B. Randell. Fundamental concepts of depend-

ability. Research Report 01-145, LAAS-CNRS, Toulouse, France, April 2001.

[22] O. Babaoglue and R. Drummond. (Almost) no cost clock synchronization. In

Proceedings of the 7th International Symposium on Fault-Tolerant Computing,

pages 42–47, Pittsburgh, PA, USA, IEEE Computer Society Press, July 1987.

[23] A. Bahrami. Complex integrated avionic systems and system safety. In Online
Proceedings of the The Europe-US International Aviation Safety Conference,

2005.

http://www.artemisia-association.org/sra
http://www.artemisia-association.org/sra

Bibliography 497

[24] M.B. Barron and W.F. Powers. The role of electronic controls for future au-

tomotive mechatronic systems. IEEE/ASME Transactions on Mechatronics,

1(1):80 –88, March 1996.

[25] G. Bauer and H. Kopetz. Transparent redundancy in the time-triggered archi-

tecture. In Proc. of the Int. Conference on Dependable Systems and Networks
(DSN 2000), New York, pages 5–13, June 2000.

[26] G. Bauer, H. Kopetz, and W. Steiner. The central guardian approach to enforce

fault isolation in a time-triggered system. In Proc. of the 6th Int. Symposium on
Autonomous Decentralized Systems (ISADS 2003), pages 37–44, Pisa, Italy,

April 2003.

[27] G. Bauer and M. Paulitsch. An investigation of membership and clique avoid-

ance in TTP/C. In Proc. of the 19th IEEE Symposium on Reliable Distributed
Systems, pages 118–124, 2000.

[28] G. Behrmann, A. David, K.G. Larsen, O. Müller, P. Pettersson, and W. Yi.

UPPAAL - present and future. In Proc. of 40th IEEE Conference on Decision
and Control. IEEE Computer Society Press, 2001.

[29] B. Beizer. Software Testing Techniques (2nd ed.). Van Nostrand Reinhold Co.,

New York, NY, USA, 1990.

[30] R. Benesch. TCP für die Time-Triggered Architecture. Master’s thesis, Tech-

nische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-

1, 1040 Vienna, Austria, June 2004. ARTEMIS

[31] C. Bergenhem and J. Karlsson. A process group membership service for active

safety systems using tt/et communication scheduling. In Dependable Comput-
ing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on, pages

282 –289, December 2007.

[32] M. Bertoluzzo. Experimental activities on ttcan protocol. In Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications,
2005. IDAACS 2005. IEEE, pages 22 –27, 5-7 2005.

[33] P. Binns. A robust high-performance time partitioning algorithm. The Digital

Engine Operating System Approach. In Digital Avionics Systems Conference.

AIAA/IEEE, IEEE, 2001.

[34] P. Bishop. A methodology for safety case development. Technical report, Ade-

lard, London, UK, 1998.

[35] P. Bjorn-Jorgensen and J. Madsen. Critical path driven cosynthesis for het-

erogeneous target architectures. In Proceedings of the 5th International Work-
shop on Hardware/Software Co-Design, pages 15–19. IEEE Computer Soci-

ety, 1997.

498 Time-Triggered Communication

[36] G. Bloor, G. Karsai, R. Reuter, S. Gulati, and S. Hutchings. The integration

of anomaly, prognostics, and diagnostics reasoners to optimize overall vehicle

health management goals. In Proc. of the IEEE Aerospace Conference, page

469, vol.2, 1999.

[37] B.W. Boehm, R. Madachy, and B. Steece. Software Cost Estimation with Co-
como II with Cdrom. Prentice Hall PTR Upper Saddle River, NJ, USA, 2000.

[38] M. Borovicka. Design of a gateway for the interconnection of real-time com-

munication hierarchies. Master’s thesis, Technische Universität Wien, Institut

für Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2003.

[39] BOSCH. CAN specification - version 2.0. available at http://www.bosch.de.

[40] J.D. Boskovic and R.K. Mehra. Multi-mode switching in flight control. In

Proc. of the 19th Digital Avionics Systems Conferences (DASC), pages 6F2/1

–6F2/8, vol.2, 2000.

[41] D. Bosnacki and D. Dams. Discrete-time promela and spin. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, volume 1486 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998.

[42] D. Bosnacki and D. Dams. Integrating real time into spin: A prototype im-

plementation. In FORTE XI / PSTV XVIII ’98: Proceedings of the FIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE XI) and Protocol
Specification, Testing and Verification (PSTV XVIII), pages 423–438, Deven-

ter, The Netherlands, Kluwer, B.V., 1998.

[43] A. Bouajjani and A. Merceron. Parametric verification of a group membership

algorithm. In Proc. of the Symposium on Formal Techniques in Real-Time and
Fault Tolerant System (FTRTFT), LNCS Vol. 2469, pages pp. 83–105, Olden-

burg, Germany, Springer-Verlag, September 2002.

[44] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time commu-

nication under electromagnetic interference. 2004.

[45] T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proc. of the 16th
Annual International Conference on Automated Software Engineering (ASE
2001), pages 382 – 386, 26-29 2001.

[46] E.K. Burke and G. Kendall. Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. Springer Verlag, 2005.

[47] D. Butler, T. Schmidt, and T. Waclawczyk. LIN protocol implementation us-

ing picmicro mcus. available at www.microchip.com, 2000. Microchip

AN729.

Bibliography 499

[48] R.W. Butler, J.L. Caldwell, and B.L.Di Vito. Design strategy for a formally

verified reliable computing platform. In Proc. of the 6th Annual Conference
on Computer Assurance (COMPASS) Systems, pages 125–133, Gaithersburg,

MD, USA, NASA Langley Res. Center, June 1991.

[49] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Springer-Verlag New York Inc, 2005.

[50] I. Cardei, R. Jha, M. Cardei, and A. Pavan. Hierarchical architecture for real-

time adaptive resource management. In Proc. of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware ’00), pages 415–

434, Secaucus, NJ, USA, Springer-Verlag New York, Inc., 2000.

[51] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. ARINC 659 schedul-

ing: problem definition. Real-Time Systems Symposium, 1994., Proceedings,

pages 165–169, December 1994.

[52] W.C. Carter. A time for reflection. In Proc. of the 8th IEEE Int. Symposium on
Fault Tolerant Computing (FTCS-8), page 41, Santa Monica, June 1982.

[53] CAST, Inc., IP Provider. LIN bus controller core, 2010. Available at www.
cast-inc.com/ip-cores/interfaces/lin/index.html.

[54] CENELEC. EUROPEAN STANDARD 50128: Railway applications - Com-
munications, signalling and processing systems - Software for railway control
and protection systems, March 2001.

[55] CENELEC. EUROPEAN STANDARD 50159-1: Railway applications - Com-
munication, signalling and processing systems; Part 1: Safety-related Com-
munication in closed transmission systems, March 2001.

[56] CENELEC. EUROPEAN STANDARD 50159-2: Railway applications - Com-
munication, signalling and processing systems; Part 2: Safety-related Com-
munication in open transmission systems, March 2001.

[57] CENELEC. EUROPEAN STANDARD 50128: Railway applications - Com-
munications, signalling and processing systems - Safety related electronic sys-
tems for signalling, February 2003.

[58] P. Cholasta. LIN 2.0 mirror unit slave based on the MC68HC908EY16 MCU

and the LIN 2.0 communication protocol. Application Note AN2885, Rev. 0,

11/2004, Freescale Semiconductor, 2004.

[59] G. Ciardo and C. Lindemann. Comments on ”analysis of self-stabilizing clock

synchronization by means of stochastic Petri nets.” IEEE Transactions on
Computers, 43(12):1453–1456, 1994.

[60] V. Claesson, H. Lönn, and N. Suri. An efficient TDMA start-up and restart

synchronization approach for distributed embedded systems. IEEE Transac-
tions on Parallel and Distributed Systems, 15(7), July 2004.

500 Time-Triggered Communication

[61] D.D. Cofer and M. Rangarajan. Event-triggered environments for verification

of real-time systems. In Simulation Conference, 2003. Proceedings of the 2003
Winter, pages 915 – 922, vol.1, 7-10 2003.

[62] E.G. Coffman and R.L. Graham. Optimal scheduling for two-processor sys-

tems. Acta Informatica, 1(3):200–213, 1972.

[63] M. Conrad, P. Munier, and F. Rauch. Qualifying software tools according to

ISO 26262. In Tagungsband Dagstuhl-Workshop MBEES: Modellbasierte En-
twicklung eingebetteter Systeme VI, 2010.

[64] FlexRay Consortium. FlexRay protocol specification ver. 2.1, 2005.

[65] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
micro, 23(4):14–19, 2003.

[66] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design. Int. Computer Science Series, Addison-Wesley, second edition,

1994.

[67] F. Cristian. Probabilistic clock synchronization. Distributed Computing,

3:146–158, 1989.

[68] F. Cristian. Reaching agreement on processor-group membership in syn-

chronous distributed systems. Distributed Computing, 4:175–187, 1991.

[69] F. Cristian. Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56–78, 1991.

[70] F. Cristian, H. Aghili, and R. Strong. Clock synchronization in the presence of

omission and performance failures, and processor joins. In Proc. of 16th Int.
Symp. on Fault-Tolerant Computing Systems, July 1996.

[71] F. Cristian and C. Fetzer. Fault-tolerant external clock synchronization. In Pro-
ceedings of the 15th International Conference on Distributed Computing Sys-
tems, pages 70–77, Los Alamitos, CA, USA, IEEE, May 30–June 2 1995.

[72] P.H. Dana. Global Positioning System (GPS) time dissemination for real-time

applications. Real-Time Systems, 12(1):9–40, January 1997.

[73] C.T. Davies. Computing Systems Reliability, Data Processing Integrity, pages

288–354. Cambridge University Press, 1979.

[74] L. de Moura, S. Owre, H. Rue, J. Rushby, N. Shankar, M. Sorea, and A. Ti-

wari. SAL 2. In Computer Aided Verification, volume 3114 of Lecture Notes
in Computer Science, pages 251–254. Springer Berlin / Heidelberg, 2004.

[75] J.A. Debardelaben, V.K. Madisetti, and A.J. Gadient. Incorporating cost

modeling in embedded-system design. IEEE Design & Test of Computers,

14(3):24–35, 1997.

Bibliography 501

[76] S. Dolev. Possible and impossible self-stabilizing digital clock synchroniza-

tion in general graphs. Real-Time Systems, 12(1):95–107, January 1997.

[77] S. Dolev and J.L. Welch. Self-stabilizing clock synchronization with Byzan-

tine faults. In Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing, page 256. ACM Press, 1995.

[78] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. The real

Byzantine generals. In Proc. 23rd Digital Avionics Systems Conf., volume

6.D.4, pages 61–11, October 2004.

[79] K. Driscoll and K. Hoyme. The airplane information management system:

An integrated real-time flight-deck control system. Real-Time Systems Sym-
posium, pages 267–270, December 1992.

[80] K. Driscoll, G.M. Papadoupoulos, S. Nelson, G.L. Hartmann, and G. Ramo-

halli. Multi-processor flight control system. Technical Report AFWAL-TR-

84-3076, Honeywell Systems and Research Center, September 1984.

[81] K.R. Driscoll. Apparatus and method for fault detection on redundant signal

lines via encryption. Patent U.S. 5307409, Honeywell, April 26th 1994.

[82] K.R. Driscoll. Apparatus and method for transmitting information between

dual redundant components utilizing four signal paths. Patent U.S. 5386424,

Honeywell, January 31st 1995.

[83] B. Dutertre and M. Sorea. Modeling and Verification of a Fault-Tolerant Real-

time Startup Protocol using Calendar Automata. In Proc. of the Joint Con-
ference Formal Modelling and Analysis of Timed Systems (FORMATS), For-
mal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), Lecture

Notes in Computer Science. Springer-Verlag, September 2004.

[84] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Com-
puter, 42(4):42–52, 2009.

[85] S.A. Edwards. Languages for Digital Embedded Systems. Springer Nether-

lands, 2000.

[86] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access opti-

mization for distributed embedded systems. IEEE Transactions on Very Large
Scale Integration(VLSI) Systems, 8(5):472–491, 2000.

[87] W. Elmenreich. Time-triggered smart transducer networks. IEEE Transactions
on Industrial Informatics, 2(3):192–199, 2006.

[88] W. Elmenreich and M. Delvai. Time-triggered communication with UARTs.

In Proceedings of the 4th IEEE International Workshop on Factory Commu-
nication Systems, pages 97–104, 2002.

502 Time-Triggered Communication

[89] W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider. New node integra-

tion for master-slave field-bus networks. In Proceedings of the 20th IASTED
International Conference on Applied Informatics (AI 2002), pages 173–178,

February 2002.

[90] W. Elmenreich and S. V. Krywult. A comparison of field-bus protocols: LIN

1.3, LIN 2.0, and TTP/A. In Proceedings of the 10th IEEE International Con-
ference on Emerging Technologies and Factory Automation, pages 747–753,

2005.

[91] C. Elmore. Electronic controls. OEM Off-Highway, November 2008.

[92] C. Engel, E. Jenn, P.H. Schmitt, R. Coutinho, and T. Schoofs. Enhanced dis-

patchability of aircrafts using multi-static configurations. In Proc. of the Em-
bedded Real Time Software and Systems, Toulouse, France, May 2010.

[93] J. Erjavec and R. Scharff. Automotive Technology: A Systems Approach. Del-

mar Cengage Learning, 5th edition, 2009.

[94] J.A. Estefan. Survey of model-based systems engineering (MBSE) method-

ologies. Incose MBSE Focus Group, 25, 2007.

[95] FAA. Aviation databus assurance. Advisory Circular 20-156, Federal Aviation

Administration, August 4th 2006.

[96] Federal Aviation Administration (FAA). Airworthiness directives; dassault

model Falcon 2000ex and 900ex series airplanes. Airworthiness Directive

Federal Register: (Volume 70, Number 39, Page 9853-9856), FAA, Docket

No. FAA-2005-20425; Directorate Identifier 2005-NM-014-AD; Amendment

39-13987; AD 2005-04-15, March 1st 2005.

[97] Federal Aviation Administration (FAA). Advisory Circular AC 20-115B,

1993.

[98] C. Ferdinand and R. Heckmann. aiT: Worst-case execution time prediction

by static program analysis. Building the Information Society, pages 377–383,

2004.

[99] M. Fernström and D. Ungerdahl. TTCAN Reference Application - An investi-

gation on time-triggered network performance. Master’s thesis, Chalmers Uni-

versity of Technology, 2006.

[100] C. Fetzer and F. Cristian. Lower bounds for function based clock synchro-

nization. In Proc. of 14th Int. Symp. on Principles of Distributed Computing,

August 1985.

[101] C. Fetzer and F. Cristian. An optimal internal clock synchronization algorithm.

In Proceedings of the 10th Conference on Computer Assurance, pages 187–

196, Gaithersburg, MD, USA, IEEE, June 1995.

Bibliography 503

[102] C. Fetzer and F. Cristian. Integrating external and internal clock synchroniza-

tion. Real-Time Systems, 12:123–171, March 1997.

[103] M. Fletcher. Progression of an open architecture: from Orion to Altair and

ISS. Companion to report (Presentation) S65-5000-20-0, Honeywell, May

2009. FaultTolerant Spaceborne Computing Employing New Technologies

2009 Conference.

[104] FlexRay Consortium. FlexRay communications system – preliminary central

bus guardian specification version 2.0.9. Technical report, BMW AG., Daim-

lerChrysler AG., Robert Bosch GmbH, and General Motors/Opel AG, 2002.

[105] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Cor-

poration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volk-

swagen AG. FlexRay Communications System Protocol Specification Version
2.1, May 2005.

[106] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Cor-

poration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volk-

swagen AG. Node-Local Bus Guardian Specification Version 2.0.9, December

2005.

[107] A. Galleni and D. Powell. Consensus and membership in synchronous and

asynchronous distributed systems. Technical report, 1995.

[108] GAMA. ASCB: Avionics Standard Communications Bus Version C. General

Aviation Manufacturers Association (GAMA), Washington, DC, April 15

1996.

[109] M.-C. Gaudel, V. Issarny, C. Jones, H. Kopetz, E. Marsden, N. Moffat,

M. Paulitsch, D. Powell, B. Randell, A. Romanovsky, R. Stroud, and F. Taiani.

Final version of the DSoS conceptual model. DSoS Project (IST-1999-11585)
Deliverable CSDA1, December 2002. Available as Research Report 54/2002

at http://www.vmars.tuwien.ac.at.

[110] M. Ghetie, H. Noura, and M. Saif. Fault diagnosis using balance equations

methods and the algorithmic redundancy approach. In Proc. of the 37th IEEE
Conference on Decision and Control, pages 586–591, vol.1, 1998.

[111] M. Ghiassi and K. I. S. Woldman. Dual programming approach to software

testing. Software Quality Journal, 3(1):45–59, 1994.

[112] Robert Bosch GmbH. E-Ray FlexRay IP-module users manual revision 1.2.7,

2009.

[113] S. Godavarty, S. Broyles, and M. Parten. Interfacing to the on-board diagnostic

system. In Proc. of the 52nd IEEE Vehicular Technology Conference, pages

2000 –2004, vol.4, 2000.

504 Time-Triggered Communication

[114] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure

against adaptive chosen-message attacks. SIAM Journal of Computing, pages

281–308, April 1988.

[115] R. Gusella and S. Zatti. An election algorithm for a distributed clock synchro-

nization program. In Proc. of 6th Int. Conf. on Distributed Computing Systems,

pages 364–373, 1986.

[116] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved

by tempo in Berkeley UNIX 4.3BSD. IEEE Trans. on Software Engineering,

15(7):847–853, July 1989.

[117] J. C. Palencia Gutiérrez and M. González Harbour. Schedulability analysis for

tasks with static and dynamic offsets. In Proceedings of the 19th IEEE Real
Time Systems Symposium, pages 26–37, December 1998.

[118] J. C. Palencia Gutiérrez and M. González Harbour. Exploiting precedence re-

lations in the schedulability analysis of distributed real-time systems. In Pro-
ceedings of the 20th IEEE Real-Time Systems Symposium, page 328. IEEE

Computer Society, 1999.

[119] B. Heppner and H. Brauner. Assessment of whole vehicle behaviour by means

of simulation. Technical report, Daimler AG, 2008.

[120] W. Haidinger and R. Huber. Generation and analysis of the codes for TTP/A

fireworks bytes. Research Report 5/2000, Technische Universität Wien, Insti-

tut für Technische Informatik, Vienna, Austria, 2000.

[121] B. Hall and K. Driscoll. A new aerospace network family. Presentation to

INCOSE, Honeywell, October 2009.

[122] B. Hall, K.R. Driscoll, M. Paulitsch, and S. Dajani-Brown. Ringing out fault

tolerance. A new ring network for superior low-cost dependability. Depend-
able Systems and Networks, International Conference on, 0:298–307, 2005.

[123] B. Hall, M. Paulitsch, and K.R. Driscoll. FlexRay BRAIN fusion: A FlexRay-

based braided ring availability integrity network. SAE World Congress, Paper
No 2007-01-1492, 2007.

[124] J.Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock syn-

chronization. In Proceedings of the 3rd ACM Symposium on Principles of Dis-
tributed Computing, pages 89–102, 1984.

[125] F. Hartwich. TTCAN IP Module - User’s Manual. Bosch, 1.6 edition, 11 2002.

[126] F. Hartwich, B. Müller, T. Führer, and R. Hugel. Timing in the TTCAN Net-

work. Technical report, Robert Bosch GmbH, 2003.

[127] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System design for flexibility.

In Proceedings of the Conference on Design, Automation and Test in Europe,

pages 854–861. IEEE Computer Society, 2002.

Bibliography 505

[128] K. Hayhurst, C. Dorsey, J. Knight, N. Leveson, and G. McCormick. Stream-

lining software aspects of certification: Report on the SSAC survey. Technical

report, NASA Technical Memorandum 1999-209519, August 1999.

[129] Health and Safety Executive (HSA). Reducing Risks, Protecting People –
HSEs Decision-Making Process, 2001.

[130] M. Hecht, D. Tang, and H. Hecht. Quantitative reliability and availability as-

sessment for critical systems including software. In Proc. of the 12th Annual
Conference on Computer Assurance, Gaithersburg, MD, USA, June 1997.

[131] G. Heiner and T. Thurner. Time-triggered architecture for safety-related dis-

tributed real-time systems in transportation systems. In Proc. of the Twenty-
Eighth Annual Int. Symposium on Fault-Tolerant Computing, pages 402–407,

June 1998.

[132] R. Hexel. FITS: a fault injection architecture for time-triggered systems. In

Proc. of the 26th Australasian Computer Science Conference (ACSC ’03),
pages 333–338, Darlinghurst, Australia, Australian Computer Society, Inc.,

2003.

[133] D. Höchtl and U. Schmid. Long-term evaluation of GPS timing receiver fail-

ures. In Proceedings of the 29th Precise Time and Time Interval Systems and
Applications Meeting, Long Beach, USA, December 1997.

[134] G.J. Holzmann. The model checker Spin. Software Engineering, IEEE Trans-
actions on, 23(5):279 –295, May 1997.

[135] Honeywell. http://www.honeywell.com. accessed August 2010.

[136] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace and Electronic Systems
Magazine, pages 34–39, March 1993.

[137] I. Hwang, S. Kim, Y. Kim, and C.E. Seah. A survey of fault detection, iso-

lation, and reconfiguration methods. IEEE Transactions on Control Systems
Technology, 18(3):636 –653, May 2010.

[138] IEC: Int. Electrotechnical Commission. IEC 61508-7: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems – Part
7: Overview of Techniques and Measures, 1999.

[139] IEEE. Standard IEEE 802.4 – Information Processing Systems– Local Area
Networks—Part 4: Token-Passing Bus Access Method and Physical Layer
Specifications, 1990.

[140] IEEE. IEEE standard 802.3 – carrier sense multiple access with collision de-

tect (CSMA/CD) access method and physical layer. Technical report, IEEE,

2000.

506 Time-Triggered Communication

[141] IEEE. Draft Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems (V0.19.13). IEEE Press, New York,

NY, USA, May 2002. IEEE Standard No. P1588; Product No. DS5905-TBR.

[142] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. IEEE Press, New York, NY, USA,

IEEE Standard No. 1588, March 2008.

[143] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 1 – Required Services, ARINC specification 653P1-2 edition, December

2005.

[144] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 3 – Conformity Test Specification, ARINC specification 653P-3 edition,

October 2006.

[145] Aeronautical Radio Inc. Avionics Application Software Standard Interface
Part 2 – Extended Services, ARINC specification 653P2-1 edition, 12 2009.

[146] National Instruments. FlexRay automotive communication bus overview.

Technical report, August 2009.

[147] International Electrotechnical Commission (IEC). IEC 61508: International
Standard Functional Safety of Electrical / Electronic / Programmable Elec-
tronic Safety-Related Systems, 1998.

[148] International Standardization Organisation (ISO). Road Vehicles – Controller
Area Network (CAN) – Part 4: Time-Triggered Communication, ISO 11898-4,

1993.

[149] International Standardization Organisation (ISO). Road Vehicles – Inter-
change of Digital Information – Controller Area Network (CAN) for High-
Speed Communication, ISO 11898, 1993.

[150] International Standardization Organisation (ISO). Road Vehicles - Controller
Area Network (CAN) – Part 1: Data Link Layer and Physical Signalling, ISO
11898-1, 1993.

[151] International Standardization Organisation (ISO). Road Vehicles - Controller
Area Network (CAN) – Part 2: High-Speed Medium Access Unit, ISO 11898-2,

1993.

[152] International Standardization Organisation (ISO). ISO/IEC 15765-3:2004 -
Road Vehicles – Diagnostics on Controller Area Networks (CAN) – Part 3:
Implementation of Unified Diagnostic Services (UDS on CAN), 2004.

[153] International Standardization Organisation (ISO). ISO/DIS 26262: Interna-
tional Standard Road Vehicles – Functional Safety, 2009.

Bibliography 507

[154] C. Jeffrey, N. Dumas, Z. Xu, F. Mailly, F. Azas, P. Nouet, R.J.T. Bunyan, D.O.

King, H. Mathias, J.P. Gilles, and A.M.D. Richardson. Sensor testing through

bias superposition. Sensors and Actuators A: Physical, 136(1):441–455, 2007.

25th Anniversary of Sensors and Actuators A: Physical.

[155] S.C. Johnson and R.W. Butler. Design for validation. IEEE Aerospace and
Electronic Systems Magazine, 7(1):38–43, January 1992.

[156] H. Kantz and N. König. Tas control platform: A vital computer platform for

railway applications. Alcatel Telecommunications Review, 2nd Quarter 2004.

[157] H. Kantz and C. Koza. The ELEKTRA railway signalling system: Field expe-

rience with an actively replicated system with diversity. In Proc. of the 25th
International Symposium on Fault-Tolerant Computing (FTCS), pages 453 –

458, 27–30 1995.

[158] R. Kapeller. Design and implementation of a TTP/A master and gateway con-

troller on a 32-bit microcontroller. Master’s thesis, Technische Universität

Wien, Institut für Technische Informatik, Vienna, Austria, 2001.

[159] J. Karlsson, J. Arlat, and G. Leber. Application of three physical fault injec-

tion techniques to the experimental assessment of the MARS architecture. In

Proc. of the 5th Annual IEEE International Working Conference on Depend-
able Computing for Critical Applications, pages 150–161. IEEE Computer

Society Press, 1995.

[160] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, and G. Leber. Integration and

comparison of three physical fault injection techniques. In B. Randell, J. La-

prie, H. Kopetz, and B. Littlewood, editors, Predictably Dependable Comput-
ing Systems, pages 309–327. Springer Verlag, Heidelberg edition, 1995.

[161] S. Katz, P. Lincoln, and J. M. Rushby. Low-overhead time-triggered group

membership. In WDAG, pages 155–169, 1997.

[162] B. Keinhuis, K. Vissers Deprettere, and P. van der Wolf. An Approach for

Quantitative Analysis of Application-Specific Dataflow Architectures. In Pro-
ceedings of the 8th IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pages 338–350, 1997.

[163] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-

Vincentelli. System-level design: Orthogonalization of concerns and platform-

based design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523, 2000.

[164] M.S. Khan. Political and economic dimensions of Global Navigation Satel-

lite System (GNSS). In IEEE Proceedings of the Aerospace Conference, vol-

ume 3, pages 3/1271 – 3/1276. IEEE, 2001.

508 Time-Triggered Communication

[165] H. Kopetz. Event triggered versus time triggered. In Proc. International Work-
shop on Operating Systems of the 90s and Beyond, volume 563 of Lecture
Notes in Computer Science, pages 87–101. Springer Verlag, 1992.

[166] H. Kopetz. Sparse time versus dense time in distributed real-time systems. In

Proc. of 12th Int. Conference on Distributed Computing Systems, Japan, June

1992.

[167] H. Kopetz. TTP/A – A time-triggered protocol for body electronics using stan-

dard uarts. In International Congress and Exposition, Detroit, MI, USA, The

Engineering Society for Advancing Mobility Land Sea Air and Space, SAE

International, February-March 1995.

[168] H. Kopetz. Why time-triggered architectures will succeed in large hard real-

time systems. In Proc. of the 5th IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, Cheju Island, Korea, August 1995.

[169] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, 1997.

[170] H. Kopetz. Elementary versus composite interfaces in distributed real-time

systems. In Proc. of the Int. Symposium on Autonomous Decentralized Sys-
tems, Tokyo, Japan, March 1999.

[171] H. Kopetz. TTP/C Protocol – Version 1.0. TTTech Computertechnik AG, Vi-

enna, Austria, July 2002. Available at http://www.ttpforum.org.

[172] H. Kopetz. Fault containment and error detection in the time-triggered archi-

tecture. In Proc. of the Sixth Int. Symposium on Autonomous Decentralized
Systems, April 2003.

[173] H. Kopetz. Time-triggered real-time computing. Annual Reviews in Control,
27(1):3–13, 2003.

[174] H. Kopetz. The fault-hypothesis of the time-triggered architecture. In Proc. of
the 18th Edition of the IFIP World Computer Congress, August 2004.

[175] H. Kopetz. From a federated to an integrated architecture for dependable real-

time embedded systems. In Proceedings of the Eighth Annual High Perfor-
mance Embedded Computing (HPEC) Workshop, 2004.

[176] H. Kopetz. On the fault hypothesis for a safety-critical real-time sys-

tem. In Keynote Speech at the Automotive Software Workshop San Diego
(ASWSD 2004), San Diego, CA, USA, January 10–12, 2004.

[177] H. Kopetz and G. Bauer. The time-triggered architecture. IEEE Special Issue
on Modeling and Design of Embedded Software, January 2003.

[178] H. Kopetz, G. Bauer, and S. Poledna. Tolerating arbitrary node failures in the

time-triggered architecture. In Proc. of the SAE 2001 World Congress, Detroit,

MI, USA, March 2001.

Bibliography 509

[179] H. Kopetz et al. The Time-Triggered Ethernet (TTE) design. In Proc. of 8th
IEEE Int. Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), May 2005.

[180] H. Kopetz and G. Grunsteidl. TTP-A protocol for fault-tolerant real-time sys-

tems. Computer, 27(1):14–23, 1994.

[181] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart transducer

interface: TTP/A. International Journal of Computer System Science & Engi-
neering, 16(2):71–77, March 2001.

[182] H. Kopetz and R. Nossal. Temporal firewalls in large distributed realtime sys-

tems. In Proc. of IEEE Workshop on Future Trends in Distributed Computing,

Tunis, Tunisia, IEEE Press, 1997.

[183] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time

systems. IEEE Transactions on Computers, 36(8):933–940, 1987.

[184] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A solution

to a real-time synchronisation problem. In Proc. of the 14th Real-Time Systems
Symposium, 1993.

[185] J.M. Krause, M.J. Englehart, and D.A Shaner. Achievable performance of

fault tolerant avionics clocks. In AIAA Computing in Aerospace Conference,
8th, Technical Papers. Vol. 2 (A92-17576 05-61), pages p. 608–622, Balti-

more, MD, American Institute of Aeronautics and Astronautics, Oct. 21-24

1991.

[186] A. Krüger. Interface Design for Time-Triggered Real-Time System Architec-
tures. PhD thesis, Technische Universität Wien, Institut für Technische Infor-

matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 1997.

[187] J.H. Lala and R.E. Harper. Architectural principles for safety-critical real-time

applications. Proc. of the IEEE, 82:25–40, January 1994.

[188] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the ACM, 32(1):52–78, January 1985.

[189] L. Lamport and P.M. Melliar-Smith. Byzantine clock synchronization. In Pro-
ceedings of the 3rd ACM Symposium on Principles of Distributed Computing,

pages 68–74, 1984.

[190] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–

401, 1982.

[191] L. Lavagno and C. Passerone. Embedded Systems Handbook, chapter 3, pages

3–1–3–22. CRC Press, 2006.

510 Time-Triggered Communication

[192] M. Lebedev. GLONASS as instrument for precise UTC transfer. In Proceed-
ings of the 12th European Frequency and Time Forum, Warsaw, Poland, March

1998.

[193] E.A. Lee. Cyber physical systems: Design challenges. In Proc. of the 11th
IEEE International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), pages 363–369, 2008.

[194] P.A. Lee and T. Anderson. Fault Tolerance Principles and Practice, volume 3

of Dependable Computing and Fault-Tolerant Systems. Springer Verlag, 1990.

[195] G. Leen and D. Heffernan. Modeling and verification of a time-triggered net-

working protocol. In Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technolo-
gies, 2006. ICN/ICONS/MCL 2006, pages 178–178, 23-29 2006.

[196] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary

deadlines. In Proceedings of 11th IEEE Real-Time Symposium, pages 201–

209, 1990.

[197] W. Lewandowski, J. Azoubib, and W.J. Klepczynski. GPS: Primary tool for

time transfer. Proceedings of the IEEE, 87(1):163–172, January 1999.

[198] C. Li and S. Dey. Software-based self-testing methodology for processor

cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(3):369 –380, March 2001.

[199] R. Lichtenecker. Terrestrial time signal dissemination. Real-Time Systems,

12(1):41–61, January 1997.

[200] LIN Consortium. LIN specification package revision 2.1, 2006.

[201] B. Liskov. Practical use of synchronized clocks in distributed systems. In Pro-
ceedings of 10th ACM Symposium on the Principles of Distributed Computing,

pages 1–9. ACM Press, 1991.

[202] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[203] C.D. Locke. Software architecture for hard real-time applications: cyclic ex-

ecutives vs. fixed priority executives. Real-Time Systems, 4(1):37–53, 1992.

[204] H. Lönn. Initial synchronization of TDMA communication in distributed real-

time systems. In 19th IEEE Int. Conf. on Distributed Computing Systems,

pages 370–379, Gothenburg, Sweden, 1999.

[205] H. Lönn and J. Axelsson. A comparison of fixed-priority and static cyclic

scheduling for distributed automotive control applications. In Proceedings of
the 11th Euromicro Conference on Real-time Systems, pages 142–149. IEEE

Computer Society Press, June 1999.

Bibliography 511

[206] H. Lönn and P. Pettersson. Formal verification of a TDMA protocol start-up

mechanism. In Pacific Rim International Symposium on Fault-Tolerant Sys-
tems (PRFTS ’97), pages 235–242, Taipei, Taiwan, IEEE, December 1997.

[207] T. Losert. Extending CORBA for Hard Real-Time Systems. PhD thesis, Vienna

University of Technology, Institute of Computer Engineering, 2005.

[208] M. Lu, D. Zhang, and T. Murata. Analysis of self-stabilizing clock synchro-

nization by means of stochastic Petri nets. IEEE Transactions on Computers,

39(5):597–604, 1990.

[209] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchro-

nization. In ACM Symp. on Principles of Distributed Computing, pages 75–88,

1984.

[210] J. Lundelius and N. Lynch. An upper and lower bound for clock synchroniza-

tion. Information and Control, 62:190–204, 1984.

[211] J. Luo, K.R. Pattipati, L. Qiao, and S. Chigusa. Agent-based real-time fault di-

agnosis. In Aerospace Conference, 2005 IEEE, pages 3632–3640, 5-12 2005.

[212] S.R. Mahaney and F.B. Schneider. Inexact agreement: accuracy, precision, and

graceful degradation. In Proceedings of the 4th ACM Symposium on Principles
of Distributed Computing, pages 237–249. ACM Press, 1985.

[213] S.M. Mahmud and A. Arora. Performance Analysis of Fault Tolerant TTCAN

System. 2005.

[214] R. Maier, G. Bauer, G. Stoger, and S. Poledna. Time-triggered architecture: a

consistent computing platform. IEEE Micro, 22(4):36–45, July/August 2002.

[215] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. Wiley, New York, 1990.

[216] G. Martin, F. Schirrmeister, and C.D.S. Inc. A design chain for embedded

systems. Computer, 35(3):100–103, 2002.

[217] K. Marzullo and S. Owicki. Maintaining the time in a distributed system. In

Proceedings of the 2nd ACM Symposium on Principles of Distributed Comput-
ing, pages 295–305, 1983.

[218] K.A. Marzullo. Maintaining the Time in a Distributed System: An Example of
a Loosely Coupled Distributed Service. PhD thesis, Department of Electrical

Engineering, Stanford University, Stanford, CA, USA, February 1984.

[219] M. McCabe, C. Baggerman, and D. Verma. Avionics architecture interface

considerations between constellation vehicles. In Proc. of the 28th Digital
Avionics Systems Conference (DASC), pages 1.E.2–1 – 1.E.2–10. IEEE/AIAA,

October 2009.

512 Time-Triggered Communication

[220] M.D. Mesarovic and Y. Takahara. Abstract Systems Theory, chapter 3.

Springer-Verlag, 1989.

[221] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[222] D. Michaud. Maintenance Avionique - ATA 100 34 Test Automatique Bus
Avionique Langage C. Institut de Maintenance Aronautique, Universit Bor-

deaux I, 2006.

[223] V. Mikolasek, A. Ademaj, and S. Racek. Segmentation of Standard Ethernet

Messages in the Time-Triggered Ethernet. Technical Report 22/2008, Technis-

che Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1,

1040 Vienna, Austria, 2008.

[224] D.L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493, October 1991.

[225] P.S. Miner. Verification of fault-tolerant clock synchronization systems. Tech-

nical Report NASA Technical Paper 3349, NASA Langley Research Center,

November 1993.

[226] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer, E. Fuchs,

B. Hedenetz, W. Kuffner, A. Krüger, P. Lohrmann, D. Millinger, M. Peller,

J. Ruh, A. Schedl, and M. Sprachmann. FlexRay – the communication system

for advanced automotive control systems. In Society of Automotive Engineers
World Congress, Detroit, MI, USA, SAE International. Document No 2001-

01-0676, March 2001.

[227] M. Morgan. The Avionics Handbook, chapter Boeing B-777. CRC Press, Boca

Raton, FL, USA, 2001.

[228] J. Morris, G. Lee, K. Parker, G.A. Bundell, and P.L. Chiou. Software compo-

nent certification. Computer, 34(9):30–36, September 2001.

[229] MOST Cooperation, Karlsruhe, Germany. MOST Specification Version 2.2,

November 2002.

[230] Motor Industry Software Reliability Research Association (MISRA). Devel-
opment Guidelines for Vehicle Based Software, 1994.

[231] B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler. Fault tolerant

TTCAN networks. Technical report, Robert Bosch GmbH, 2002.

[232] C.J. Murray. Time-triggered protocol gains aerospace mileage. EE Times,

September 2002.

[233] NXP Semiconductor. Fault-tolerant CAN/LIN fail-safe system basis chip.

product data sheet, 2010. Available at www.nxp.com/documents/
data_sheet/UJA1061.pdf.

www.nxp.com/documents/data_sheet/UJA1061.pdf
www.nxp.com/documents/data_sheet/UJA1061.pdf

Bibliography 513

[234] R. Obermaisser. CAN Emulation in a Time-Triggered Environment. In

Proc. of the 2002 IEEE Int. Symposium on Industrial Electronics (ISIE), vol-

ume 1, pages 270–275, 2002.

[235] R. Obermaisser. Message reordering for the reuse of CAN-based legacy ap-

plications in a time-triggered architecture. In Proc. of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 301–

310, April 2006.

[236] R. Obermaisser and A. Kanitsar. Application of TTP/A for the Otto Bock

Axon bus. Technical Report 27/2000, Technische Universität Wien, Institut

für Technische Informatik, Vienna, Austria, July 2000.

[237] R. Obermaisser and P. Peti. A fault hypothesis for integrated architectures. In

Proc. of the 4th Int. Workshop on Intelligent Solutions in Embedded Systems,

June 2006.

[238] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification, July 2002.

[239] Object Management Group (OMG). Smart Transducers Interface V1.0, Jan-

uary 2003. Specification available at http://doc.omg.org/formal/2003-01-01

as document ptc/2002-10-02.

[240] A. Olson and K. Shin. Fault-tolerant clock synchronization in large multicom-

puter systems. IEEE Trans. on Parallel and Distributed Systems, 5(9):912–

923, 1994.

[241] OMG. Smart Transducers Interface V1.0. Available Specification document

number formal/2003-01-01, Object Management Group, Needham, MA,

U.S.A., January 2003. available at http://doc.omg.org/formal/
2003-01-01.

[242] OSEK/VDX. OIL: OSEK Implementation Language, Version 2.5, 2004.

[243] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for

fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans-
actions on Software Engineering, 21(2):107–125, February 1995.

[244] J. C. Palencia, J. J. Gutiérrez Garcia, and M. González Harbour. On the

schedulability analysis for distributed hard real-time systems. In Proceedings
of the Euromicro Conference on Real Time Systems, pages 136–143, 1997.

[245] J.C. Palencia and M.G. Harbour. Schedulability analysis for tasks with static

and dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Sym-
posium, pages 26–37. IEEE Computer Society, 1998.

[246] M. Papatriantafilou and P. Tsigas. Self-stabilizing wait-free clock synchro-

nization. In Proceedings of the 4th Scandinavian Workshop on Algorithm
Theory, volume 824 of Lecture Notes in Computer Science, pages 267–277.

Springer-Verlag Berlin Heidelberg, Germany, July 1994.

http://doc.omg.org/formal/2003-01-01

514 Time-Triggered Communication

[247] R.J. Patton. Fault detection and diagnosis in aerospace systems using ana-

lytical redundancy. In IEEE Colloquium on Condition Monitoring and Fault
Tolerance, pages 1/1–120, 6 1990.

[248] M. Paulitsch and B. Hall. Insights into the sensitivity of the BRAIN (braided

ring availability integrity network)–on platform robustness in extended opera-

tion. Dependable Systems and Networks, International Conference on, 0:154–

163, 2007.

[249] M. Paulitsch and B. Hall. Starting and resolving a partitioned BRAIN. Object-
Oriented Real-Time Distributed Computing, IEEE International Symposium
on, 0:415–421, 2008.

[250] M. Paulitsch, J. Morris, B. Hall, K.R. Driscoll, E. Latronico, and P. Koopman.

Coverage and the use of cyclic redundancy codes in ultra-dependable systems.

Dependable Systems and Networks, International Conference on, 0:346–355,

2005.

[251] P. Pedreiras and L. Almeida. Combining event-triggered and time-triggered

traffic in FTT-CAN: Analysis of the asynchronous messaging system. In

Proc. of 3rd IEEE Int. Workshop on Factory Communication Systems, Septem-

ber 2000.

[252] P. Peti, R. Obermaisser, and H. Kopetz. Out-of-norm assertions. In Proc. of the
11th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’05), pages 280–291, San Francisco, CA, USA, March 2005.

[253] P. Peti, R. Obermaisser, and H. Paulitsch. Investigating connector faults in

the time-triggered architecture. In Proc. of the IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA’06), pages 887 –896, 20-22

2006.

[254] P. Peti and L. Schneider. Implementation of the TTP/A slave protocol on the

Atmel ATmega103 MCU. Technical Report 28/2000, Technische Universität

Wien, Institut für Technische Informatik, Vienna, Austria, August 2000.

[255] H. Pfeifer. Formal verification of the TTP group membership algorithm. In

Proc. of Formal Methods for Distributed System Development (FORTE XIII /
PSTV XX 2000), pages 3–18. Kluwer Academic Publishers, 2000.

[256] H. Pfeifer, D. Schwier, and F.W. von Henke. Formal verification for time-

triggered clock synchronization. In Proc. of the 7th IFIP InternationalWorking
Conference on Dependable Computing for Critical Applications (DCCA-7),
pages 207–226, November 1999.

[257] M. Pfluegl and D. Blough. A new and improved algorithm for fault-tolerant

clock synchronization. Journal of Parallel and Distributed Computing, 27:1–

14, 1995.

Bibliography 515

[258] S. Poledna. Replica determinism in distributed real-time systems: A brief sur-

vey. Real-Time Systems, 6:289–316, 1994.

[259] S. Poledna. Fault Tolerant Real-Time Systems: The Problem of Replica Deter-
minism. Kluwer Academic Publishers, Boston, 1996.

[260] P. Pop, P. Eles, and Z. Peng. Scheduling with optimized communication for

time-triggered embedded systems. In Proceedings of the Seventh International
Workshop on Hardware/Software Codesign, pages 178–182. ACM, 1999.

[261] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis of Distributed Real-Time
Embedded Systems. Kluwer Academic Pub, 2004.

[262] P. Pop, P. Eles, and Z. Peng. Schedulability-driven communication synthe-

sis for time triggered embedded systems. Real-Time Systems, 26(3):297–325,

2004.

[263] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing for multi-

cluster distributed embedded systems. ACM Transactions on Embedded Com-
puting Systems (TECS), 4(1):140, 2005.

[264] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of time-

and cost-constrained fault-tolerant embedded systems with checkpointing and

replication. IEEE Trans. on Very Large Scale Integrated (VLSI) Systems Vol-
ume, 17(3):389–402, 2009.

[265] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for distributed heteroge-

neous time/event triggered real-time systems. In 15th Euromicro Conference
on Real-Time Systems, 2003. Proceedings, pages 257–266, 2003.

[266] T. Pop, P. Pop, P. Eles, and Z. Peng. Optimization of hierarchically scheduled

heterogeneous embedded systems. In Proceedings of 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applica-
tions, pages 67–71, 2005.

[267] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay

communication protocol. Real-Time Systems, 39(1):205–235, 2008.

[268] D. Powell. Failure mode assumptions and assumption coverage. In Proc. of the
22nd IEEE Annual Int. Symposium on Fault-Tolerant Computing (FTCS-22),
pages 386–395, Boston, USA, July 1992.

[269] Radio Technical Commission for Aeronautics, Inc. (RTCA). DO-178B: Soft-
ware Considerations in Airborne Systems and Equipment Certification, 1992.

[270] Radio Technical Commission for Aeronautics, Inc. (RTCA). DO-297: In-
tegrated Modular Avionics (IMA) Development Guidance and Certification
Considerations, 2005.

516 Time-Triggered Communication

[271] D. Ragan, P. Sandborn, and P. Stoaks. A detailed cost model for concurrent use

with hardware/software co-design. In Proceedings of the 39th annual Design
Automation Conference, pages 269–274. ACM, 2002.

[272] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant clock synchroniza-

tion in distributed systems. IEEE Computer, 23(10):33–42, October 1990.

[273] J.C. Ramirez and A.S. Piqueras. Learning Bayesian networks for systems di-

agnosis. In Proc. of the Electronics, Robotics and Automotive Mechanics Con-
ference, volume 2, pages 125 –130, September 2006.

[274] Mathias Rausch. FlexRay Grundlagen, Funktionsweise, Anwendung.

HANSER, 2008.

[275] C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems.

Blackwell Scientific Publications, 1993.

[276] FAST Report. Study of worldwide trends and r&d programmes in embedded

systems. Technical report, 2005.

[277] RTCA. Software considerations in airborne systems and equipment certifica-

tion. Standard DO-178B, RTCA, Inc., 1828 L Street, NW, Suite 805, Wash-

ington, DC 20036-5133, USA, December 1, 1992.

[278] RTCA. Design assurance guidance for airborne electronic hardware. Standard

DO-254, RTCA, Inc., 1828 L Street, NW, Suite 805, Washington, DC 20036-

5133, USA, April 19, 2004.

[279] RTCA. Environmental conditions and test procedures for airborne equipment.

Standard DO-160E, RTCA, Inc., 1828 L Street, NW, Suite 805, Washington,

DC 20036-5133, USA, December 9, 2004.

[280] B. Rumpler and W. Elmenreich. Considerations on the complexity of embed-

ded real-time system design tasks. In Proceedings of the IEEE International
Conference on Computational Cybernetics 2006 (ICCC’06), pages 55–60,

2006.

[281] J. Rushby. Partitioning for avionics architectures: Requirements, mechanisms,

and assurance. NASA Contractor Report CR-1999-209347, NASA Langley

Research Center, June 1999.

[282] J. Rushby. Systematic formal verification for fault-tolerant time-triggered

algorithms. IEEE Transactions on Software Engineering, 25(5):651–660,

September 1999.

[283] J. Rushby. Formal verification of transmission window timing for the time-

triggered architecture. Technical report, Computer Science Laboratory, SRI

International, Menlo Park, CA 94025 USA, March 2001.

Bibliography 517

[284] J. Rushby. Modular certification. Technical report, Computer Science Labo-

ratory SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025,

USA, September 2001.

[285] J. Rushby. An overview of formal verification for the time-triggered architec-

ture. In Proc. of the Symposium on Formal Techniques in Real-Time and Fault
Tolerant System (FTRTFT), LNCS Vol. 2469, pages 83–105, Springer-Verlag,

Oldenburg, Germany, September 2002.

[286] J. Rushby and F. von Henke. Formal verification of the interactive conver-

gence clock synchronization algorithm. Technical Report CSL-89-3R, Com-

puter Science Laboratory, SRI International, CA, Menlo Park, USA, February

1989.

[287] SAE. ARP 5107 (aerospace recommended practice). guidelines for time-

limited-dispatch analysis for electronic engine control systems. Technical Re-

port Rev. B, Society of Automotive Engineers, November 2006.

[288] I. Saha and S. Roy. A finite state analysis of time-triggered CAN (ttcan) pro-

tocol using Spin. In Computing: Theory and Applications, 2007. ICCTA ’07.
International Conference on, pages 77 –81, 5-7 2007.

[289] I. Saha, S. Roy, and K. Chakraborty. Modeling and verification of TTCAN

startup protocol using synchronous calendar. In Software Engineering and
Formal Methods, 2007. SEFM 2007. Fifth IEEE International Conference on,

pages 69 –79, 10-14 2007.

[290] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system de-

sign. ACM Transactions on Computer Systems (TOCS), 2, 1984.

[291] A. Sangiovanni-Vincentelli. Electronic-system design in the automobile in-

dustry. IEEE Micro, 23(3):8–18, 2003.

[292] A. Schedl. Design and Simulation of Clock Synchronization in Distributed
Systems. Doctoral thesis, Institut für Technische Informatik, Technische Uni-

versität Wien, Treitlstr. 1-3/3/182-1, Vienna, Austria, April 1996.

[293] F. Scheler and W. Schröder-Preikschat. Time-triggered vs. event-triggered: A

matter of configuration? In Proc. of the Workshop on Model-Based Testing,

Nürnberg, Germany, 2006.

[294] U. Schmid. Orthogonal accuracy clock synchronization. Chicago Journal of
Technical Computer Science, 2000(3):3–77, August 2000.

[295] U. Schmid and K. Schossmaier. Interval-based clock synchronization. Real-
Time Systems, 12:173–228, March 1997.

[296] F.B. Schneider. A paradigm for reliable clock synchronization. Technical Re-

port TR86-735, Computer Science Department, Cornell University, February

1986.

518 Time-Triggered Communication

[297] F.B. Schneider. Understanding protocols for Byzantine clock synchronization.

Research Report 87-859, Department of Computer Science, Cornell Univer-

sity, Ithaca, NY, USA, August 1987.

[298] W. Schwabl. Der Einfluss zufälliger und systematischer Fehler auf die Uhren-
synchronisation in verteilten Echtzeitsystemen. Doctoral thesis, Institut für

Technische Informatik, Technische Universität Wien, Treitlstr. 1-3/3/182-1,

Vienna, Austria, October 1988.

[299] K.G. Shin and R. Ramanathan. Clock synchronization of large multiprocessor

systems in the presence of malicious faults. IEEE Transactions on Computers,

36(1):2–12, 1987.

[300] O. Sinnen. Task Scheduling for Parallel Systems. Wiley-Blackwell, 2007.

[301] H. Sivencrona, P. Johannessen, M. Persson, and J. Torin. Heavy-ion fault in-

jections in the time-triggered communication protocol. In Dependable Com-
puting, Lecture Notes in Computer Science, volume 2847/2003, pages 69–80.

Springer Berlin/Heidelberg, 2003.

[302] Society of Automotive Engineers (SAE). ARP 4754: (Aerospace Recom-
mended Practice) - Certification Considerations for Highly Integrated or
Complex Aircraft Systems, 1996.

[303] Society of Automotive Engineers (SAE). ARP 4761: (Aerospace Recom-
mended Practice) - Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, 1996.

[304] T.K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626–645, 1987.

[305] W. Steiner. Startup and Recovery of Fault-Tolerant Time-Triggered Commu-
nication. PhD thesis, Technische Universität Wien, Institut für Technische In-

formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2004.

[306] W. Steiner. TTEthernet Executable Formal Specification. Research report,

2009. Available at http://www.ttagroup.org/.

[307] W. Steiner. An Evaluation of SMT-based Schedule Synthesis For Time-

Triggered Multi-Hop Networks. In RTSS’10: Proceedings of the 31st IEEE
Real-Time Systems Symposium. IEEE, 2010.

[308] W. Steiner. Synthesis of Static Communication Schedules for Mixed-

Criticality Systems. In AMICS 2011: Proceedings of the 1st International
Workshop on Architectures and Applications for Mixed-Criticality Systems.

IEEE, 2011.

[309] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. TTEthernet

dataflow concept. In NCA, pages 319–322, 2009.

Bibliography 519

[310] W. Steiner and B. Dutertre. SMT-Based formal verification of a TTEthernet

synchronization function. In FMICS, pages 148–163, 2010.

[311] W. Steiner and W. Elmenreich. Automatic recovery of the TTP/A sen-

sor/actuator network. In W. Elmenreich, editor, Proceedings of the First Work-
shop on Intelligent Solutions in Embedded Systems, pages 25–37, 2003.

[312] W. Steiner and H. Kopetz. The startup problem in fault-tolerant time-triggered

communication. International Conference on Dependable Systems and Net-
works (DSN 2006), June 2006.

[313] W. Steiner and M. Paulitsch. The transition from asynchronous to syn-

chronous system operation: An approach for distributed fault-tolerant systems.

In Proc. of the International Conference on Distributed Computing Systems,

pages 329–336, 2002.

[314] W. Steiner, M. Paulitsch, and H. Kopetz. The TTA’s approach to resilience

after transient upsets. Real-Time Syst., 32(3):213–233, 2006.

[315] K. Steinhammer. Design of an FPGA-Based Time-Triggered Ethernet System.

PhD thesis, Technische Universität Wien, Institut für Technische Informatik,

Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2006.

[316] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz. A Time-Triggered

Ethernet (TTE) switch. In Proc. of Design, Automation and Test in Europe,

Munich. Germany, March 2006.

[317] J. Stelzer. LIN bus emerging standard for body control apps. EE Times Asia,

September 2004.

[318] S. Subbiah and S. Nagaraj. Issues with object orientation in verifying safety-

critical systems. In Object-Oriented Real-Time Distributed Computing, 2003.
Sixth IEEE International Symposium on, pages 99 – 104, 14-16 2003.

[319] Sunplus Technology Co., Ltd. LIN bus master note application using UART

module. available at mcu.sunplus.com, 2006. V1.3.

[320] J. Swingler, J.W. McBride, and C. Maul. Degradation of road tested automo-

tive connectors. IEEE Transactions on Components and Packaging Technolo-
gies, 23(1):157–164, March 2000.

[321] Systems Integration Requirements Task Group, Society of Automotive En-

gineers. ARP 4754: Certification Considerations in for Highly-Integrated or
Complex Aircraft Systems, April 1996.

[322] Systems Integration Requirements Task Group, Society of Automotive Engi-

neers. ARP 4761 (Aerospace Recommended Practice) - Guidelines and Meth-
ods for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, December 1996.

520 Time-Triggered Communication

[323] B. Tabbara, A. Tabbara, and A. Sangiovanni-Vincentelli. Func-
tion/Architecture Optimization and Co-Design of Embedded Systems.

Springer Netherlands, 2000.

[324] C. Tanzer. TTPos - the time-triggered and fault-tolerant RTOS. In Real-Time
Magazine 99-4, 1999.

[325] Time-Triggered Technology TTTech Computertechnik AG, Schönbrunner

Strasse 7, A-1040 Vienna, Austria. TTP-Load: The Download Tool for the
Time-Triggered Protocol – Version 6.1.6, 2004.

[326] Time-Triggered Technology TTTech Computertechnik AG, Schönbrunner

Strasse 7, A-1040 Vienna, Austria. TTP Bootloader: User Manual, Novem-

ber 2005.

[327] K. Tindell and H. Hansson. Babbling idiots, the dual-priority protocol, and

smart can controllers. In Proceedings of the 1st Int. CAN Conference, 1994.

[328] K. W. Tindell. Adding time-offsets to schedulability analysis. Technical Re-

port YCS 221, Department of Computer Science, University of York, January

1994.

[329] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks:

an np-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[330] K. W. Tindell and J. Clark. Holistic schedulability analysis for distributed real-

time systems. Euromicro Journal on Microprocessing and Microprogramming
(Special Issue on Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[331] F. Tisato and F. DePaoli. On the duality between event-driven and time-drivern

models. In Proc. of the 13th IFAC DCCS, Toulouse, France, 1995.

[332] Aviation Today. Parker selects TTTech for fly-by-wire system. Press release,

July 2010.

[333] G. Torrisi, J. Notaro, G. Burlak, and M. Mirowski. Evolution and trends in

automotive electrical distribution systems. In Proc. of the IEEE Conference
on Vehicle Power and Propulsion, page 7, 7-9 2005.

[334] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Layer

two tunneling protocol ”L2TP.” RFC 2661, Internet Engineering Task Force,

August 1999.

[335] C. Trödhandl. Architectural requirements for TTP/A nodes. Master’s thesis,

Technische Universität Wien, Institut für Technische Informatik, Vienna, Aus-

tria, 2002.

[336] C.H. Tsai and C.W. Wu. Processor-programmable memory bist for bus-

connected embedded memories. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 325 –330, 2001.

Bibliography 521

[337] TTChip. TTP/C Controller C2: Controller Schedule (MEDL) Structure – Doc-
ument Protocol Version 2.1. Schönbrunner Strasse 7, A-1040 Vienna, Austria,

September 2002.

[338] TTChip Entwicklungsges.m.b.H. TTP/C Controller C2 Controller–Host Inter-
face Description Document, Protocol Version 2.1, November 2002.

[339] TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Aus-

tria. TTPPlan The Cluster Design Tool for the Time-Triggered Protocol
TTP/C, April 2002.

[340] TTTech Computertechnik AG. Time-Triggered Protocol TTP/C, High-Level
Specification Document, Document Number D-032-S-10-028, Protocol Ver-
sion 1.1, 2003.

[341] TTTech Computertechnik AG. TTX-AUTOSAR FlexRay Stack User Manual,
Document Number D-110-G-70-006, Document Edition 4.3.1, 2009.

[342] TTTech Computertechnik AG. Interface Control Document HS-COM Layer,
Document Number D-115-G-10-005, Version 0.1.1, 2010.

[343] TTTech Computertechnik AG. TTP-Build User Manual, Document Number
D-001-G-01-002, Manual Edition 8.1.4, 2010.

[344] TTTech Computertechnik AG. TTP-Plan User Manual, Document Number
D-001-G-01-003, Manual Edition 8.1.2, 2010.

[345] Honeywell Tuscon. Design, implementation, and verification of

fault-tolerant modular aerospace controls, Honeywell ncc-1-377.

http://shemesh.larc.nasa.gov/fm/talks/Honeywell–TTTech.ppt, accessed

August 2010, April 2003. Aviation Safety Program Single Aircraft Accident

Prevention. Coop. Agreement NCC-1-377.

[346] Vector Informatik GmbH. Product catalog ECU software, page 80-81: CAN

embedded LIN communication. available at www.vector.com, 2010.

[347] P. Verı́ssimo, L. Rodrigues, and A. Casimiro. CesiumSpray: A precise and

accurate global time service for large-scale systems. Real-Time Systems,

12(3):243–294, May 1997.

[348] D.D. Davidson and V.Y. Chiu. Fail-operational global time reference in a re-

dundant synchronous data bus system. Patent Application US 2005/0102586

A1, Honeywell, May 12, 2005.

[349] C.J. Walter, M.M. Hugue, and N. Suri. Advances in Ultra-Dependable Dis-
tributed Systems. IEEE Computer Society, 10662 Los Vaqueros Circle, Los

Alamitos, CA 90720, January 1995.

[350] H.F. Wedde and W. Freund. Harmonious internal clock synchronization. In

12th Euromicro Conference on Real-Time Systems, pages 175–182, Informatik

III, Dortmund University, Dortmund, Germany, June 2000. IEEE Press.

http://shemesh.larc.nasa.gov/

522 Time-Triggered Communication

[351] N. Weininger and D.D. Cofer. Modeling the ASCB-D synchronization algo-

rithm with SPIN: A case study. In Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification, pages 93–112,

Springer-Verlag, London, UK, 2000.

[352] J. Welch and L. Lynch. A new fault-tolerant algorithm for clock synchro-

nization. Information and Computation (formerly Information and Control),
77(1):1–36, 1988.

[353] J. Widder. Booting clock synchronization in partially synchronous systems. In

DISC, pages 121–135, 2003.

[354] A.T. Winfree. The Geometry of Biological Time. Springer Verlag, New York,

2001.

[355] B. Witwer. Developing the 777 airplane information management system

(AIMS): a view from program start to one year of service. Aerospace and
Electronic Systems, IEEE Transactions on, 33(2):637 –641, April 1997.

[356] www.softing.com. CAN, CANOpen, DeviceNet. Website, August 2010.

[357] J. Zhang. Improved on-line process fault diagnosis using stacked neural net-

works. In Proc. of the International Conference on Control Applications,

pages 689 – 694, vol.2, 2002.

[358] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli.

Extensible and scalable time triggered scheduling. In Fifth International Con-
ference on Application of Concurrency to System Design, 2005. ACSD 2005,

pages 132–141, 2005.

[359] W. Steiner and G. Bauer. TTEthernet: Time-triggered services for Ethernet

networks, 28th Digital Avionics Systems Conference, IEEE, 2009.

Index

A
A priori knowledge, detection of errors

and anomalies, 38

Acknowledgment failure counter, 111

Active diagnosis, 37

analysis of, 40

Active malicious faults, BRAIN,

272–273

Active star topology, FlexRay network,

149–150, 339–340

Ad-hoc approach (AH), 429–431

Aerospace industry

advantages of time-triggered

communication in, 311, 314

certification requirements for,

478–479

disadvantages of time-triggered

communication in, 314–315

DO-178B guideline, 479–480

integration of TTP into, 119

network-related requirements in,

305–311

quality assurance in, 482–483

safety standards in, 44

time-triggered communication in,

304–305

Agreed slots counter, 111

Agreement protocol, 19, 36

Agreement services, BRAIN, 291

AIMS, 154

modules and functions, 316–318

scheduling challenges in, 319

Aircraft dispatch targets, 309–310

Aircraft Information Management

System (AIMS). See AIMS

Aircraft-level acceptance, 484

ALARP principle, safety standards and,

479

Analysis technologies, 40

compliant requirements and, 478

Analytical redundancy, 38

Anomalies, detection of, 38–39

Aperiodic messages, 48

API, 28

Application acceptance, 484

Application Descriptor Blocks

(APDBs), 107

Application domains, certification in,

43–44

Application interfaces, TTCAN, 239

Application model, schedule generation,

374

Application Programming Interface

(API). See API

Application services, 7

Application watchdog, TTCAN, 240

Application-level testing, time-triggered

systems and, 314

Applications, characterization of for

incremental design, 416–419

Arbitrary failures, 11

Arbitrating windows, TTCAN, 224

Arbitration grid level, 123

Architecture selection, 367

Ares I, 328

interface of with Orion, 330

ARINC 629, 319

ARINC 664, TTEthernet

implementation in context of,

188–189

Artificial intelligence (AI), 375

As low as is reasonably practicable. See
ALARP principle

ASCB

architecture, 297

communication interface, 300

523

524 Index

communication services, 296

configuration services, 300

diagnostic services, 299

fault isolation, 299

protocol parameterization, 300

protocol services, 296

synchronization, restart,

re-integration, and integration

in, 296–299

use of in Primus Epic, 322 (See
also Primus Epic)

validation and verification efforts,

301

ASCB-D. See ASCB

Assume-guarantee reasoning, 43

Assumption coverage, 12

Asymmetric clock synchronization

algorithms, 60

Asynchronous clique detection, 206

Asynchronous guardian roles, 289–291

Asynchronous traffic, 82

Atmel AVR smart transducer, 265–266

Audio/Video Bridging (AVB), 189

Automated verification, 487–488

Automation, requirements for in

aerospace, 306

Automotive applications

CAN-based automotive system,

335

event-triggered approach to design,

340–342

migration from CAN to FlexRay in,

339–345

time-triggered approach in

subsystems, 345–346

time-triggered approach to design,

342–344, 344–345

time-triggered communication in,

333, 335–337

typical design of, 337–339

Automotive industry

LIN protocol, 245

safety-critical system certification

in, 479

use of On-Board Diagnosis

standard in, 40–41

Automotive Open System Architecture.

See AUTOSAR

AUTOSAR, 367, 457–458

communication stack, 458, 466

Availability and reliability

databuses in aerospace, 307

requirements for in aerospace, 306

requirements for in railway

applications, 348

Availability OR, 274–277

Availability vs. integrity trade-off,

SAFEbus, 171–172

Avionics, 295

digital databuses in, 305

Ethernet variant for (ARINC 664),

188–189

Avionics Standard Communications

Bus. See ASCB

Axle counters, 346–347

B
Babble protection, SAFEbus, 170

Babbling idiot failure, 11, 32

CAN, 221

LIN protocol, 250, 253

Backplane bus, 154

Backplane Transceiver Logic (BTL),

156

Bandwidth, 49

BRAIN, 271–272

FlexRay, 339

utilization of in time-triggered

systems, 314

Baptize operations, integration of new

nodes in TTP/A using, 262

Basic Bus Configuration (BBC). See
BBC

Basic cycles

event-synchronized in TTCAN,

224

synchronization of in TTCAN, 224

TTCAN, 222–223, 242–243

Index 525

Basic message structure, SAFEbus,

160–161

Basic technology, visibility

requirements in railway

applications, 348–349

BBC, 404–406

BCW, 176–178

Benign failures, BRAIN propagation

modes and, 274–279

Best-effort messages, 186

Best-effort parameters in TTEthernet,

213

Best-effort traffic class, 185

Best-fit policy, 420

Big bang mechanism, 101

Bin-packing algorithm, 420

Binary search operation, integration of

new nodes in TTP/A using,

262

BISTs, 38

Bit messages, packing of in FT-COM

layer, 471–472

Bit stuffing, CAN protocols, 233–234

BIU, 155

synchronization states of, 164–165

Black-list scheduling, 464, 466

Blackout detection, 104, 112

Boeing 777 aircraft

avionics overview, 320

deployment of SAFEbus on,

178–179, 316–321

Boot loader, 107

Borderline faults, analysis of diagnostic

information concerning, 39

Boundary scan interface, 29

Bounded latency, 310

Bounded network delay, 50

Braided Ring Availability Integrity

Network. See BRAIN

BRAIN

basic architecture, 271

clock synchronization, 279–282

connectivity building and clique

aggregation, 282–285

containment of Byzantine failures

by, 273

development history and design

goals, 270–273

duplex configurations, 272

fault tolerance, 272–273

high-integrity data propagation,

274–279

host task set agreement, 291

implementation and deployment

considerations, 292–294

time-triggered sequenced guardian

roles, 286–289

validation and verification efforts,

292

Brother’s Keeper Guardianship, 273,

286–289

Buffer control word (BCW). See BCW

Built-In Self-Tests (BISTs). See BISTs

Bus access optimization, 402–408

evaluation of heuristics, 407–408

Bus encoding, SAFEbus, 161–163

Bus guardian error, 112

Bus guardian window, 105–106

Bus guardians

FlexRay, 137–139

TTP, 104

Bus Interface Unit (BIU). See BIU

Bus partitioning, 307

Bus topology, 8

FlexRay network, 148–149

Business aviation, 321. See also Primus

Epic

Byte Start Sequence (BSS), 129

Byzantine faults, 11, 100, 106

containment of by BRAIN,

273–274

protection in SAFEbus, 171

C
C code, use of for middleware

configuration, 460–461

Calibration, 368

CAN bus error handling, 232–233

526 Index

CAN buses, automotive function

domains, 335

CAN communication, 82–83

CAN protocols, 85–88, 221–222, 373

bit stuffing in, 233–234

CRC redundancy checks in, 238

error counters in, 232–233

error frames in, 233

migration to FlexRay in automotive

applications, 339–345

use of in automotive applications,

335–337

CAN-based automotive application

design, 338

Cascaded star topology, 8–9

Causality, 33

CBCA algorithm, 283

CBCA messages, 283–285

CENELEC standards, compliance with

for railway applications,

349–350

Central bus guardian

FlexRay, 139

TTP, 105

Central Controller (CC), 355–356

Central guardian, 271

TTEthernet, 207–209

Certifiability, 27, 41–45

Certification, 477

application domains, 43–44

assurance levels in different

standards, 481

DO-178B, 480–481

IEC 61508 standard, 480–481

ISO 26262, 481–482

modular, 43

requirements for in rail signaling

applications, 348

safety-critical railway applications,

349

standards, 477–478

time-triggered communication

protocols and, 44

Certified development process,

TTEthernet, 215

Challenge/response mechanisms, 38

Change management, incremental

scheduling and, 378

Civil aerospace, requirements of, 183

Clique aggregation, BRAIN, 282–285

Clique avoidance algorithms, 68

Clique detection, 78–80

analysis of in TTP, 117–118

TTEthernet, 205–206

TTP, 104

Clique detection algorithms, 68

Clique error, 112

Cliques, 71

Clock drift, 55

Clock rate synchronization, clock

synchronization vs., 56

Clock state correction term, 112

Clock synchronization, 55–56

analysis of in TTP, 116–117

ASCB, 296–299

BRAIN, 279–282

classifications of algorithms,

59–60, 62

FlexRay, 132–134

hardware vs. software

implementation of algorithms,

60

limits in and performance of

algorithms, 61

LIN, 248

parameters in the MEDL, 109

principle of operation of, 56–59

properties of deterministic

algorithms, 63

properties of probabilistic and

statistical algorithms, 64

SAFEbus, 163–164

startup algorithm, 68–70

synchronization of clock rates vs.,
56

time-triggered protocol, 99–100

TTCAN, 224–229

TTEthernet, 196–201

TTP/A, 261–262

Clocks, granularity of, 13

Index 527

Closed nodes, 30

LIF service model for, 30–31

Cluster, 7

Cluster cycle, 96

TTEthernet, 196

Cluster modes, 106—-107

CNI status area, 110

Cluster parameters, FlexRay, 140–141

Cluster schedules, 371

Cluster startup, 100

Clustering, 375–376

CNI, 110

control area of, 113–114

message area, 114

status area, 110–113

Code generation, FT-COM layer,

475–476

Coding and decoding

FlexRay, 129

TTEthernet, 190

Coldstart, 68, 74–77, 136

counter value, 112

frames, 98–99, 100–101, 108–109

TTEthernet, 204

Collection phase, TTEthernet clock

synchronization, 198–199

Collision avoidance symbol (CAS), 136

COM layers, 458–460

fault tolerant (See FT-COM)

hardware (See HW-COM)

high-speed (See HS-COM)

table driven (See TD-COM)

COM/MON, fault isolation in

TTEthernet using, 209

Commercial off-the-shelf products. See
COTS products

Common cause, analysis and

considerations in aerospace,

308

Common Cause Analysis (CCA),

478–479

Common Object Request Broker

Architecture (CORBA). See
CORBA

Common-mode failures, 46

Communication channels, redundancy

of in FlexRay, 137

Communication configuration, 456–458

Communication constraints, 372

Communication cycle level, 123

Communication cycles, FlexRay,

123–126

Communication interface, 7

ASCB, 300

LIN, 252

SAFEbus, 176–178

TTCAN, 241–242

TTEthernet, 213–214

TTP/A, 264–265

Communication jitter, 49

Communication loads, performance of,

48–51

Communication modes, TTEthernet,

185–186

Communication Network Interface

(CNI). See CNI

Communication networks

autonomous control of, 20–23

topologies of, 7–9

Communication parameters of MEDL,

109

Communication protocols

integration of event-triggered and

time-triggered control, 80–81

time-triggered, 44

Communication services

ASCB, 296

FlexRay, 122–130

LIN, 246–247

SAFEbus, 157–163

TTCAN, 222–224

TTP, 96–99

TTP/A, 259–261

Communication slots

dynamic, 125–126

event-triggered and time-triggered,

82

network delay and period of, 49–50

static, 124–125

528 Index

subdivision of for event-triggered

overlay network, 84

Communication stack, 458

Communication synthesis, 364–365, 368

Communication systems

blackout detection, 104, 112

deterministic, 37

requirements for in railway

applications, 349–350

TAS Control Platform, 351–353

Component interfaces, 28–30

Component tests, 479

Component-based design, 27–28

Components, deterministic behavior of,

33

Composability, 27–32

Composition of nodes, 31–32

Compressed point in time, 197

Compression function

formal verification of in

TTEthernet, 214–215

TTEthernet, 197–200

Compression master

role of in TTEthernet clock

synchronization, 197–200

TTEthernet, 184

Computational progress, deviations of

relative to real time, 35

Computer systems, safety cases for, 42

Concurrency control error, 113

Configuration and planning (CP)

inteface, TTP/A, 263–264

Configuration management, databus

requirements in aerospace,

310

Configuration services

ASCB, 300

LIN, 250–252

SAFEbus, 172–173

TTCAN, 238–239

TTEthernet, 210

TTP, 106–107

Configurations

dual-fault tolerant in TTEthernet,

217

master-based in TTEthernet,

216–217

system-of-systems in TTEthernet,

217–218

Connectivity, TAS Control Platform,

354–355

Connectivity building, BRAIN, 282–285

Connectivity-building and

clique-aggregation algorithm.

See CBCA algorithm

Connectivity-building and

clique-aggregation messages.

See CBCA messages

Connector faults, analysis of diagnostic

information concerning, 39

Consistency, analysis of in TTP, 117

Contention avoidance, event-triggered

and time-triggered

communication, 81–82

Contention detection with preemption,

event-triggered and

time-triggered

communication, 82–83

Contention problem, 75–76

Contention tolerance, event-triggered

and time-triggered

communication, 83

Control area of CNI, 113–114

Control interfaces, 28

Control parameters of MEDL, 109

Controlled buffer memory, 176–177

Controlled objects, 6

Controller Area Network protocols. See
CAN protocols

Controller host interface (CHI), E-Ray

IP module, 142–148

Controller life-sign, 102

Convergence functions, 58

TTEthernet compression master,

197–200

TTEthernet synchronization

master, 200–201

Convergence non-averaging techniques,

59

CORBA

Index 529

multi-cluster architecture with, 257

protocol layers for, 85

Core Processor Modules (CPMs). See
CPMs

Correct frames, 99

Cost

requirements for in aerospace, 306

requirements for in railway control,

348

COTS products, 483–484

CPMs, use of in Boeing 777 AIMS

cabinets, 316–318

Crash failures, 10–11

CRC, 98–99

avoidance of by BRAIN, 271

errors, 99

redundancy checks used in CAN,

238

Cyber-physical systems, 6

Cycle counter, 124

Cycle time

phase synchronization of in

TTCAN, 236–237

TTCAN, 226–227

Cyclic executive, 371

Cyclic message transfer, TTCAN, 222

Cyclic Redundancy Code (CRC). See
CRC

Cyclic representation of time, 19

D
Data communication, SAFEbus,

157–158

Data corruption, self-checking data relay

of BRAIN, 274–276

Data guardian exchange, 287

Data integrity, requirements for in

aerospace, 308–309

Data message structure, SAFEbus,

160–161

Databus requirements, aerospace,

307–311

Databus traffic classes, 310, 312–313

Dataflow parameterization

best-effort parameters in

TTEthernet, 213

rate-constrained parameters in

TTEthernet, 212–213

time-triggered parameters in

TTEthernet, 212

TTEthernet, 211–212

Debugging mechanisms, SAFEbus,

169–170

Decision making, analysis of diagnostic

information, 39–40

Dedicated guardian hardware, avoidance

of by BRAIN, 271

Delay, TTEthernet permanence function,

195–196

Delay jitter, 51

Dense time model, 33

DEOS, 322, 325

Dependability, 9

requirements for aerospace

industry, 305

threats, 10

Design approaches, embedded systems,

364

Design components, requirements

management and, 485

Design criterion, mapping and

scheduling, 419–421

Design for validation, 41

Design methodologies

function/architecture co-design,

365–366

incremental design process, 366

platform-based design, 366

Design process and certification,

requirements for in aerospace,

306

Design productivity gap, 364

Design tasks, 367–368

Design transformation heuristics,

evaluation of, 433–435

Determinism, 26, 33–34, 310

FlexRay, 339

replica, 34–36

SAFEbus, 159–160, 319, 321

530 Index

Deterministic algorithms, 37, 60

properties of, 63

Deterministic arguments, use of in a

safety case, 42

Deterministic communication system,

37

Development requirements, aerospace,

306

Development tools, 477, 487. See also
specific tools

interaction of with verification

tools, 492

Diagnosability, 26–27, 37–38

detection of errors and anomalies,

38–39

Diagnostic information

analysis of, 39–40

use of, 40–41

Diagnostic parameters of MEDL, 109

Diagnostic services

ASCB, 299

BRAIN, 291

clique detection in TTP, 104

error detection, 88–90

FlexRay, 137–139

life-sign, 101–102

LIN, 248–249

membership service in TTP,

102–104

SAFEbus, 169–170

TTCAN, 232–234

TTEthernet, 206–207

TTP/A, 262

Differential fault-tolerant midpoint, 58

Differing inputs, replica

non-determinism and, 35

Digital databuses, use of in avionics,

305. See also Databus

requirements

Digital Engine Operating System

(DEOS). See DEOS

Directional integrity exchange, 287

Discrete time model, 33

Dispatch point in time, 195–196

Distance constraints, 372

Distributed real-time systems,

deterministic behavior of,

33–34

Distributed systems, global time and

state, 12–20

DM approach

experimental results, 452–455

message scheduling using TTP,

443–444

DO-178B, 479–480

verification tooling approach,

486–487

Domain specific ontologies, 30

Domain-specific safety standards, 44

Download completed flag, 112

Download frames, 98

Download master node, 107

DP approach

experimental results, 452–455

message scheduling using TTP,

444–446

Drift, 13–14, 55

Dual-channel electronic engine control,

327

Dual-fault tolerant configuration,

TTEthernet, 217

DYN messages, 395

basic bus configuration and,

404–406

holistic schedulability analysis of,

401

response time of, 396–397

schedulability analysis of, 397–400

transmission scenarios for, 399

DYN segment optimization, 403

Dynamic message allocation. See DM

approach

Dynamic messaging, 380

Dynamic packet allocation. See DP

approach

Dynamic segment in FlexRay, 125–126

E
E-Ray IP module

components of, 142–143

Index 531

programmers model, 144–148

Early resource allocation, time-triggered

systems and, 311, 314

ECUs, 333, 335

CAN interfaces with, 335–337

Electrohydraulic systems, integration of

TTP into, 119

Electromagnetic interference, 118

Electronic Control Units (ECUs). See
ECUs

ELEKTRA interlocking system,

355–356

Element Controller (EC), 355–358

Elementary interface, 23

Embedded applications, bounded

network delay in, 50

Embedded computer systems, structural

elements of, 6–9

Embedded systems, 363–364

requirements imposed on,

371–373

Enactors, 40

Engine control architectures, 327

Engineering analysis, 478

Entailment, 33

Environment, databus requirements for

control of in aerospace, 311

Epoch, 15

Error counters, CAN and TTCAN,

232–233

Error detection, 88–89

active redundancy, 90

avoidance of CRCs by BRAIN, 271

FlexRay, 139

LIN, 249–250

requirements of for NASA CEVs,

330

semantic checks, 89

syntactic checks, 89

TTCAN, 234–235

Error flags in CNI, 112–113

Error-containment unit, TTEthernet, 207

Errors, 10

containment of, 27, 45

CRC, 99

detection of, 38–39

ESCAPE, 300

Essential System Configuration and

Architecture for Primus Epic.

See ESCAPE

Ethernet, 183

frame format, 187–190

Euro-Balise, 347

European Train Control System (ETCS),

347

Event triggers, 20

Event-synchronized basic cycles, 224

Event-triggered communication

FlexRay as CAN replacement in

automotive applications,

340–342

integration of with time-triggered

communication, 80–88

Event-triggered design approach, 370

Event-triggered frames, LIN 2.x, 247

Event-triggered networks, 1–2

access delay in, 50

Event-triggered overlay networks, 83–84

Event-triggered tasks, integration of

with time-triggered

communication. See TT/ET

integration

Event-triggered vs. time-triggered

design, automotive industry,

344–345

Exclusive windows, TTCAN, 224

Exhaustive search (ES), 428–429

Explicit synchronization, 22

Extendability constraints, 372–373

Extending checklists, 483

External clock synchronization, 56

algorithms, 59

use of by time master in TTCAN,

228–229

External faults, analysis of diagnostic

information concerning, 39

External rate correction field, 113

External timing master test, 298

532 Index

F
Fail safe systems, requirements for in

railway applications, 348

Fail-operational behavior, 279

Fail-stop failures, 10

Failed frames, 113

Failed slots counter, 111

Failure, 10

preservation of node abstraction in

case of, 32

Failure analysis, 44

compliant requirements and,

478–479

Failure Mode and Effects Analysis

(FMEA), 44, 478

Failure modes, 10–11

Failure rates, 1

Failure reporting, databus support for in

aerospace, 307

Fast convergence function, 58

Fast restart, TTP/A, 262

Fault containment

databus requirements in aerospace,

308

requirements for in railway

applications, 349–350

Fault Containment Region (FCR). See
FCR

Fault hypothesis, 11–12

BRAIN, 273

time-triggered protocol and, 95

Fault injection, experiments to validate

TTP, 118

Fault isolation

analysis of in TTP, 117

ASCB, 299

BRAIN, 286–291

FlexRay, 137–139

LIN, 249

SAFEbus, 170

TTCAN, 235–238

TTEthernet, 207–209

TTP, 104–106

TTP/A, 262

Fault tolerance

BRAIN, 272–273

TAS Control Platform, 353–354

TTEthernet, 183

Fault Tree Analysis (FTA), 44, 478

Fault-Tolerant Average algorithm. See
FTA algorithm

Fault-tolerant COM layer. See FT-COM

Fault-tolerant midpoint function, 58

Fault-Tolerant Units (FTUs). See FTUs

Faults, 10

analysis of diagnosis information,

39–40

containment of, 27, 45

FCR, 10

failure of, 45

independent, 46

recovery and repair of, 47

Federal Aviation Regulations, 44

Federated avionics architecture, 316

Field Element Controller (FEC), 356

Field-bus protocols

BRAIN, 270 (See also BRAIN)

TTP/A, 255 (See also TTP/A)

FIFO functionality, E-Ray IP module,

147

Fireworks byte, 259

Firmware design, 368

FIT-CAN

controlled mode, 82

uncontrolled mode, 83

Fixed priority scheduling (FPS). See
FPS

Flexibility, 27

Flexible Time-Triggered CAN

(FIT-CAN). See FIT-CAN

FlexRay, 81–82, 91, 315

buffer configuration, 457–458

bus access optimization, 402–408

communication protocol, 393–395

communication services, 122–123

communication stack, 458, 466

communication timing, 342

controller host interface, 142–148

interface configuration, 461–466

Index 533

migration from CAN in automotive

applications, 339–345

overview, 122

protocol operation control,

130–137

protocol parameterization, 140–142

schedule editing in, 384–387

startup, 135–137

synchronous task execution,

342–344

system model, 392–393

timing analysis, 396–397

topology and layout of network,

148–151
TTXPlan, 377–378

use of in automotive applications,

336–337

wakeup, 134–135

Flight Management System (FMS),

Internet protocols for data

movement, 311

Flight tests, compliance requirements

and, 479

Flow control, 23

FPGA end systems, implementation of

TTEthernet in, 219–220

FPS, 369, 392

holistic schedulability analysis of

tasks, 401

Frame change, SAFEbus, 172–173

Frame Change message, SAFEbus, 168

Frame Description Language, SAFEbus,

174

Frame End Sequence (FES), 130

Frame format

FlexRay, 126

LIN, 246

TTEthernet, 187–190

Frame information in MEDL, 110

Frame Start Sequence (FSS), 129

Frame synchronization entities (FSEs),

224–225

Frame tick, 296

Frames, 98–99

Frames not ready error, 112

Free time windows, TTCAN, 224

Free-running clocks, 14

Freezing and thawing, 376–377

Freshness constraints, 372

FrIF layer, 458

actions of, 461–462

configuration as C code, 465

frame and application times,

463–464

interrupt overhead, 463

job handling by, 462–463

schedulers, 464, 466

FT-COM, 458–460

code generation, 475–476

implementation, 472–475

message buffer handling, 471

message timing, 470–471

packing of bit messages, 471–472

receiver and sender status

messages, 469–470

reintegration with h-state, 469

replica-deterministic agreement

(RDA) function, 468–469

subsystem replication, 468

FTA algorithm, 99–100

FTUs, 45

replica determinism of, 47

Function/architecture co-design,

365–366

Functional Hazard Assessment (FHA),

478–479

Functional safety, IEC 61508 standard,

480–481

G
Galileo, 66

Gateway, 7

Gateway nodes, 29–30

General aviation. See also Primus Epic

use of ASCB in, 322–325

General configuration interfaces,

TTCAN, 238–239

General Inter-ORB Protocol (GIOP), 85

Generic event service, 84–88

Global interferences, 32

534 Index

Global Navigation Satellite System

(GLONASS), 66

Global Positioning System (GPS). See
GPS

Global scheduling algorithm, 396

Global time, 16–17

FlexRay, 132, 342–344

phase synchronization of in

TTCAN, 237

TTCAN, 222, 227–229

Globalization of local errors, CAN, 233

GPS, 66

Granularity, 13

reasonableness condition for, 17

Greedy heuristic

bus access optimization, 406–407

message scheduling approaches,

447–450

modification cost, 429

Greenwich Mean Time (GMT), 16

Ground cycle, 20

Ground state, 20

Ground tests, compliance requirements

and, 479

Ground-state data structure, 20

GSM-R, 347

Guaranteed response, 50

Guardian actions, support of by BRAIN,

273

Guardian hardware, avoidance of by

BRAIN, 271

H
H-state, reintegration of FT-COM with,

469

Hard real-time systems, 372

failures in, 50–51

Hardware COM layer. See HW-COM

Header segment in FlexRay, 126–129

Heavy-ion fault injection, 118

Heterogeneous Critical Path (HCP)

algorithm, 423–424

High-integrity data propagation,

BRAIN, 274–279

High-integrity design, 184

fault isolation in TTEthernet, 209

High-speed COM layer. See HS-COM

Holistic scheduling and optimization,

391–392

Honeywell’s Modular Aerospace

Controller. See Modular

Aerospace Controller (MAC)

Honeywell’s Primus Epic. See Primus

Epic

Host computer, 6–7

Host life-sign, 101–102

Host multiplexing, 378–380

HS-COM, 458–460

configuration, 466–468

use of C code for configuration of,

460–461

HW-COM, 458–460

Hybrid networks, FlexRay, 149, 151

I
Identification section of MEDL, 109

Idle interval, 97

IEC 61508, 43–44

IEC 61508 standard, 480–481

IEEE P1588, 61, 65

IFS, 255

address hierarchical structure, 258

communication interface in TTP/A

nodes, 264–265

IMA, 154

IMM, 155

Implicit flow control, 23

Implicit synchronization, 22

Incoming voting, 45

Incorrect frames, 99

Incremental design process, 366,

408–410, 416

characterizing existing application,

416–418

characterizing future applications,

418–419

quality metrics and objective

function, 419

slack sizes, 419–420

Index 535

use of for mapping and scheduling,

414–416

Incremental scheduling, 376–378

Independent path data integrity

reconstitution, 276–277

Information semantics, 21

Initial mapping and scheduling (IMS),

423–424

evaluation of algorithm, 431–433

Initial Sync messages, SAFEbus,

168–169

Inline integrity failure detection, BRAIN

self-checking data relay,

274–276

Integrated architectures, engineering

challenge of, 316

Integrated Modular Avionics (IMA), 316

deployment of in Orion, 328–330

Integrated modular avionics (IMA). See
IMA

Integration, 68, 71–74, 368

TTEthernet, 203–204

TTP/A, 262

Integration counter, 101

Integration cycle, TTEthernet, 196–197

Integration messages, 72

Integrity AND, 274–277

Interactive convergence function, 58

Interface behavior, 30

Interface Controller (IC), 356–358

Interface File System (IFS). See IFS

Interfaces, TTCAN, 238–239

Interlocking architecture, railway

domain, 355–356

Intermodule Memory (IMM). See IMM

Internal clock synchronization, 55–56

algorithms, 59–60

Internal faults, analysis of diagnostic

information concerning, 39

Internal synchronization, 15

International Atomic Time (TAI). See
TAI

Internet Inter-ORB Protocol (IIOP), 85

Interrupt enable field, 114

Interrupt schedules, 371

Interrupt status vectors, error indication

in TTCAN using, 240–241

Invalid frames, 99

ISO 26262, 481–482

J
Jitter, 72, 372

Joint Aviation Regulations, 44

JTAG bus, 169, 172

L
Laboratory tests, compliance

requirements and, 479

Latency, 72

Leader election problem, 68

LIF, 28–29

relevance of timing and semantic

content for, 29–30

service model, 30–31

Life-sign, 101–102

update of, 473

Life-time

aerospace requirements for, 306

databuses and cabling in aerospace,

307

railway application requirements

for, 348

LIN

2.x, 247–248

clock synchronization, 248

communication interface, 252

communication services, 246–247

configuration services, 250–252

diagnostic services, 248–249

error detection, 249–250

fault isolation, 248

implementations of, 253

protocol overview, 245

restart, re-integration, integration,

248

signal definition, 251

validation and verification efforts,

253

Line Replaceable Modules (LRMs). See
LRMs

536 Index

Line replaceable units (LRUs), 316

Linking Interface (LIF). See LIF

Linking interface specification, 30–31

List scheduling, 375

Listen timeout, 101

Liveness properties, 242

Loading, databus performance

considerations in avionics, 310

Local bus guardian

FlexRay, 138–139

TTP, 104–105

Local clocks, 55

Local errors, globalization of in CAN,

233

Local interfaces, 29–30

Local time

FlexRay, 132

TTCAN, 226

Locality constraints, 372

Logic tests, 38

Logical collisions of coldstart messages,

76–77

Long Resync Message, SAFEbus,

166–168

Long Resync message, SAFEbus, 163

LRMs, 154, 316

paired hardware in, 155–156

M
MAC layer

integration of event-triggered and

time-triggered communication

at, 81–83

TTEthernet services on, 190

Macrotick level, 123

Mailbox system in TTCAN, 235–236

Main algorithm, 340–341

Major cycle, 371

Major frame, 371

Manual verification, 487–488

Mapping, 367

Mapping and scheduling

design criterion for, 419–421, 423

object function and exact problem

formulation, 421–422

TTP, 411–414

Mapping and scheduling strategy, 426

evaluation of IMS algorithm,

431–433

initial, 423–424

iterative design transformations,

424–427

minimizing total modification cost,

427–431

Masquerading, 11

Master-based configuration, TTEthernet,

216–217

Master/Shadow message structure,

SAFEbus, 160–161

Master/slave relation in TTCAN, 231

Master/slave rounds in TTP/A, 260

Mastership transition strike count,

297–298

Mathematical scheduling techniques,

375

MAU, 323

implementation of in Primus Epic,

321

Maximum acknowledgment failure

count, 112

Maximum drift rate, 14

Maximum error interval-based function,

59

Maximum offset, 15

Media access control

FlexRay, 122–123

TTEthernet, 190–194

MEDLs, 96

control of TDMA slots for clock

synchronization, 100

mode changes in, 106–107

optimizing for DM and DP, 445

parameters of, 108–110

personalized in TTP, 456–457

synthesis with TTP controllers,

438–440

TT/ET integration, 437–438

use of TTPTD-COM-Verify with,

492

Index 537

use of TTPVerify for verification of,

489–490

Meet-in-the-middle design method,

27–28

Membership agreement, 90–91

Membership error field, 112

Membership failure counter, 111

Membership services, 40

analysis of in TTP, 117–118

TTP, 102–104

Memory tests, 38

Message buffers

assignment of in E-Ray IP module,

144–145

handling of in FT-COM layer, 471

Message Descriptor List (MEDL). See
MEDLs

Message handling, E-Ray IP module,

146

Message handling time table (MHTT).

See MHTT

Message passing mechanism, 410,

437–438

Message paths, visualization of in

TTEthernet, 387, 389–391

Message RAM, structure of in E-Ray IP

module, 145–146

Message schedules, 370

generation of for time-triggered

communication, 373

Message scheduling approaches for

TTP, 440–446

experimental results, 452–455

optimization strategies for,

446–452

Message timing failure, 45

Message timing in FT-COM layer,

470–471

Message value failure, 45

Message variables, 30

Message-based self-checking pairs,

BRAIN, 277–279

Messages, sending and receiving in

TTCAN, 229–230

Meta-level specification, 30

MHTT, 437–438

synthesis with TTP controllers,

438–440

Microtick level, 123

Microticks, 13

Middleware

code generation, 468–476

configuration, 456, 458–468

Minimum integration value, 101

Minor cycles, 371

Minor frame, 296

Missed deadlines, 50–51

MM approach

experimental results, 452–455

message scheduling using TTP,

442–443

Mode change request field, 113

Mode changes, 106–107

Mode violation error, 112

Model-based design, 367

Model-based testing, TTEthernet,

215–216

Modification cost minimization

heuristics, 429–431

evaluation of, 435–436

Modular Aerospace Controller (MAC),

326–327

fault-tolerant modular electronic

engine control, 327

Modular Avionics Unit (MAU). See
MAU

Modular certification, 43

DO-297, 484

Module acceptance, 484

Monitor MEDL for TTP, 457. See also
MEDL

Movement authority, 346–347

Multi-master strike count, 297–298

Multipartner round in TTP/A, 260

Multiplexed nodes, 96

Mutual checking of nodes, 39

Mutual exclusion constraints, 372

MUX-Ghost, 379–380

538 Index

N
N-Modular Redundancy (NMR), 38, 45

NASA Constellation program,

development of Orion Crew

Exploration Vehicle, 328

Neighborhood search, 375–376

Network delay, 49

Network idle time (NIT), 126

Network Interface Controllers (NICs).

See NICs

Network jitter, 72

Network topologies, 7–9

Network-related requirements in

aerospace, 305–311

Never-Give-Up (NGU) strategy, 104

NICs, ASCB implementation on, 296

Node computers in automotive

applications, 334. See also
ECUs

Node parameters, FlexRay, 141–142

Nodes, 6

agreement protocol between, 19

independent development of, 31–32

integration of, 71–74

integration of in TTP/A, 262

interfaces of, 28–30

internal structure of, 7

mutual checking of, 39

non-interfering interactions, 32

preservation of abstraction of in

case of failures, 32

requirements for in time-triggered

communication, 314

self-checking of, 38–39

stability of prior services, 32

startup of, 68–71

strict control on interactions of, 46

synchronization of in TTCAN,

231–232

Non Return to Zero (NRZ) coding, 129

Non-Blocking Write Protocol, 22

Non-controlled buffer memory, 177–178

Non-interfering interactions, 32

Non-preemptible tasks, 369

Nondeterministic language features, 36

Normal frames, 98–99

Null frames, 99, 113

O
Object Management Group (OMG),

Smart Transducer Interface

Standard, 256

Object Request Broker (ORB), 85

Off-highway vehicles, integration of

TTP into, 119

Off-line timing and resource analysis, 50

Offset, 15

Offset correction, 132–133

Omission failures, 11

On-Board Diagnosis (OBD), 40–41

Open nodes, 29–30

LIF service model for, 31

Operational interfaces, 28

Operational specification, 30

Orion

avionics overview, 334

error detection and self-checking

computing, 330–332

interface of with Ares I, 330

requirements and restrictions,

328–330

TTEthernet in, 328–333

Oscillator drift, replica non-determinism

and, 35

OSEK Implementation Language (OIL),

477

Out-of-band signaling pulses, SAFEbus,

162

Overlay networks, event-triggered,

83–84

P
Partition schedules, 371

Partitioning, SAFEbus, 159–160

Passive bus topology, FlexRay network,

148–149

Passive diagnosis, 37

analysis of, 39–40

Passive nodes, 96–97

Payload segment in FlexRay, 129

Index 539

PCFs, 183, 184

contents of, 187–188

PCMCIA cards, TTP/A master protocol

interface, 266–267

PDUs, 457–458

Performance

considerations of for databuses in

aerospace, 310

periodic, sporadic, and aperiodic

messages, 48

requirements for in railway

applications, 348

Performance attributes, 27, 49–51

Periodic built-in test (BITE), integrity

checking, 309

Periodic messages, 48

Permanence function, 72

formal assessment of, 214

TTEthernet, 195–196

use of in TTEthernet clock

synchronization, 198–199

Phase synchronization of cycle time,

TTCAN, 236–237

Phase synchronization of global time,

TTCAN, 237

Physical clocks, 13

failures modes of, 14

precision and accuracy of, 15–16

Physical collisions of coldstart

messages, 75

Pin-level fault injection, 118

Platform-based design, 366

Post-receive phase, 97

Potential moves, 425, 427–428

Pre-send phase, 97

Precedence constraints, 372

Predictability, 26, 33–34

Preemptible tasks, 369

Preemptive scheduling

fixed priority, 325

replica non-determinism and, 36

TTEthernet, 192

Preliminary System Safety Assessment

((P)SSA), 478–479

Primus Epic, 295, 301

buses, 323

DEOS, 322, 325

overview and advantages of,

321–322

synchronization, restart,

re-integration, and integration

in, 296–299

system diagram, 324

use of ASCB with, 322

Probabilistic clock synchronization

algorithms, 60

properties of, 64

Process evidence, 41

Product evidence, 41–42

Protocol control frames (PCFs). See
PCFs

Protocol data units (PDUs). See PDUs

Protocol Operation Control (POC),

130–131

clock synchronization, 132–134

startup, 135–137

wakeup, 134–135

Protocol parameterization

ASCB, 300

FlexRay, 140–142

SAFEbus, 173–176

TTCAN, 239–241

TTEthernet, 210–213

Protocol-control flow parameterization,

TTEthernet, 211

Q
Qualification tests, 479

Qualitative arguments, use of in a safety

case, 42

Quality assurance

extending checklists, 483

reuse of processes, 482–483

standards, 215

R
Radio Block Center (RBC), 347

Radio-controlled clocks, 66

Railway applications, 346–347

540 Index

generic system architecture,

350–355

requirements for, 348–349

requirements for communication

systems, 349–350

time-triggered protocols in,

355–358

Railway electronics, integration of TTP

into, 119

Rate constrained messages, 186,

208–209

Rate correction, 132

vs. state correction, 56

Rate Monotonic Scheduling, 325

Rate synchronization, TTCAN, 237–238

Rate-constrained parameters in

TTEthernet, 212–213

Rate-constrained traffic class, 185

Reading messages, E-Ray IP module,

147

Real time, deviations of computational

progress relative to, 35

Real-time applications

elements of, 6–9

fault detection in railway

applications, 350

Real-time systems

deterministic behavior of, 33–34

optimal representation of time for,

67

timing constraints in, 372

Receiver status messages, 469

Receiver tasks, 473–474

Reception of a frame, checks on in

FlexRay, 139

Redundant communication channels,

137

railway applications, 350

Reference message

synchronization in TTCAN,

224–226

TTCAN, 222

Reference windows, TTCAN, 223

Reintegration instants, 20

Relative clique detection, 206

Release times, 372

Reliability model, 41

Remote Clock Reading (RCR), 57–58

Remote clock time readings, 57–58

Replica determinate systems

building, 36–37

TAS Control Platform, 351–353

Replica determinism, 34–36, 47

Replica non-determinism, causes of,

34–36

Replica-deterministic agreement (RDA)

function, 468–469

receiver status, 469–470

sender status, 470

Replicated subsystems, 468

Requirements management, 484–485

standardized definitions, 485

Requirements-based test vectors, 486

Resource constraints, 372

Response-time analysis, schedulability

analysis and, 369–370

Restart, 77–80

LIN, 248

TTEthernet, 205

TTP/A, 262

Restart vector, 47

Resynchronization initiation, 57

Resynchronization Jump Table, 173

Reuse of processes, 482–483

Round-based algorithms, 57

S
SAE

AS6802, 201–202

in-vehicle network classes of, 94

Safe startup, 70–71

Safe state violations, 78

SAFEbus, 154–155, 270

architecture overview, 319

clock resynchronization, 163–164

communication interface, 176–178

communication services, 157–163

determinism of, 319, 321

example configurations and

implementations, 178–179

Index 541

interface logic, 155

nomenclature, 156

protocol overview, 155–157

restart, re-integration, integration,

164–169

self-checking processors, 317

terminology, 157

use of in Boeing 777, 316–321

validation and verification efforts,

178

Safety

communication in railway domain,

357

culture of in aerospace, 306

databuses in aerospace, 307

rail signaling applications

requirements for, 348

Safety analysis, 44

compliance requirements and,

478–479

Safety case, 41–42

elements of, 42

Safety Integrity Levels (SILs). See SILs

Safety standards, certification and,

43–44

Safety-critical systems, 183

process requirements for

verification for, 478–482

system development

methodologies, 367

train routing and train protection,

346–347

TTP fault isolation in, 104–106

use of time-triggered networks for,

1–2

x-by-wire, 479

SCBs, 155

Schedulability analysis, 368–369

approaches to, 369–370

synthesis of MEDL and MHTT in

TTP controllers, 439–440

Schedule generation, 368–371

application model, 374

real-time system constraints and,

373

Schedule steps, 376

Schedule visualization, 383–384

Scheduling, 368

complexity of, 374–375

strategies for, 375–376

strategies for in TTPPlan, 381–383

Scheduling heuristics, 375

Scheduling policy, 368–369

SCS, 392

algorithms, 369

Security assurance, databus

requirements in aerospace,

310–311

Self-Checking Buses (SCBs). See SCBs

Self-checking data relay

BRAIN, 274–277

use of for clock synchronization

and startup, 279

Self-checking master coordination,

BRAIN, 281–282

Self-checking of nodes, 38–39

Self-checking pair computing,

implementation of on Orion,

330–332

Self-checking pair neighbor guardian,

288–289

Self-checking processor pair broadcast,

277–279

Semantic checks, 89

FlexRay, 139

Sender status messages, 470

Sender tasks, 473

Sensor tests, 38

Sensors, automotive applications,

335–337

SETTA approach, 367

Short Resync message, SAFEbus, 163

Short-circuit detection, BRAIN, 291

Shuffling, TTEthernet, 193

SILs, 43–44

Similarity modeling, 478

Simulated annealing strategy (SA), 433

message scheduling approach

optimization, 450–452

Simulated annealing-based approach,

542 Index

bus access optimization,

407–408

SINT messages, 280–281, 285, 289–290

self-checking master coordination

and, 281–282

Skip guardian link forwarding, 288

Slack

distribution of, 421

sizes, 419–420

stealing, 325

Sliding window function, 58–59

Slightly-off-specification (SoS) failures,

11

Slot occupied error, 112

SM approach

experimental results, 452–455

message scheduling using TTP,

440–442

Smart sensors, use of TTP/A protocol

for, 255

Smart Transducer Interface (STI)

Standard, implementation by

TTP/A, 256

Smart transducers, implementation of

TTP/A in, 265–266

Society of Automotive Engineers. See
SAE

Soft real-time systems, 372

Software design and implementation,

367–368

Software development and verification

standards, DO-178B, 479–480

Software execution, event-triggered

approach to design, 341

Software-Implemented Fault Injection

(SWIFI), 118

Source authentication, BRAIN, 290

Space partitioning, 159

Sparse time, 17–19, 33

Sparse time-base, 36

Spatial partitioning, 46–47

Spatial redundancy, 38

Spiral representation of time, 19

Sporadic frames, LIN 2.x, 247

Sporadic messages, 48

Standardization, SAFEbus, 179

Star topology, 8–9

FlexRay network, 149–150

Startup, 68–77

ASCB, 298–299

enforcement in BRAIN, 289–290

FlexRay, 135–137

timeout in TTP, 101

TTCAN, 230–232

use of CBCA in BRAIN, 282–285

Startup guardian, 289–290

State correction, vs. rate correction, 56

State estimation, 51

State machines, TTEthernet startup,

201–203

State messages, 21

State of a system, 19–20

State variables, 20

Static control structure, 37

Static cyclic scheduling (SCS). See SCS

Static multiple message allocation. See
MM approach

Static segment in FlexRay, 124–125

Static single message allocation. See SM

approach

Statistical clock synchronization

algorithms, 60

properties of, 64

Status area of CNI, 110

controller state information,

110–111

diagnostic information, 111–113

Stress analysis, 478

Subset selection heuristic (SH),

modification cost, 429–431

Subsystem replication, 468

Symbol window, 126

Symmetric clock synchronization

algorithms, 60

Synchronization, 22, 314

AIMS processors, 317

error, 112

FlexRay, 342–344

formal assessment of in

TTEthernet, 215

Index 543

methods supported by TTCAN,

224, 236–238

process of in FlexRay, 132–134

TTEthernet, 184, 195–196

Synchronization client, TTEthernet, 184

Synchronization master

role of in TTEthernet clock

synchronization, 200–201

TTEthernet, 184

Synchronization messages, SAFEbus,

166

Synchronization states, SAFEbus BIU,

164–165

Synchronization-INTegration messages.

See SINT messages

Synchronous clique detection, 206

Synchronous mode clique aggregation

breakthrough, 285–286

Synchronous traffic, 82

Syntactic checks, 89

FlexRay, 139

System development, waterfall model

of, 364

System matrix

TTCAN, 222–223

TTCAN mailboxes, 235–236

System modeling, 478

System state, 19–20

System-level acceptance, 484

System-of-systems configuration,

TTEthernet, 217–218

Systems tests, 479

T
Table memory, SAFEbus, 173–174

Table versioning, SAFEbus, 174–176

Table-drive COM layer. See TD-COM

Table-driven communication protocol,

SAFEbus, 157–158

TAI, 15–16, 65

TAS Control Platform

communication system, 351–353

composition of, 350–351

connectivity, 354–355

ELEKTRA, 355–356

fault tolerance of, 353–354

redundancy architecture, 351

Task preemption, 37

Task schedules, 370–371

TD-COM, 458–460

TDMA, 22

clique resolution and schedules of,

282

communication slots for an

event-triggered overlay

network, 84

disadvantage of in aerospace

applications, 314–315

message schedules in, 370

schedule, 279–280

strategy for clock synchronization,

65

TDMA round, 96

TDMA slots, 96–97

timing of, 97–98

Technology dependent interface (TDI),

29

Technology independent interface (TII),

29

Temporal control signals, types of,

20–21

Temporal firewall, 21–22

Temporal order, 18

Temporal parameters of MEDL,

109–110

Temporal partitioning, 46

Temporal redundancy, 38

Temporal structuring of communication

FlexRay, 123–126

TTP, 96–97

Tentative frames, 99

Test computations with known results,

38

Test suite, 486

Test vectors, requirements-based, 486

Testability, 485

Testing, 368

databus performance

considerations in avionics, 310

544 Index

Third-party software configurations,

456, 476–477

Time difference values, 113

Time Division Multiple Access

(TDMA). See TDMA

Time field, 113–114

Time master

ASCB, 298

parameterization of nodes in

TTCAN, 240

TTCAN, 222, 227–229

TTCAN startup, 230–231

Time measurement, fundamental limits

of, 17

Time partitioning, 159

Time representation, 67

Time servers, ASCB, 296–297

Time sources, 66

Time standards, 65

Time startup field, 114

Time transmission (TT), 57–58

Time triggers, 21

Time windows, TTCAN, 224

Time-critical algorithm, 340

Time-Triggered (TT) messages,

185–186

Time-Triggered CAN. See TTCAN

Time-triggered communication

aerospace industry, 304–305

automotive industry migration to,

344–345

automotive subsystems, 345–346

FlexRay synchronous task

execution, 342–344

generation of message schedules

for, 373

integration of with event-triggered

communication, 80–88

integration of with event-triggered

tasks (See TT/ET integration)

requirements for aerospace

industry, 311, 314–315

use of in aerospace and space

applications, 315–333

Time-triggered communication

controller, 6–7

Time-triggered communication

protocols

clock synchronization, 55–67

diagnostic services for, 88–91

modular certification, 43

startup and restart, 68–80

Time-triggered communication systems

access delays in, 49

use of a priori knowledge for error

detection in, 39

Time-triggered design approach, 370

Time-Triggered Ethernet protocol. See
TTE protocol

Time-triggered networks, 1–2, 7

Time-triggered parameters in

TTEthernet, 212

Time-Triggered Protocol (TTP). See
TTP

Time-triggered protocols in railway

domain, 355–358

Time-triggered schedules, future

extensions of, 315

Time-triggered sequenced guardian

roles, fault isolation using,

286–289

Time-triggered synchronization,

TTCAN, 224

Time-triggered systems

schedule visualization in, 383–384

schedules in, 370–371

Time-triggered traffic class, 185

Timed sequence of messages, 30

Timely block, TTEthernet, 192

Timely startup, 70

Timestamps, 13

Timing constraints, real-time systems,

372

Timing failures, 11

Timing hierarchy, FlexRay, 123

Timing requirements, communication in

the railway domain, 357

TMR, 45

Tool qualification, verification tools, 478

Index 545

Tool support, 485

Topologies, 7–9

braided ring, 271, 292 (See also
BRAIN)

startup and, 70

TTEthernet, 191, 210–211

Traceability, 485

Track occupancy, 346–347

Traffic class, 185

Trailer segment in FlexRay, 129

Train routing and protection, 346–347

Transient faults

analysis of diagnostic information

concerning, 40

recovery from, 47

Transmission phase, 97

Transmission Start Sequence (TSS), 129

Transparent clock mechanism, 72

Transport protocols, 22–23

Transport specification, 30

Triggers, 20–21

Triple-modular redundancy (TMR). See
TMR

TT/ET integration, 437

software architecture, 437–438

TTCAN

clock synchronization, 224–229

communication interface, 241–242

communication services, 222–224

configuration services, 238–239

diagnostic services, 232–234

error detection and fault tolerance,

234–238

protocol parameterization, 239–241

reference implementation of,

243–244

restart, re-integration, integration,

230–232

sending and receiving messages in,

229–230

validation and verification efforts,

242–243

TTE protocol, 82–83

TTEthernet, 315

certified development process, 215

clock synchronization, 196–201

communication interface, 213–214

communication services, 185–196

configuration services, 210

configurations, 216–218

diagnostic services, 206–207

fault isolation, 207–209

formal verification and analysis,

214–215

implementations, 219–220

model-based testing, 215–216

protocol overview, 182–184

protocol parameterization, 210–213

protocol services, 184–185

self-checking pair end system, 333

startup and restart, 201–206

use of in Orion, 328–333

visualization of message paths in,

387, 389–391

TTP, 373

analysis of clock synchronization

algorithm, 116–117

analysis of fault isolation and

consistency, 117

analysis of membership service and

clique avoidance, 117–118

application mapping and

scheduling, 411–414

clock synchronization, 99–100

communication interface, 110–114

communication services, 96–99

configuration services, 106–107

design of, 94–95

diagnostic services, 101–104

DM approach to message

scheduling, 443–444

DP approach to message

scheduling, 444–446

example configurations and

implementations, 119

experimental results for MEDL and

MHTT synthesis, 452–455

fault injection experiments, 118

fault isolation, 104–106

host multiplexing, 378–380

546 Index

Message Descriptor List, 108–110

message passing mechanism, 410

MM approach to message

scheduling, 442–443

monitor MEDL for, 457

optimization strategy for MEDL

and MHTT synthesis,

446–452

overview of, 94–95

personalized MEDLs in, 456–457

restart, re-integration, and

integration, 100–101

schedule editing in, 384–387

SM approach to message

scheduling, 440–442

states, 114–116

system architecture, 410–411

Table-Driven Communication

Layer, 490–491
TTPPlan, 376–377

TTP controller

message handling by, 437–438

synthesis of MEDL and MHTTs,

438–440

TTP/A

clock synchronization, 261–262

communication interface, 264–265

communication services, 259–261

configuration and planning

interface, 263–264

diagnostic and management

interface of, 262

fault isolation, 262

master protocol, 266

multipartner round, 259

restart, re-integration, integration,

262

slave nodes, 265–266

STI standard implementation by,

256

validation and verification efforts,

265

TTP/C

application of in railway domain,

356–358

cluster cycle, 358

integration of TTP/A for fault

isolation, 263

use of for intermodule

communication on MAC

platform, 326
TTPBuild, 475–476
TTPPlan, 376

incremental scheduling, 377

Monitor MEDL, 457

round-slot viewer, 387

schedule browser, 384

schedule editor, 384–387

scheduling strategies in, 381–383
TTPTD-COM-Verify, 490–491

certification aspects, 493

data flow, 491, 493
TTPVerify, 489–490
TTXPlan, 377–378

U
UART frames, use of by LIN protocol,

246

Ultra-dependable systems, 1

Uncertainty of simultaneity, 33

Universal Time Coordinated (UTC). See
UTC

UTC, 16, 65

Utilization tests, schedulability analysis

and, 369

V
V-Model of system development, 367

Vector implementations, self-checking

data relay of BRAIN, 276

Verification, 368, 477–478

best practices, 482–486

DO-178B guideline, 479–480

IEC 61508, 480–481

ISO 26262, 481–482

qualification of tools, 488–489

Verification and analysis, TTEthernet,

214–215

Verification and validation, databus

Index 547

requirements in aerospace,

308

Verification tooling approach, 486

manual vs. automated verification,

487–488

output correctness, 486–487

Verification tools

interaction of with development

tools, 492

qualification of, 478

Virtual Backplane, 321

Virtual LANs (VLANs), 189

Virtual Link Identifier (VLID), 189, 211

W
Wakeup, FlexRay, 134–135

Weight, requirements for in aerospace,

306

White-list scheduling, 464, 466

Wired OR, 156, 163

Worst-case execution time (WCET), 33,

372

Writing messages, E-Ray IP module,

146

Z
Zombie module protection, SAFEbus,

171–172

	Contents
	List of Figures
	List of Tables
	Editor
	Contributors
	1. Introduction
	1.1 Scope of the Book
	1.2 Structure of the Book

	2. Basic Concepts and Principles of Time-Triggered Communication
	2.1 Introduction
	2.2 System Structure
	2.3 Concepts of Dependability
	2.3.1 Dependability Threats – Failure, Error, Fault
	2.3.2 Fault Containment
	2.3.3 Failure Modes
	2.3.4 Fault Hypothesis

	2.4 Global Time and State
	2.4.1 Time and Clocks
	2.4.2 Precision and Accuracy
	2.4.3 Global Time
	2.4.4 Sparse Time
	2.4.5 State of a System

	2.5 Autonomous Control of Communication Networks
	2.5.1 Types of Temporal Control Signals
	2.5.1.1 Event Triggers
	2.5.1.2 Time Triggers

	2.5.2 Information Semantics
	2.5.3 Temporal Firewall
	2.5.4 Transport Protocols
	2.5.5 Flow Control

	3. Properties of Time-Triggered Communication Systems
	3.1 Introduction
	3.2 Composability
	3.2.1 Component-Based Design
	3.2.2 Component Interfaces
	3.2.3 Linking Interface Specification
	3.2.4 Composition of Nodes

	3.3 Determinism and Predictability
	3.3.1 The Concept of Determinism
	3.3.2 Replica Determinism
	3.3.3 Building a Replica Determinate System

	3.4 Diagnosability
	3.4.1 Detection of Errors and Anomalies
	3.4.2 Decision Making – Analysis of Diagnostic Information
	3.4.3 Use of Diagnostic Information and Analysis Results

	3.5 Certifiability
	3.5.1 Safety Case
	3.5.2 Modular Certification
	3.5.3 Certification in Application Domains
	3.5.4 Time-Triggered Communication Protocols and Certification

	3.6 Fault Containment and Error Containment
	3.6.1 Independent Fault Containment Regions
	3.6.2 Strict Control on Node Interactions
	3.6.3 Replica Determinism
	3.6.4 Recovery and Repair

	3.7 Performance
	3.7.1 Periodic, Sporadic and Aperiodic Messages
	3.7.2 Performance Attributes

	4. Core Algorithms
	4.1 Introduction
	4.2 Clock Synchronization
	4.2.1 Principle of Operation of Clock Synchronization
	4.2.2 Classifications of Clock Synchronization Algorithms
	4.2.3 Limits in and Performance of Clock Synchronization Algorithms
	4.2.4 Related Work on Clock Synchronization Algorithms
	4.2.5 Time Standards and Sources
	4.2.6 Time Aspects from an Application-Specific View

	4.3 Startup and Restart
	4.3.1 Introduction and Overview
	4.3.2 Startup
	4.3.3 Restart

	4.4 Integration of Event-Triggered and Time-Triggered Communication
	4.4.1 Integration of Event-Triggered and Time-TriggeredCommunication at MAC Layer
	4.4.2 Event-Triggered Overlay Networks
	4.4.3 Generic Event Service

	4.5 Diagnostic Services
	4.5.1 Error Detection
	4.5.2 Membership Agreement

	5. Time-Triggered Protocol (TTP/C)
	5.1 Protocol Overview
	5.2 Protocol Services
	5.2.1 Communication Services
	5.2.2 Clock Synchronization
	5.2.3 Restart, Re-Integration, Integration
	5.2.4 Diagnostic Services
	5.2.5 Fault Isolation
	5.2.6 Configuration Services

	5.3 Protocol Parameterization
	5.3.1 Message Descriptor List

	5.4 Communication Interface
	5.4.1 Status Area
	5.4.2 Control Area

	5.5 Protocol States
	5.6 Validation and Verification Efforts
	5.6.1 Formal Analysis of Clock Synchronization Algorithm
	5.6.2 Formal Analysis of Fault Isolation and Consistency
	5.6.3 Formal Analysis of Membership Service and Clique Avoidance
	5.6.4 Fault Injection Experiments

	5.7 Example Configurations and Implementations

	6. FlexRay
	6.1 Protocol Overview
	6.2 Protocol Services
	6.2.1 Communication Services
	6.2.2 Protocol Operation Control
	6.2.3 Clock Synchronization
	6.2.4 Wakeup and Startup

	6.3 Diagnostic Services and Fault Isolation
	6.3.1 Redundant Communication Channels
	6.3.2 Bus Guardians
	6.3.3 Checks on the Reception of a Frame

	6.4 Protocol Parameterization
	6.4.1 Cluster Parameters
	6.4.2 Node Parameters

	6.5 Controller Host Interface
	6.5.1 Overview of the E-Ray IP Module
	6.5.2 Programmers Model

	6.6 Example Configurations and Implementations
	6.6.1 Topology and Layout of a FlexRay Network

	7. SAFEbus
	7.1 SAFEbus
	7.1.1 Background
	7.2 Protocol Overview
	7.3 Protocol Services
	7.3.1 Communication Services
	7.3.2 Clock Synchronization
	7.3.3 Restart, Re-Integration, Integration
	7.3.4 Diagnostic Services
	7.3.5 Fault Isolation
	7.3.6 Configuration Services
	7.3.7 Protocol Parameterization

	7.4 Communication Interface
	7.5 Validation and Verification Efforts
	7.6 Example Configurations and Implementations

	8. Time-Triggered Ethernet
	8.1 Protocol Overview
	8.2 Protocol Services
	8.2.1 Communication Services
	8.2.2 Clock Synchronization
	8.2.3 Startup and Restart
	8.2.4 Diagnostic Services
	8.2.5 Fault Isolation
	8.2.6 Configuration Services

	8.3 Protocol Parameterization
	8.3.1 Physical Topology
	8.3.2 Protocol-Control Flow Parameterization
	8.3.3 Dataflow Parameterization

	8.4 Communication Interface
	8.5 Validation and Verification Efforts
	8.5.1 Formal Verification and Analysis
	8.5.2 Certified Development Process
	8.5.3 Model-Based Testing

	8.6 Example Configurations and Implementations
	8.6.1 Configurations
	8.6.2 Implementations

	9. TTCAN
	9.1 Protocol Overview
	9.2 Protocol Services
	9.2.1 Communication Services
	9.2.2 Clock Synchronization
	9.2.3 Sending and Receiving Messages in TTCAN
	9.2.4 Restart, Re-Integration, Integration
	9.2.5 Diagnostic Services
	9.2.6 Error Detection and Fault Isolation
	9.2.7 Configuration Services

	9.3 Protocol Parameterization
	9.4 Communication Interface
	9.5 Validation and Verification Efforts
	9.6 Example Configurations and Implementations

	10. LIN
	10.1 Protocol Overview
	10.2 Protocol Services
	10.2.1 Communication Services

	10.3 LIN 2.x
	10.3.1 Clock Synchronization
	10.3.2 Restart, Re-Integration, Integration
	10.3.3 Diagnostic Services
	10.3.4 Error Detection and Fault Isolation
	10.3.5 Configuration Services and Protocol Parameterization

	10.4 Communication Interface
	10.5 Validation and Verification Efforts
	10.6 Example Configurations and Implementations

	11. TTP/A
	11.1 Protocol Overview
	11.2 OMG Smart Transducer Standard
	11.3 Interface File System (IFS)
	11.4 Protocol Services
	11.4.1 Communication Services
	11.4.2 Clock Synchronization
	11.4.3 Restart, Re-Integration, Integration
	11.4.4 Diagnostic Services
	11.4.5 Fault Isolation
	11.4.6 Configuration Services and Protocol Parameterization

	11.5 Communication Interface
	11.6 Validation and Verification Efforts
	11.7 Example Configurations and Implementations
	11.7.1 TTP/A Slave Nodes
	11.7.2 TTP/A Master

	12. BRAIN
	12.1 Protocol Overview
	12.1.1 Development History and Design Goals
	12.1.2 Minimal Overhead Replication and Input Agreement

	12.2 Protocol Mechanisms and Services
	12.2.1 High-Integrity Data Propagation
	12.2.2 Clock Synchronization, Startup and Clique Resolution

	12.3 Fault Isolation
	12.3.1 Time-Triggered Sequenced Guardian Roles
	12.3.2 Asynchronous Guardian Roles

	12.4 Diagnostic and Agreement Services
	12.4.1 Host Task Set Agreement

	12.5 Validation and Verification Efforts
	12.6 Example Configurations, Implementations and Deployment Considerations

	13. ASCB – Avionics Standard Communications Bus
	13.1 Protocol Overview
	13.2 Protocol Services
	13.2.1 Communication Services
	13.2.2 Clock Synchronization, Restart, Re-Integration and Integration
	13.2.3 Diagnostic Services
	13.2.4 Fault Isolation
	13.2.5 Configuration Services

	13.3 Protocol Parameterization
	13.4 Communication Interface
	13.5 Validation and Verification Efforts
	13.6 Example Configurations and Implementations

	14. Industrial Applications
	14.1 Introduction
	14.2 Time-Triggered Communication in Aerospace
	14.2.1 Requirements
	14.2.2 A General Discussion of Time-Triggered Communication to Meet Requirements
	14.2.3 Use of Time-Triggered Communication Networks in Aerospace and Space

	14.3 Time-Triggered Communication in Automotive Applications
	14.3.1 Typical Design of Automotive Applications
	14.3.2 Migration from CAN to FlexRay
	14.3.3 Practical Experience with the Time-Triggered Approach in Automotive Subsystems

	14.4 Time-Triggered Communication Services in Railway Applications
	14.4.1 Railway Applications
	14.4.2 Requirements on Railway Applications
	14.4.3 Requirements on Communication Systems
	14.4.4 Generic System Architecture
	14.4.5 Application of Time-Triggered Protocols in the Railway Domain
	14.4.6 Safety Concept
	14.4.7 Conclusion and Outlook

	15. Development Tools
	15.1 Introduction
	15.2 Design Tasks
	15.3 Schedule Generation
	15.3.1 Requirements and Application Model
	15.3.2 Scheduling Complexity and Scheduling Strategies
	15.3.3 Schedule Visualization

	15.4 Holistic Scheduling and Optimization
	15.4.1 System Model
	15.4.2 The FlexRay Communication Protocol
	15.4.3 Timing Analysis
	15.4.4 Bus Access Optimization

	15.5 Incremental Design
	15.5.1 Preliminaries
	15.5.2 Problem Formulation
	15.5.3 Characterizing Existing and Future Applications
	15.5.4 Quality Metrics and Objective Function
	15.5.5 Mapping and Scheduling Strategy
	15.5.6 Experimental Results

	15.6 Integration of Time-Triggered Communication with Event-Triggered Tasks
	15.6.1 Software Architecture
	15.6.2 Optimization Problem
	15.6.3 Schedulability Analysis
	15.6.4 Optimization Strategy
	15.6.5 Experimental Results

	15.7 Configuration and Code Generation
	15.7.1 Communication Configuration
	15.7.2 Middleware Configuration
	15.7.3 Code Generation
	15.7.4 Configuration of Third-Party Software

	15.8 Verification
	15.8.1 Process Requirements
	15.8.2 Verification Best Practices
	15.8.3 Verification Tooling Approach

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

